/* * Igrf13Model.cpp * * Created on: 10 Mar 2022 * Author: Robin Marquardt */ #include "Igrf13Model.h" #include #include #include //#include #include #include #include #include #include Igrf13Model::Igrf13Model(){ } Igrf13Model::~Igrf13Model(){ } void Igrf13Model::magFieldComp(const double longitude, const double gcLatitude, const double altitude, timeval timeOfMagMeasurement, double* magFieldModelInertial) { double phi = longitude, theta = gcLatitude; //geocentric /* Here is the co-latitude needed*/ theta -= 90*Math::PI/180; theta *= (-1); double rE = 6371200.0; // radius earth [m] /* Predefine recursive associated Legendre polynomials */ double P11 = 1; double P10 = P11; //P10 = P(n-1,m-0) double dP11 = 0; //derivative double dP10 = dP11; //derivative double P2 = 0, dP2 = 0, P20 = 0, dP20 = 0, K = 0; for (int m = 0; m <= igrfOrder; m++) { for (int n = 1; n <= igrfOrder; n++) { if (m <= n) { /* Calculation of Legendre Polynoms (normalised) */ if (n == m) { P2 = sin(theta) * P11; dP2 = sin(theta) * dP11 - cos(theta) * P11; P11 = P2; P10 = P11; P20 = 0; dP11 = dP2; dP10 = dP11; dP20 = 0; } else if (n == 1) { P2 = cos(theta) * P10; dP2 = cos(theta) * dP10 - sin(theta) * P10; P20 = P10; P10 = P2; dP20 = dP10; dP10 = dP2; } else { K = (pow((n - 1), 2) - pow(m, 2)) / ((2 * n - 1) * (2 * n - 3)); P2 = cos(theta) * P10 - K * P20; dP2 = cos(theta) * dP10 - sin(theta) * P10 - K * dP20; P20 = P10; P10 = P2; dP20 = dP10; dP10 = dP2; } /* gradient of scalar potential towards radius */ magFieldModel[0]+=pow(rE/(altitude+rE),(n+2))*(n+1)* ((updatedG[m][n-1]*cos(m*phi) + updatedH[m][n-1]*sin(m*phi))*P2); /* gradient of scalar potential towards phi */ magFieldModel[1]+=pow(rE/(altitude+rE),(n+2))* ((updatedG[m][n-1]*cos(m*phi) + updatedH[m][n-1]*sin(m*phi))*dP2); /* gradient of scalar potential towards theta */ magFieldModel[2]+=pow(rE/(altitude+rE),(n+2))* ((-updatedG[m][n-1]*sin(m*phi) + updatedH[m][n-1]*cos(m*phi))*P2*m); } } } magFieldModel[1] *= -1; magFieldModel[2] *= (-1 / sin(theta)); /* Next step: transform into inertial KOS (IJK)*/ //Julean Centuries double JD2000Floor = 0; double JD2000 = MathOperations::convertUnixToJD2000(timeOfMagMeasurement); JD2000Floor = floor(JD2000); double JC2000 = JD2000Floor / 36525; double gst = 100.4606184 + 36000.77005361 * JC2000 + 0.00038793 * pow(JC2000,2) - 0.000000026 * pow(JC2000,3); //greenwich sidereal time gst *= PI/180; //convert to radians double sec = (JD2000 - JD2000Floor) * 86400; // Seconds on this day (Universal time) // FROM GPS ? double omega0 = 0.00007292115; // mean angular velocity earth [rad/s] gst +=omega0 * sec; double lst = gst + longitude; //local sidereal time [rad] magFieldModelInertial[0] = magFieldModel[0] * cos(theta) + magFieldModel[1] * sin(theta)*cos(lst) - magFieldModel[1] * sin(lst); magFieldModelInertial[1] = magFieldModel[0] * cos(theta) + magFieldModel[1] * sin(theta)*sin(lst) + magFieldModel[1] * cos(lst); magFieldModelInertial[2] = magFieldModel[0] * sin(theta) + magFieldModel[1] * cos(lst); double normVecMagFieldInert[3] = {0,0,0}; VectorOperations::normalize(magFieldModelInertial, normVecMagFieldInert, 3); } void Igrf13Model::updateCoeffGH(timeval timeOfMagMeasurement){ double JD2000Igrf = (2458850.0-2451545); //Begin of IGRF-13 (2020-01-01,00:00:00) in JD2000 double JD2000 = MathOperations::convertUnixToJD2000(timeOfMagMeasurement); double days = ceil(JD2000-JD2000Igrf); for(int i = 0;i <= igrfOrder; i++){ for(int j = 0;j <= (igrfOrder-1); j++){ updatedG[i][j] = coeffG[i][j] + svG[i][j] * (days/365); updatedH[i][j] = coeffH[i][j] + svH[i][j] * (days/365); } } }