#include "SafeCtrl.h"

#include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
#include <math.h>

SafeCtrl::SafeCtrl(AcsParameters *acsParameters_) { acsParameters = acsParameters_; }

SafeCtrl::~SafeCtrl() {}

acs::SafeModeStrategy SafeCtrl::safeCtrlStrategy(const bool magFieldValid, const bool mekfValid,
                                                 const bool satRotRateValid, const bool sunDirValid,
                                                 const uint8_t mekfEnabled,
                                                 const uint8_t dampingEnabled) {
  if (not magFieldValid) {
    return acs::SafeModeStrategy::SAFECTRL_NO_MAG_FIELD_FOR_CONTROL;
  } else if (mekfEnabled and mekfValid) {
    return acs::SafeModeStrategy::SAFECTRL_ACTIVE_MEKF;
  } else if (satRotRateValid and sunDirValid) {
    return acs::SafeModeStrategy::SAFECTRL_WITHOUT_MEKF;
  } else if (dampingEnabled and satRotRateValid and not sunDirValid) {
    return acs::SafeModeStrategy::SAFECTRL_ECLIPSE_DAMPING;
  } else if (not dampingEnabled and satRotRateValid and not sunDirValid) {
    return acs::SafeModeStrategy::SAFECTRL_ECLIPSE_IDELING;
  } else {
    return acs::SafeModeStrategy::SAFECTRL_NO_SENSORS_FOR_CONTROL;
  }
}

void SafeCtrl::safeMekf(const double *magFieldB, const double *satRotRateB,
                        const double *sunDirModelI, const double *quatBI, const double *sunDirRefB,
                        double *magMomB, double &errorAngle) {
  // convert magFieldB from uT to T
  VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);

  // convert sunDirModel to body rf
  double sunDirB[3] = {0, 0, 0};
  QuaternionOperations::multiplyVector(quatBI, sunDirModelI, sunDirB);

  // calculate angle alpha between sunDirRef and sunDir
  double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB);
  errorAngle = acos(dotSun);

  splitRotationalRate(satRotRateB, sunDirB);
  calculateRotationalRateTorque(sunDirB, sunDirRefB, errorAngle,
                                acsParameters->safeModeControllerParameters.k_parallelMekf,
                                acsParameters->safeModeControllerParameters.k_orthoMekf);
  calculateAngleErrorTorque(sunDirB, sunDirRefB,
                            acsParameters->safeModeControllerParameters.k_alignMekf);

  // sum of all torques
  for (uint8_t i = 0; i < 3; i++) {
    cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
  }

  calculateMagneticMoment(magMomB);
}

void SafeCtrl::safeNonMekf(const double *magFieldB, const double *satRotRateB,
                           const double *sunDirB, const double *sunDirRefB, double *magMomB,
                           double &errorAngle) {
  // convert magFieldB from uT to T
  VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);

  // calculate error angle between sunDirRef and sunDir
  double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB);
  errorAngle = acos(dotSun);

  splitRotationalRate(satRotRateB, sunDirB);
  calculateRotationalRateTorque(sunDirB, sunDirRefB, errorAngle,
                                acsParameters->safeModeControllerParameters.k_parallelNonMekf,
                                acsParameters->safeModeControllerParameters.k_orthoNonMekf);
  calculateAngleErrorTorque(sunDirB, sunDirRefB,
                            acsParameters->safeModeControllerParameters.k_alignNonMekf);

  // sum of all torques
  for (uint8_t i = 0; i < 3; i++) {
    cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
  }

  calculateMagneticMoment(magMomB);
}

void SafeCtrl::safeRateDamping(const double *magFieldB, const double *satRotRateB,
                               const double *sunDirRefB, double *magMomB, double &errorAngle) {
  // convert magFieldB from uT to T
  VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);

  // no error angle available for eclipse
  errorAngle = NAN;

  splitRotationalRate(satRotRateB, sunDirRefB);
  calculateRotationalRateTorque(sunDirRefB, sunDirRefB, errorAngle,
                                acsParameters->safeModeControllerParameters.k_parallelNonMekf,
                                acsParameters->safeModeControllerParameters.k_orthoNonMekf);

  // sum of all torques
  VectorOperations<double>::add(cmdParallel, cmdOrtho, cmdTorque, 3);

  // calculate magnetic moment to command
  calculateMagneticMoment(magMomB);
}

void SafeCtrl::splitRotationalRate(const double *satRotRateB, const double *sunDirB) {
  // split rotational rate into parallel and orthogonal parts
  double parallelLength = VectorOperations<double>::dot(satRotRateB, sunDirB) *
                          pow(VectorOperations<double>::norm(sunDirB, 3), -2);
  VectorOperations<double>::mulScalar(sunDirB, parallelLength, satRotRateParallelB, 3);
  VectorOperations<double>::subtract(satRotRateB, satRotRateParallelB, satRotRateOrthogonalB, 3);
}

void SafeCtrl::calculateRotationalRateTorque(const double *sunDirB, const double *sunDirRefB,
                                             double &errorAngle, const double gainParallel,
                                             const double gainOrtho) {
  // calculate torque for parallel rotational rate
  VectorOperations<double>::mulScalar(satRotRateParallelB, -gainParallel, cmdParallel, 3);

  // calculate torque for orthogonal rotational rate
  VectorOperations<double>::mulScalar(satRotRateOrthogonalB, -gainOrtho, cmdOrtho, 3);
}

void SafeCtrl::calculateAngleErrorTorque(const double *sunDirB, const double *sunDirRefB,
                                         const double gainAlign) {
  // calculate torque for alignment
  double crossAlign[3] = {0, 0, 0};
  VectorOperations<double>::cross(sunDirRefB, sunDirB, crossAlign);
  VectorOperations<double>::mulScalar(crossAlign, gainAlign, cmdAlign, 3);
}

void SafeCtrl::calculateMagneticMoment(double *magMomB) {
  double torqueMgt[3] = {0, 0, 0};
  VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt);
  double normMag = VectorOperations<double>::norm(magFieldBT, 3);
  VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3);
}