#include "AcsBoardAssembly.h" #include #include #include AcsBoardAssembly::AcsBoardAssembly(object_id_t objectId, object_id_t parentId, PowerSwitchIF* switcher, AcsBoardHelper helper, GpioIF* gpioIF) : AssemblyBase(objectId, parentId), pwrStateMachine(SWITCH_A, SWITCH_B, switcher, state), helper(helper), gpioIF(gpioIF) { if (switcher == nullptr) { sif::error << "AcsBoardAssembly::AcsBoardAssembly: Invalid Power Switcher " "IF passed" << std::endl; } if (gpioIF == nullptr) { sif::error << "AcsBoardAssembly::AcsBoardAssembly: Invalid GPIO IF passed" << std::endl; } ModeListEntry entry; initModeTableEntry(helper.mgm0Lis3IdSideA, entry); initModeTableEntry(helper.mgm1Rm3100IdSideA, entry); initModeTableEntry(helper.mgm2Lis3IdSideB, entry); initModeTableEntry(helper.mgm3Rm3100IdSideB, entry); initModeTableEntry(helper.gyro0AdisIdSideA, entry); initModeTableEntry(helper.gyro1L3gIdSideA, entry); initModeTableEntry(helper.gyro2AdisIdSideB, entry); initModeTableEntry(helper.gyro3L3gIdSideB, entry); initModeTableEntry(helper.gpsId, entry); } void AcsBoardAssembly::performChildOperation() { using namespace duallane; if (state == PwrStates::SWITCHING_POWER or state == PwrStates::CHECKING_POWER) { if (targetMode != MODE_OFF) { pwrStateMachineWrapper(targetMode, targetSubmode); } // This state is the indicator that the power state machine is done if (state == PwrStates::MODE_COMMANDING) { AssemblyBase::performChildOperation(); } } else { AssemblyBase::performChildOperation(); // This state is the indicator that the mode state machine is done if (state == PwrStates::SWITCHING_POWER) { pwrStateMachineWrapper(targetMode, targetSubmode); } } } void AcsBoardAssembly::startTransition(Mode_t mode, Submode_t submode) { using namespace duallane; // If anything other than MODE_OFF is commanded, perform power state machine first if (mode != MODE_OFF) { if (state != PwrStates::IDLE) { state = PwrStates::IDLE; } // Cache the target modes, required by power state machine targetMode = mode; targetSubmode = submode; state = PwrStates::SWITCHING_POWER; // Perform power state machine first, then start mode transition. The power state machine will // start the transition after it has finished pwrStateMachineWrapper(mode, submode); } else { // Command the devices to off first before switching off the power. The handleModeReached // custom implementation will take care of starting the power state machine. AssemblyBase::startTransition(mode, submode); } } ReturnValue_t AcsBoardAssembly::commandChildren(Mode_t mode, Submode_t submode) { using namespace duallane; ReturnValue_t result = RETURN_OK; refreshHelperModes(); pwrStateMachineWrapper(mode, submode); if (state == PwrStates::MODE_COMMANDING) { if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) { result = handleNormalOrOnModeCmd(mode, submode); } else { modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_1_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_1_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_2_B].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_2_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_3_B].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_3_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_0_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_1_A].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_1_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_2_B].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_2_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_3_B].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_3_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GPS].setMode(MODE_OFF); modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE); } HybridIterator tableIter(modeTable.begin(), modeTable.end()); executeTable(tableIter); } return result; } ReturnValue_t AcsBoardAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) { using namespace duallane; refreshHelperModes(); if (state == PwrStates::SWITCHING_POWER) { // Wrong mode sif::error << "Wrong mode, currently switching power" << std::endl; return RETURN_OK; } if (wantedSubmode == A_SIDE) { if ((helper.gyro0SideAMode != wantedMode and helper.gyro1SideAMode != wantedMode) or (helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode) or helper.gpsMode != MODE_ON) { return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE; } return RETURN_OK; } else if (wantedSubmode == B_SIDE) { if ((helper.gyro2SideBMode != wantedMode and helper.gyro3SideBMode != wantedMode) or (helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or helper.gpsMode != MODE_ON) { return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE; } return RETURN_OK; } else if (wantedSubmode == DUAL_MODE) { if ((helper.gyro0SideAMode != wantedMode and helper.gyro1SideAMode != wantedMode and helper.gyro2AdisIdSideB != wantedMode and helper.gyro3SideBMode != wantedMode) or (helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode and helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or helper.gpsMode != MODE_ON) { // Trigger event, but don't start any other transitions. This is the last fallback mode. if (dualModeErrorSwitch) { triggerEvent(NOT_ENOUGH_DEVICES_DUAL_MODE, 0, 0); dualModeErrorSwitch = false; } return RETURN_OK; } return RETURN_OK; } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) { using namespace duallane; ReturnValue_t result = RETURN_OK; auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, ModeTableIdx tableIdx) { if (mode == DeviceHandlerIF::MODE_NORMAL) { if (isUseable(objectId, devMode)) { if (devMode == MODE_ON) { modeTable[tableIdx].setMode(mode); modeTable[tableIdx].setSubmode(SUBMODE_NONE); } else { modeTable[tableIdx].setMode(MODE_ON); modeTable[tableIdx].setSubmode(SUBMODE_NONE); } } } else if (mode == MODE_ON) { if (isUseable(objectId, devMode)) { modeTable[tableIdx].setMode(MODE_ON); modeTable[tableIdx].setSubmode(SUBMODE_NONE); } } }; if (this->mode == MODE_OFF and mode == DeviceHandlerIF::MODE_NORMAL) { if (internalState != STATE_SECOND_STEP) { result = NEED_SECOND_STEP; } } switch (submode) { case (A_SIDE): { cmdSeq(helper.gyro0AdisIdSideA, helper.gyro0SideAMode, ModeTableIdx::GYRO_0_A); cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A); cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A); cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A); modeTable[ModeTableIdx::GPS].setMode(MODE_ON); modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE); if (gpioIF->pullLow(gpioIds::GNSS_SELECT) != HasReturnvaluesIF::RETURN_OK) { #if OBSW_VERBOSE_LEVEL >= 1 sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select low" << std::endl; #endif } modeTable[ModeTableIdx::GYRO_2_B].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_2_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_3_B].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_3_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_2_B].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_2_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_3_B].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_3_B].setSubmode(SUBMODE_NONE); return result; } case (B_SIDE): { cmdSeq(helper.gyro2AdisIdSideB, helper.gyro2SideBMode, ModeTableIdx::GYRO_2_B); cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B); cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B); cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B); cmdSeq(helper.gpsId, helper.gpsMode, ModeTableIdx::GPS); if (gpioIF->pullHigh(gpioIds::GNSS_SELECT) != HasReturnvaluesIF::RETURN_OK) { #if OBSW_VERBOSE_LEVEL >= 1 sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select high" << std::endl; #endif } modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_1_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_1_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_0_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_1_A].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_1_A].setSubmode(SUBMODE_NONE); return result; } case (DUAL_MODE): { cmdSeq(helper.gpsId, helper.gpsMode, ModeTableIdx::GPS); cmdSeq(helper.gyro0AdisIdSideA, helper.gyro0SideAMode, ModeTableIdx::GYRO_0_A); cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A); cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A); cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A); cmdSeq(helper.gyro2AdisIdSideB, helper.gyro2SideBMode, ModeTableIdx::GYRO_2_B); cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B); cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B); cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B); ReturnValue_t status = RETURN_OK; if (defaultSubmode == Submodes::A_SIDE) { status = gpioIF->pullLow(gpioIds::GNSS_SELECT); } else { status = gpioIF->pullHigh(gpioIds::GNSS_SELECT); } if (status != HasReturnvaluesIF::RETURN_OK) { #if OBSW_VERBOSE_LEVEL >= 1 sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select to" "default side for dual mode" << std::endl; #endif } return result; } default: { sif::error << "AcsBoardAssembly::handleNormalModeCmd: Unknown submode" << std::endl; } } return result; } ReturnValue_t AcsBoardAssembly::isModeCombinationValid(Mode_t mode, Submode_t submode) { using namespace duallane; if (submode != A_SIDE and submode != B_SIDE and submode != DUAL_MODE) { return HasReturnvaluesIF::RETURN_FAILED; } return HasReturnvaluesIF::RETURN_OK; } bool AcsBoardAssembly::isUseable(object_id_t object, Mode_t mode) { if (healthHelper.healthTable->isFaulty(object)) { return false; } // Check if device is already in target mode if (childrenMap[object].mode == mode) { return true; } if (healthHelper.healthTable->isCommandable(object)) { return true; } return false; } void AcsBoardAssembly::handleModeReached() { using namespace duallane; if (targetMode == MODE_OFF) { if (state != PwrStates::IDLE) { state = PwrStates::IDLE; } state = PwrStates::SWITCHING_POWER; // Now we can switch off the power. After that, the AssemblyBase::handleModeReached function // will be called pwrStateMachineWrapper(targetMode, targetSubmode); } else { finishModeOp(); } } void AcsBoardAssembly::handleChildrenLostMode(ReturnValue_t result) { using namespace duallane; // Some ACS board components are required for Safe-Mode. It would be good if the software // transitions from A side to B side and from B side to dual mode autonomously // to ensure that that enough sensors are available without an operators intervention. // Therefore, the lost mode handler was overwritten to start these transitions Submode_t nextSubmode = Submodes::A_SIDE; if (submode == Submodes::A_SIDE) { nextSubmode = Submodes::B_SIDE; } if (not tryingOtherSide) { triggerEvent(CANT_KEEP_MODE, mode, submode); startTransition(mode, nextSubmode); tryingOtherSide = true; } else { // Not sure when this would happen. This flag is reset if the mode was reached. If it // was not reached, the transition failure handler should be called. sif::error << "AcsBoardAssembly::handleChildrenLostMode: Wrong handler called" << std::endl; triggerEvent(TRANSITION_OTHER_SIDE_FAILED, mode, targetSubmode); startTransition(mode, Submodes::DUAL_MODE); } } void AcsBoardAssembly::handleModeTransitionFailed(ReturnValue_t result) { using namespace duallane; Submode_t nextSubmode = Submodes::A_SIDE; if (submode == Submodes::A_SIDE) { nextSubmode = Submodes::B_SIDE; } // Check whether the transition was started because the mode could not be kept (not commanded). // If this is not the case, start transition to other side. If it is the case, start // transition to dual mode. if (not tryingOtherSide) { triggerEvent(CANT_KEEP_MODE, mode, submode); startTransition(mode, nextSubmode); tryingOtherSide = true; } else { triggerEvent(TRANSITION_OTHER_SIDE_FAILED, mode, targetSubmode); startTransition(mode, Submodes::DUAL_MODE); } } void AcsBoardAssembly::setPreferredSide(duallane::Submodes submode) { using namespace duallane; if (submode != Submodes::A_SIDE and submode != Submodes::B_SIDE) { return; } this->defaultSubmode = submode; } void AcsBoardAssembly::selectGpsInDualMode(duallane::Submodes side) { using namespace duallane; if (submode != Submodes::DUAL_MODE) { return; } ReturnValue_t result = RETURN_OK; if (side == Submodes::A_SIDE) { result = gpioIF->pullLow(gpioIds::GNSS_SELECT); } else { result = gpioIF->pullHigh(gpioIds::GNSS_SELECT); } if (result != HasReturnvaluesIF::RETURN_OK) { #if OBSW_VERBOSE_LEVEL >= 1 sif::error << "AcsBoardAssembly::switchGpsInDualMode: Switching GPS failed" << std::endl; #endif } } void AcsBoardAssembly::refreshHelperModes() { try { helper.gyro0SideAMode = childrenMap.at(helper.gyro0AdisIdSideA).mode; helper.gyro1SideAMode = childrenMap.at(helper.gyro1L3gIdSideA).mode; helper.gyro2SideBMode = childrenMap.at(helper.gyro2AdisIdSideB).mode; helper.gyro3SideBMode = childrenMap.at(helper.gyro2AdisIdSideB).mode; helper.mgm0SideAMode = childrenMap.at(helper.mgm0Lis3IdSideA).mode; helper.mgm1SideAMode = childrenMap.at(helper.mgm1Rm3100IdSideA).mode; helper.mgm2SideBMode = childrenMap.at(helper.mgm2Lis3IdSideB).mode; helper.mgm3SideBMode = childrenMap.at(helper.mgm3Rm3100IdSideB).mode; helper.gpsMode = childrenMap.at(helper.gpsId).mode; } catch (const std::out_of_range& e) { sif::error << "AcsBoardAssembly::refreshHelperModes: Invalid map: " << e.what() << std::endl; } } void AcsBoardAssembly::initModeTableEntry(object_id_t id, ModeListEntry& entry) { entry.setObject(id); entry.setMode(MODE_OFF); entry.setSubmode(SUBMODE_NONE); entry.setInheritSubmode(false); modeTable.insert(entry); } void AcsBoardAssembly::finishModeOp() { using namespace duallane; AssemblyBase::handleModeReached(); state = PwrStates::IDLE; tryingOtherSide = false; dualModeErrorSwitch = true; } void AcsBoardAssembly::pwrStateMachineWrapper(Mode_t mode, Submode_t submode) { using namespace duallane; OpCodes opCode = pwrStateMachine.powerStateMachine(mode, submode); if (opCode == OpCodes::NONE) { return; } else if (opCode == OpCodes::FINISH_OP) { finishModeOp(); } else if (opCode == OpCodes::START_TRANSITION) { AssemblyBase::startTransition(mode, submode); } } ReturnValue_t AcsBoardAssembly::initialize() { ReturnValue_t result = registerChild(helper.gyro0AdisIdSideA); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.gyro1L3gIdSideA); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.gyro2AdisIdSideB); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.gyro3L3gIdSideB); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.mgm0Lis3IdSideA); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.mgm1Rm3100IdSideA); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.mgm2Lis3IdSideB); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.mgm3Rm3100IdSideB); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.gpsId); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } return AssemblyBase::initialize(); }