#include "CfdpHandler.h" #include #include #include "fsfw/cfdp/pdu/AckPduReader.h" #include "fsfw/cfdp/pdu/PduHeaderReader.h" #include "fsfw/globalfunctions/arrayprinter.h" #include "fsfw/ipc/QueueFactory.h" #include "fsfw/tmtcservices/TmTcMessage.h" using namespace returnvalue; using namespace cfdp; CfdpHandler::CfdpHandler(const FsfwHandlerParams& fsfwHandlerParams, const CfdpHandlerCfg& cfdpCfg) : SystemObject(fsfwHandlerParams.objectId), pduQueue(fsfwHandlerParams.tmtcQueue), cfdpRequestQueue(fsfwHandlerParams.cfdpQueue), localCfg(cfdpCfg.id, cfdpCfg.indicCfg, cfdpCfg.faultHandler), remoteCfgProvider(cfdpCfg.remoteCfgProvider), fsfwParams(fsfwHandlerParams.packetDest, &fsfwHandlerParams.tmtcQueue, this, fsfwHandlerParams.tcStore, fsfwHandlerParams.tmStore), destHandler(DestHandlerParams(localCfg, cfdpCfg.userHandler, cfdpCfg.remoteCfgProvider, cfdpCfg.packetInfoList, cfdpCfg.lostSegmentsList), this->fsfwParams), srcHandler(SourceHandlerParams(localCfg, cfdpCfg.userHandler, seqCntProvider), this->fsfwParams), ipcStore(fsfwHandlerParams.ipcStore) {} [[nodiscard]] const char* CfdpHandler::getName() const { return "CFDP Handler"; } [[nodiscard]] uint32_t CfdpHandler::getIdentifier() const { return destHandler.getDestHandlerParams().cfg.localId.getValue(); } [[nodiscard]] MessageQueueId_t CfdpHandler::getRequestQueue() const { return pduQueue.getId(); } ReturnValue_t CfdpHandler::initialize() { ReturnValue_t result = destHandler.initialize(); if (result != OK) { return result; } tcStore = destHandler.getTcStore(); tmStore = destHandler.getTmStore(); return SystemObject::initialize(); } ReturnValue_t CfdpHandler::performOperation(uint8_t operationCode) { ReturnValue_t status = OK; ReturnValue_t result = handlePduPacketMessages(); if (result != OK) { status = result; } result = handleCfdpMessages(); if (result != OK) { status = result; } const DestHandler::FsmResult& destResult = destHandler.stateMachine(); // TODO: Error handling? while (destResult.callStatus == CallStatus::CALL_AGAIN) { destHandler.stateMachine(); // TODO: Error handling? } const SourceHandler::FsmResult& srcResult = srcHandler.stateMachine(); while (srcResult.callStatus == CallStatus::CALL_AGAIN) { srcHandler.stateMachine(); } return status; } ReturnValue_t CfdpHandler::handlePduPacket(TmTcMessage& msg) { auto accessorPair = tcStore->getData(msg.getStorageId()); if (accessorPair.first != OK) { return accessorPair.first; } PduHeaderReader reader(accessorPair.second.data(), accessorPair.second.size()); ReturnValue_t result = reader.parseData(); if (result != returnvalue::OK) { return INVALID_PDU_FORMAT; } // The CFDP distributor should have taken care of ensuring the destination ID is correct PduType type = reader.getPduType(); // Only the destination handler can process these PDUs if (type == PduType::FILE_DATA) { // Disable auto-deletion of packet accessorPair.second.release(); PacketInfo info(type, msg.getStorageId()); result = destHandler.passPacket(info); } else { // Route depending on PDU type and directive type if applicable. It retrieves directive type // from the raw stream for better performance (with sanity and directive code check). // The routing is based on section 4.5 of the CFDP standard which specifies the PDU forwarding // procedure. // PDU header only. Invalid supplied data. A directive packet should have a valid data field // with at least one byte being the directive code const uint8_t* pduDataField = reader.getPduDataField(); if (pduDataField == nullptr) { return INVALID_PDU_FORMAT; } if (not FileDirectiveReader::checkFileDirective(pduDataField[0])) { sif::error << "CfdpHandler: Invalid PDU directive field " << static_cast(pduDataField[0]) << std::endl; return INVALID_DIRECTIVE_FIELD; } auto directive = static_cast(pduDataField[0]); auto passToDestHandler = [&]() { accessorPair.second.release(); PacketInfo info(type, msg.getStorageId(), directive); result = destHandler.passPacket(info); }; auto passToSourceHandler = [&]() { }; if (directive == FileDirective::METADATA or directive == FileDirective::EOF_DIRECTIVE or directive == FileDirective::PROMPT) { // Section b) of 4.5.3: These PDUs should always be targeted towards the file receiver a.k.a. // the destination handler passToDestHandler(); } else if (directive == FileDirective::FINISH or directive == FileDirective::NAK or directive == FileDirective::KEEP_ALIVE) { // Section c) of 4.5.3: These PDUs should always be targeted towards the file sender a.k.a. // the source handler passToSourceHandler(); } else if (directive == FileDirective::ACK) { // Section a): Recipient depends of the type of PDU that is being acknowledged. We can simply // extract the PDU type from the raw stream. If it is an EOF PDU, this packet is passed to // the source handler, for a Finished PDU, it is passed to the destination handler. FileDirective ackedDirective; if (not AckPduReader::checkAckedDirectiveField(pduDataField[1], ackedDirective)) { return INVALID_ACK_DIRECTIVE_FIELDS; } if (ackedDirective == FileDirective::EOF_DIRECTIVE) { passToSourceHandler(); } else if (ackedDirective == FileDirective::FINISH) { passToDestHandler(); } } } return result; } ReturnValue_t CfdpHandler::handleCfdpRequest(CommandMessage& msg) { // TODO: Handle CFDP requests here, most importantly put requests. If a put request is received, // check whether one is pending. If none are, start a transaction with the put request, // otherwise store for put request inside a FIFO for later processing. if (msg.getCommand() == CfdpMessage::PUT_REQUEST) { sif::info << "Received CFDP put request" << std::endl; if (srcHandler.getState() != CfdpState::IDLE) { if (putRequestQueue.full()) { // TODO: Trigger event and discard request. Queue is full, too many requests. return FAILED; } putRequestQueue.push(CfdpMessage::getStoreId(&msg)); } else { // TODO: Retrieve put request and remote configuration. PutRequest putRequest; auto accessorPair = ipcStore.getData(CfdpMessage::getStoreId(&msg)); const uint8_t* dataPtr = accessorPair.second.data(); size_t dataSize = accessorPair.second.size(); ReturnValue_t result = putRequest.deSerialize(&dataPtr, &dataSize, SerializeIF::Endianness::MACHINE); if (result != OK) { return result; } RemoteEntityCfg* remoteCfg; remoteCfgProvider.getRemoteCfg(putRequest.getDestId(), &remoteCfg); if (remoteCfg == nullptr) { sif::error << "CfdpHandler: No remote configuration found for destination ID " << putRequest.getDestId() << std::endl; // TODO: Trigger event return FAILED; } return srcHandler.transactionStart(putRequest, *remoteCfg); } } return OK; } ReturnValue_t CfdpHandler::handlePduPacketMessages() { ReturnValue_t status; ReturnValue_t result = OK; TmTcMessage pduMsg; for (status = pduQueue.receiveMessage(&pduMsg); status == returnvalue::OK; status = pduQueue.receiveMessage(&pduMsg)) { result = handlePduPacket(pduMsg); if (result != OK) { // TODO: Maybe add printout with context specific information? status = result; } } return status; } ReturnValue_t CfdpHandler::handleCfdpMessages() { ReturnValue_t status; ReturnValue_t result; CommandMessage cfdpMsg; for (status = cfdpRequestQueue.receiveMessage(&cfdpMsg); status == returnvalue::OK; status = cfdpRequestQueue.receiveMessage(&cfdpMsg)) { result = handleCfdpRequest(cfdpMsg); if (result != OK) { // TODO: Maybe add printout with context specific information? status = result; } } return status; }