#include "AcsBoardPolling.h" #include #include #include #include #include #include #include #include #include #include #include "devices/gpioIds.h" using namespace returnvalue; AcsBoardPolling::AcsBoardPolling(object_id_t objectId, SpiComIF& lowLevelComIF, GpioIF& gpioIF) : SystemObject(objectId), spiComIF(lowLevelComIF), gpioIF(gpioIF) { semaphore = SemaphoreFactory::instance()->createBinarySemaphore(); semaphore->acquire(); ipcLock = MutexFactory::instance()->createMutex(); } ReturnValue_t AcsBoardPolling::performOperation(uint8_t operationCode) { while (true) { ipcLock->lockMutex(); state = InternalState::IDLE; ipcLock->unlockMutex(); semaphore->acquire(); // Give all tasks or the PST some time to submit all consecutive requests. TaskFactory::delayTask(2); gyroAdisHandler(gyro0Adis); gyroAdisHandler(gyro2Adis); gyroL3gHandler(gyro1L3g); gyroL3gHandler(gyro3L3g); // To prevent task being not reactivated by tardy tasks TaskFactory::delayTask(20); } return returnvalue::OK; } ReturnValue_t AcsBoardPolling::initialize() { return returnvalue::OK; } ReturnValue_t AcsBoardPolling::initializeInterface(CookieIF* cookie) { SpiCookie* spiCookie = dynamic_cast(cookie); if (spiCookie == nullptr) { return returnvalue::FAILED; } switch (spiCookie->getChipSelectPin()) { case (gpioIds::MGM_0_LIS3_CS): { mgm0L3Cookie = spiCookie; break; } case (gpioIds::MGM_1_RM3100_CS): { mgm1Rm3100Cookie = spiCookie; break; } case (gpioIds::MGM_2_LIS3_CS): { mgm2L3Cookie = spiCookie; break; } case (gpioIds::MGM_3_RM3100_CS): { mgm3Rm3100Cookie = spiCookie; break; } case (gpioIds::GYRO_0_ADIS_CS): { gyro0Adis.cookie = spiCookie; break; } case (gpioIds::GYRO_1_L3G_CS): { gyro1L3g.cookie = spiCookie; break; } case (gpioIds::GYRO_2_ADIS_CS): { gyro2Adis.cookie = spiCookie; break; } case (gpioIds::GYRO_3_L3G_CS): { gyro3L3g.cookie = spiCookie; break; } default: { sif::error << "AcsBoardPollingTask: invalid spi cookie" << std::endl; } } return spiComIF.initializeInterface(cookie); } ReturnValue_t AcsBoardPolling::sendMessage(CookieIF* cookie, const uint8_t* sendData, size_t sendLen) { SpiCookie* spiCookie = dynamic_cast(cookie); if (spiCookie == nullptr) { return returnvalue::FAILED; } auto handleAdisRequest = [&](GyroAdis& adis) { if (sendLen != sizeof(acs::Adis1650XRequest)) { sif::error << "AcsBoardPolling: invalid adis request send length"; adis.replyResult = returnvalue::FAILED; return returnvalue::FAILED; } auto* req = reinterpret_cast(sendData); MutexGuard mg(ipcLock); if (req->mode != adis.mode) { if (req->mode == acs::SimpleSensorMode::NORMAL) { adis.type = req->type; adis.countdown.setTimeout(adis1650x::START_UP_TIME); adis.countdown.resetTimer(); if (adis.type == adis1650x::Type::ADIS16507) { adis.ownReply.data.accelScaling = adis1650x::ACCELEROMETER_RANGE_16507; } else if (adis.type == adis1650x::Type::ADIS16505) { adis.ownReply.data.accelScaling = adis1650x::ACCELEROMETER_RANGE_16505; } else { sif::warning << "AcsBoardPolling: Unknown ADIS type" << std::endl; } adis.performStartup = true; } else if (req->mode == acs::SimpleSensorMode::OFF) { adis.performStartup = false; adis.ownReply.cfgWasSet = false; adis.ownReply.dataWasSet = false; } adis.mode = req->mode; } return returnvalue::OK; }; auto handleL3gRequest = [&](GyroL3g& gyro) { if (sendLen != sizeof(acs::GyroL3gRequest)) { sif::error << "AcsBoardPolling: invalid l3g request send length"; gyro.replyResult = returnvalue::FAILED; return returnvalue::FAILED; } auto* req = reinterpret_cast(sendData); MutexGuard mg(ipcLock); if (req->mode != gyro.mode) { if (req->mode == acs::SimpleSensorMode::NORMAL) { gyro.performStartup = true; } else { gyro.ownReply.cfgWasSet = false; } gyro.mode = req->mode; } return returnvalue::OK; }; switch (spiCookie->getChipSelectPin()) { case (gpioIds::GYRO_0_ADIS_CS): { handleAdisRequest(gyro0Adis); break; } case (gpioIds::GYRO_2_ADIS_CS): { handleAdisRequest(gyro2Adis); break; } case (gpioIds::GYRO_1_L3G_CS): { handleL3gRequest(gyro1L3g); break; } case (gpioIds::GYRO_3_L3G_CS): { handleL3gRequest(gyro3L3g); break; } } MutexGuard mg(ipcLock); if (state == InternalState::IDLE) { state = InternalState::BUSY; semaphore->release(); } return returnvalue::OK; } ReturnValue_t AcsBoardPolling::getSendSuccess(CookieIF* cookie) { return returnvalue::OK; } ReturnValue_t AcsBoardPolling::requestReceiveMessage(CookieIF* cookie, size_t requestLen) { return returnvalue::OK; } ReturnValue_t AcsBoardPolling::readReceivedMessage(CookieIF* cookie, uint8_t** buffer, size_t* size) { SpiCookie* spiCookie = dynamic_cast(cookie); if (spiCookie == nullptr) { return returnvalue::FAILED; } MutexGuard mg(ipcLock); auto handleAdisReply = [&](GyroAdis& gyro) { std::memcpy(&gyro.readerReply, &gyro.ownReply, sizeof(acs::Adis1650XReply)); *buffer = reinterpret_cast(&gyro.readerReply); *size = sizeof(acs::Adis1650XReply); }; auto handleL3gReply = [&](GyroL3g& gyro) { std::memcpy(&gyro.readerReply, &gyro.ownReply, sizeof(acs::GyroL3gReply)); *buffer = reinterpret_cast(&gyro.readerReply); *size = sizeof(acs::GyroL3gReply); }; switch (spiCookie->getChipSelectPin()) { case (gpioIds::GYRO_0_ADIS_CS): { handleAdisReply(gyro0Adis); return gyro0Adis.replyResult; } case (gpioIds::GYRO_2_ADIS_CS): { handleAdisReply(gyro2Adis); return gyro2Adis.replyResult; } case (gpioIds::GYRO_1_L3G_CS): { handleL3gReply(gyro1L3g); return gyro1L3g.replyResult; } case (gpioIds::GYRO_3_L3G_CS): { handleL3gReply(gyro3L3g); return gyro3L3g.replyResult; } } return returnvalue::OK; } void AcsBoardPolling::gyroL3gHandler(GyroL3g& l3g) { ReturnValue_t result; acs::SimpleSensorMode mode; bool gyroPerformStartup; { MutexGuard mg(ipcLock); mode = l3g.mode; gyroPerformStartup = l3g.performStartup; } if (mode == acs::SimpleSensorMode::NORMAL) { if (gyroPerformStartup) { cmdBuf[0] = l3gd20h::CTRL_REG_1 | l3gd20h::AUTO_INCREMENT_MASK; std::memcpy(cmdBuf.data() + 1, l3g.sensorCfg, 5); result = spiComIF.sendMessage(l3g.cookie, cmdBuf.data(), 6); if (result != returnvalue::OK) { l3g.replyResult = returnvalue::OK; } // Ignore useless reply and red config cmdBuf[0] = l3gd20h::CTRL_REG_1 | l3gd20h::AUTO_INCREMENT_MASK | l3gd20h::READ_MASK; std::memset(cmdBuf.data() + 1, 0, 5); result = spiComIF.sendMessage(l3g.cookie, cmdBuf.data(), 6); if (result != returnvalue::OK) { l3g.replyResult = returnvalue::OK; } result = spiComIF.readReceivedMessage(l3g.cookie, &rawReply, &dummy); if (result != returnvalue::OK) { l3g.replyResult = returnvalue::OK; } MutexGuard mg(ipcLock); // Cross check configuration as verification that communication is working for (uint8_t idx = 0; idx < 5; idx++) { if (rawReply[idx + 1] != l3g.sensorCfg[idx]) { sif::warning << "AcsBoardPolling: l3g config check missmatch" << std::endl; l3g.replyResult = returnvalue::FAILED; return; } } l3g.ownReply.cfgWasSet = true; l3g.ownReply.sensitivity = l3gd20h::ctrlReg4ToSensitivity(l3g.sensorCfg[3]); } cmdBuf[0] = l3gd20h::READ_START | l3gd20h::AUTO_INCREMENT_MASK | l3gd20h::READ_MASK; std::memset(cmdBuf.data() + 1, 0, l3gd20h::READ_LEN); result = spiComIF.sendMessage(l3g.cookie, cmdBuf.data(), 6); if (result != returnvalue::OK) { l3g.replyResult = returnvalue::FAILED; return; } // The regular read function always returns the full sensor config as well. Use that // to verify communications. for (uint8_t idx = 0; idx < 5; idx++) { if (rawReply[idx + 1] != l3g.sensorCfg[idx]) { sif::warning << "AcsBoardPolling: l3g config check missmatch" << std::endl; l3g.replyResult = returnvalue::FAILED; return; } } l3g.ownReply.statusReg = rawReply[l3gd20h::STATUS_IDX]; l3g.ownReply.angVelocities[0] = (rawReply[l3gd20h::OUT_X_H] << 8) | rawReply[l3gd20h::OUT_X_L]; l3g.ownReply.angVelocities[1] = (rawReply[l3gd20h::OUT_Y_H] << 8) | rawReply[l3gd20h::OUT_Y_L]; l3g.ownReply.angVelocities[2] = (rawReply[l3gd20h::OUT_Z_H] << 8) | rawReply[l3gd20h::OUT_Z_L]; l3g.ownReply.tempOffsetRaw = rawReply[l3gd20h::TEMPERATURE_IDX]; } } ReturnValue_t AcsBoardPolling::readAdisCfg(SpiCookie& cookie, size_t transferLen) { ReturnValue_t result = returnvalue::OK; int retval = 0; // Prepare transfer int fileDescriptor = 0; std::string device = spiComIF.getSpiDev(); UnixFileGuard fileHelper(device, fileDescriptor, O_RDWR, "SpiComIF::sendMessage"); if (fileHelper.getOpenResult() != returnvalue::OK) { return SpiComIF::OPENING_FILE_FAILED; } spi::SpiModes spiMode = spi::SpiModes::MODE_0; uint32_t spiSpeed = 0; cookie.getSpiParameters(spiMode, spiSpeed, nullptr); spiComIF.setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed); cookie.assignWriteBuffer(cmdBuf.data()); cookie.setTransferSize(2); gpioId_t gpioId = cookie.getChipSelectPin(); MutexIF::TimeoutType timeoutType = MutexIF::TimeoutType::WAITING; uint32_t timeoutMs = 0; MutexIF* mutex = spiComIF.getCsMutex(); cookie.getMutexParams(timeoutType, timeoutMs); if (mutex == nullptr) { sif::warning << "GyroADIS16507Handler::spiSendCallback: " "Mutex or GPIO interface invalid" << std::endl; return returnvalue::FAILED; } size_t idx = 0; spi_ioc_transfer* transferStruct = cookie.getTransferStructHandle(); uint64_t origTx = transferStruct->tx_buf; uint64_t origRx = transferStruct->rx_buf; while (idx < transferLen) { result = mutex->lockMutex(timeoutType, timeoutMs); if (result != returnvalue::OK) { #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::error << "AcsBoardPolling: Failed to lock mutex" << std::endl; #endif return result; } // Pull SPI CS low. For now, no support for active high given if (gpioId != gpio::NO_GPIO) { gpioIF.pullLow(gpioId); } // Execute transfer // Initiate a full duplex SPI transfer. retval = ioctl(fileDescriptor, SPI_IOC_MESSAGE(1), cookie.getTransferStructHandle()); if (retval < 0) { utility::handleIoctlError("SpiComIF::sendMessage: ioctl error."); result = SpiComIF::FULL_DUPLEX_TRANSFER_FAILED; } #if FSFW_HAL_SPI_WIRETAPPING == 1 comIf->performSpiWiretapping(cookie); #endif /* FSFW_LINUX_SPI_WIRETAPPING == 1 */ if (gpioId != gpio::NO_GPIO) { gpioIF.pullHigh(gpioId); } mutex->unlockMutex(); idx += 2; transferStruct->tx_buf += 2; transferStruct->rx_buf += 2; if (idx < transferLen) { usleep(adis1650x::STALL_TIME_MICROSECONDS); } } transferStruct->tx_buf = origTx; transferStruct->rx_buf = origRx; cookie.setTransferSize(transferLen); return returnvalue::OK; } void AcsBoardPolling::gyroAdisHandler(GyroAdis& gyro) { ReturnValue_t result; acs::SimpleSensorMode mode; bool cdHasTimedOut = false; bool mustPerformStartup = false; { MutexGuard mg(ipcLock); mode = gyro.mode; cdHasTimedOut = gyro.countdown.hasTimedOut(); mustPerformStartup = gyro.performStartup; } if (mode == acs::SimpleSensorMode::NORMAL and cdHasTimedOut) { if (mustPerformStartup) { uint8_t regList[6]; // Read configuration regList[0] = adis1650x::DIAG_STAT_REG; regList[1] = adis1650x::FILTER_CTRL_REG; regList[2] = adis1650x::RANG_MDL_REG; regList[3] = adis1650x::MSC_CTRL_REG; regList[4] = adis1650x::DEC_RATE_REG; regList[5] = adis1650x::PROD_ID_REG; size_t transferLen = adis1650x::prepareReadCommand(regList, sizeof(regList), cmdBuf.data(), cmdBuf.size()); result = readAdisCfg(*gyro.cookie, transferLen); if (result != returnvalue::OK) { gyro.replyResult = result; return; } result = spiComIF.readReceivedMessage(gyro.cookie, &rawReply, &dummy); if (result != returnvalue::OK or rawReply == nullptr) { gyro.replyResult = result; return; } uint16_t prodId = (rawReply[12] << 8) | rawReply[13]; if (((gyro.type == adis1650x::Type::ADIS16505) and (prodId != adis1650x::PROD_ID_16505)) or ((gyro.type == adis1650x::Type::ADIS16507) and (prodId != adis1650x::PROD_ID_16507))) { sif::warning << "AcsPollingTask: Invalid ADIS product ID " << prodId << std::endl; gyro.replyResult = returnvalue::FAILED; return; } MutexGuard mg(ipcLock); gyro.ownReply.cfgWasSet = true; gyro.ownReply.cfg.diagStat = (rawReply[2] << 8) | rawReply[3]; gyro.ownReply.cfg.filterSetting = (rawReply[4] << 8) | rawReply[5]; gyro.ownReply.cfg.rangMdl = (rawReply[6] << 8) | rawReply[7]; gyro.ownReply.cfg.mscCtrlReg = (rawReply[8] << 8) | rawReply[9]; gyro.ownReply.cfg.decRateReg = (rawReply[10] << 8) | rawReply[11]; gyro.ownReply.cfg.prodId = prodId; gyro.ownReply.data.sensitivity = adis1650x::rangMdlToSensitivity(gyro.ownReply.cfg.rangMdl); gyro.performStartup = false; } // Read regular registers std::memcpy(cmdBuf.data(), adis1650x::BURST_READ_ENABLE.data(), adis1650x::BURST_READ_ENABLE.size()); std::memset(cmdBuf.data() + 2, 0, 10 * 2); result = spiComIF.sendMessage(gyro.cookie, cmdBuf.data(), adis1650x::SENSOR_READOUT_SIZE); if (result != returnvalue::OK) { gyro.replyResult = returnvalue::FAILED; return; } result = spiComIF.readReceivedMessage(gyro.cookie, &rawReply, &dummy); if (result != returnvalue::OK or rawReply == nullptr) { gyro.replyResult = returnvalue::FAILED; return; } uint16_t checksum = (rawReply[20] << 8) | rawReply[21]; // Now verify the read checksum with the expected checksum according to datasheet p. 20 uint16_t calcChecksum = 0; for (size_t idx = 2; idx < 20; idx++) { calcChecksum += rawReply[idx]; } if (checksum != calcChecksum) { sif::warning << "AcsPollingTask: Invalid ADIS reply checksum" << std::endl; gyro.replyResult = returnvalue::FAILED; return; } auto burstMode = adis1650x::burstModeFromMscCtrl(gyro.ownReply.cfg.mscCtrlReg); if (burstMode != adis1650x::BurstModes::BURST_16_BURST_SEL_0) { sif::error << "GyroADIS1650XHandler::interpretDeviceReply: Analysis for select burst mode" " not implemented!" << std::endl; gyro.replyResult = returnvalue::FAILED; return; } MutexGuard mg(ipcLock); gyro.ownReply.dataWasSet = true; gyro.ownReply.cfg.diagStat = rawReply[2] << 8 | rawReply[3]; gyro.ownReply.data.angVelocities[0] = (rawReply[4] << 8) | rawReply[5]; gyro.ownReply.data.angVelocities[1] = (rawReply[6] << 8) | rawReply[7]; gyro.ownReply.data.angVelocities[2] = (rawReply[8] << 8) | rawReply[9]; gyro.ownReply.data.accelerations[0] = (rawReply[10] << 8) | rawReply[11]; gyro.ownReply.data.accelerations[1] = (rawReply[12] << 8) | rawReply[13]; gyro.ownReply.data.accelerations[2] = (rawReply[14] << 8) | rawReply[15]; gyro.ownReply.data.temperatureRaw = (rawReply[16] << 8) | rawReply[17]; } }