#include #include "MGMHandlerRM3100.h" #include #include #include #include MGMHandlerRM3100::MGMHandlerRM3100(object_id_t objectId, object_id_t deviceCommunication, CookieIF* comCookie): DeviceHandlerBase(objectId, deviceCommunication, comCookie), primaryDataset(this) { #if OBSW_VERBOSE_LEVEL >= 1 debugDivider = new PeriodicOperationDivider(5); #endif } MGMHandlerRM3100::~MGMHandlerRM3100() {} void MGMHandlerRM3100::doStartUp() { switch(internalState) { case(InternalState::NONE): { internalState = InternalState::CONFIGURE_CMM; break; } case(InternalState::CONFIGURE_CMM): { internalState = InternalState::READ_CMM; break; } case(InternalState::READ_CMM): { if(commandExecuted) { internalState = InternalState::STATE_CONFIGURE_TMRC; } break; } case(InternalState::STATE_CONFIGURE_TMRC): { if(commandExecuted) { internalState = InternalState::STATE_READ_TMRC; } break; } case(InternalState::STATE_READ_TMRC): { if(commandExecuted) { internalState = InternalState::NORMAL; #if OBSW_SWITCH_TO_NORMAL_MODE_AFTER_STARTUP == 1 setMode(MODE_NORMAL); #else setMode(_MODE_TO_ON); #endif } break; } default: { break; } } } void MGMHandlerRM3100::doShutDown() { setMode(_MODE_POWER_DOWN); } ReturnValue_t MGMHandlerRM3100::buildTransitionDeviceCommand( DeviceCommandId_t *id) { switch(internalState) { case(InternalState::NONE): case(InternalState::NORMAL): { return HasReturnvaluesIF::RETURN_OK; } case(InternalState::CONFIGURE_CMM): { *id = RM3100::CONFIGURE_CMM; break; } case(InternalState::READ_CMM): { *id = RM3100::READ_CMM; break; } case(InternalState::STATE_CONFIGURE_TMRC): { *id = RM3100::CONFIGURE_TMRC; break; } case(InternalState::STATE_READ_TMRC): { *id = RM3100::READ_TMRC; break; } default: /* Might be a configuration error. */ sif::debug << "GyroHandler::buildTransitionDeviceCommand: Unknown internal state!" << std::endl; return HasReturnvaluesIF::RETURN_OK; } return buildCommandFromCommand(*id, nullptr, 0); } ReturnValue_t MGMHandlerRM3100::buildCommandFromCommand( DeviceCommandId_t deviceCommand, const uint8_t *commandData, size_t commandDataLen) { switch(deviceCommand) { case(RM3100::CONFIGURE_CMM): { commandBuffer[0] = RM3100::CMM_REGISTER; commandBuffer[1] = RM3100::CMM_VALUE; rawPacket = commandBuffer; rawPacketLen = 2; break; } case(RM3100::READ_CMM): { commandBuffer[0] = RM3100::CMM_REGISTER | RM3100::READ_MASK; commandBuffer[1] = 0; rawPacket = commandBuffer; rawPacketLen = 2; break; } case(RM3100::CONFIGURE_TMRC): { return handleTmrcConfigCommand(deviceCommand, commandData, commandDataLen); } case(RM3100::READ_TMRC): { commandBuffer[0] = RM3100::TMRC_REGISTER | RM3100::READ_MASK; commandBuffer[1] = 0; rawPacket = commandBuffer; rawPacketLen = 2; break; } case(RM3100::CONFIGURE_CYCLE_COUNT): { return handleCycleCountConfigCommand(deviceCommand, commandData, commandDataLen); } case(RM3100::READ_CYCLE_COUNT): { commandBuffer[0] = RM3100::CYCLE_COUNT_START_REGISTER | RM3100::READ_MASK; std::memset(commandBuffer + 1, 0, 6); rawPacket = commandBuffer; rawPacketLen = 7; break; } case(RM3100::READ_DATA): { commandBuffer[0] = RM3100::MEASUREMENT_REG_START | RM3100::READ_MASK; std::memset(commandBuffer + 1, 0, 9); rawPacketLen = 10; break; } default: return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; } return RETURN_OK; } ReturnValue_t MGMHandlerRM3100::buildNormalDeviceCommand( DeviceCommandId_t *id) { *id = RM3100::READ_DATA; return buildCommandFromCommand(*id, nullptr, 0); } ReturnValue_t MGMHandlerRM3100::scanForReply(const uint8_t *start, size_t len, DeviceCommandId_t *foundId, size_t *foundLen) { /* For SPI, ID will always be the one of the last sent command. */ *foundId = this->getPendingCommand(); *foundLen = len; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t MGMHandlerRM3100::interpretDeviceReply( DeviceCommandId_t id, const uint8_t *packet) { ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; switch(id) { case(RM3100::CONFIGURE_CMM): case(RM3100::CONFIGURE_CYCLE_COUNT): case(RM3100::CONFIGURE_TMRC): { /* We can only check whether write was successful with read operation. */ if(mode == _MODE_START_UP) { commandExecuted = true; } break; } case(RM3100::READ_CMM): { uint8_t cmmValue = packet[1]; /* We clear the seventh bit in any case * because this one is zero sometimes for some reason */ bitutil::bitClear(&cmmValue, 6); if(cmmValue == cmmRegValue and internalState == InternalState::READ_CMM) { commandExecuted = true; } else { /* Attempt reconfiguration. */ internalState = InternalState::CONFIGURE_CMM; return DeviceHandlerIF::DEVICE_REPLY_INVALID; } break; } case(RM3100::READ_TMRC): { if(packet[1] == tmrcRegValue) { commandExecuted = true; /* Reading TMRC was commanded. Trigger event to inform ground. */ if(mode != _MODE_START_UP) { triggerEvent(tmrcSet, tmrcRegValue, 0); } } else { /* Attempt reconfiguration. */ internalState = InternalState::STATE_CONFIGURE_TMRC; return DeviceHandlerIF::DEVICE_REPLY_INVALID; } break; } case(RM3100::READ_CYCLE_COUNT): { uint16_t cycleCountX = packet[1] << 8 | packet[2]; uint16_t cycleCountY = packet[3] << 8 | packet[4]; uint16_t cycleCountZ = packet[5] << 8 | packet[6]; if(cycleCountX != cycleCountRegValueX or cycleCountY != cycleCountRegValueY or cycleCountZ != cycleCountRegValueZ) { return DeviceHandlerIF::DEVICE_REPLY_INVALID; } /* Reading TMRC was commanded. Trigger event to inform ground. */ if(mode != _MODE_START_UP) { uint32_t eventParam1 = (cycleCountX << 16) | cycleCountY; triggerEvent(cycleCountersSet, eventParam1, cycleCountZ); } break; } case(RM3100::READ_DATA): { result = handleDataReadout(packet); break; } default: return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY; } return result; } ReturnValue_t MGMHandlerRM3100::handleCycleCountConfigCommand(DeviceCommandId_t deviceCommand, const uint8_t *commandData, size_t commandDataLen) { if(commandData == nullptr) { return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; } // Set cycle count if(commandDataLen == 2) { handleCycleCommand(true, commandData, commandDataLen); } else if(commandDataLen == 6) { handleCycleCommand(false, commandData, commandDataLen); } else { return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; } commandBuffer[0] = RM3100::CYCLE_COUNT_VALUE; std::memcpy(commandBuffer + 1, &cycleCountRegValueX, 2); std::memcpy(commandBuffer + 3, &cycleCountRegValueY, 2); std::memcpy(commandBuffer + 5, &cycleCountRegValueZ, 2); rawPacketLen = 7; rawPacket = commandBuffer; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t MGMHandlerRM3100::handleCycleCommand(bool oneCycleValue, const uint8_t *commandData, size_t commandDataLen) { RM3100::CycleCountCommand command(oneCycleValue); ReturnValue_t result = command.deSerialize(&commandData, &commandDataLen, SerializeIF::Endianness::BIG); if(result != HasReturnvaluesIF::RETURN_OK) { return result; } /* Data sheet p.30 "while noise limits the useful upper range to ~400 cycle counts." */ if(command.cycleCountX > 450 ) { return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; } if(not oneCycleValue and (command.cycleCountY > 450 or command.cycleCountZ > 450)) { return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; } cycleCountRegValueX = command.cycleCountX; cycleCountRegValueY = command.cycleCountY; cycleCountRegValueZ = command.cycleCountZ; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t MGMHandlerRM3100::handleTmrcConfigCommand( DeviceCommandId_t deviceCommand, const uint8_t *commandData, size_t commandDataLen) { if(commandData == nullptr) { return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; } if(commandDataLen != 1) { return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; } commandBuffer[0] = RM3100::TMRC_REGISTER; commandBuffer[1] = commandData[1]; rawPacketLen = 2; rawPacket = commandBuffer; return HasReturnvaluesIF::RETURN_OK; } void MGMHandlerRM3100::fillCommandAndReplyMap() { insertInCommandAndReplyMap(RM3100::CONFIGURE_CMM, 1); insertInCommandAndReplyMap(RM3100::READ_CMM, 1); insertInCommandAndReplyMap(RM3100::CONFIGURE_TMRC, 1); insertInCommandAndReplyMap(RM3100::READ_TMRC, 1); insertInCommandAndReplyMap(RM3100::CONFIGURE_CYCLE_COUNT, 1); insertInCommandAndReplyMap(RM3100::READ_CYCLE_COUNT, 1); insertInCommandAndReplyMap(RM3100::READ_DATA, 1, &primaryDataset); } void MGMHandlerRM3100::modeChanged(void) { internalState = InternalState::NONE; } ReturnValue_t MGMHandlerRM3100::initializeLocalDataPool( localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) { localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_X, new PoolEntry({0.0})); localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_Y, new PoolEntry({0.0})); localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_Z, new PoolEntry({0.0})); return HasReturnvaluesIF::RETURN_OK; } uint32_t MGMHandlerRM3100::getTransitionDelayMs(Mode_t from, Mode_t to) { return 10000; } ReturnValue_t MGMHandlerRM3100::handleDataReadout(const uint8_t *packet) { /* Analyze data here. The sensor generates 24 bit signed values so we need to do some bitshift * trickery here to calculate the raw values first */ int32_t fieldStrengthRawX = ((packet[1] << 24) | (packet[2] << 16) | (packet[3] << 8)) >> 8; int32_t fieldStrengthRawY = ((packet[4] << 24) | (packet[5] << 16) | (packet[6] << 8)) >> 8; int32_t fieldStrengthRawZ = ((packet[7] << 24) | (packet[8] << 16) | (packet[3] << 8)) >> 8; /* Now scale to physical value in microtesla */ float fieldStrengthX = fieldStrengthRawX * scaleFactorX; float fieldStrengthY = fieldStrengthRawY * scaleFactorX; float fieldStrengthZ = fieldStrengthRawZ * scaleFactorX; #if OBSW_VERBOSE_LEVEL >= 1 if(debugDivider->checkAndIncrement()) { sif::info << "MGMHandlerRM3100: Magnetic field strength in" " microtesla:" << std::endl; /* Set terminal to utf-8 if there is an issue with micro printout. */ sif::info << "X: " << fieldStrengthX << " \xC2\xB5T" << std::endl; sif::info << "Y: " << fieldStrengthY << " \xC2\xB5T" << std::endl; sif::info << "Z: " << fieldStrengthZ << " \xC2\xB5T" << std::endl; } #endif /* TODO: Sanity check on values */ PoolReadGuard readGuard(&primaryDataset); if(readGuard.getReadResult() == HasReturnvaluesIF::RETURN_OK) { primaryDataset.fieldStrengthX = fieldStrengthX; primaryDataset.fieldStrengthY = fieldStrengthY; primaryDataset.fieldStrengthZ = fieldStrengthZ; primaryDataset.setValidity(true, true); } return RETURN_OK; }