#include "CcsdsIpCoreHandler.h" #include #include #include #include #include "eive/definitions.h" #include "fsfw/ipc/QueueFactory.h" #include "fsfw/objectmanager/ObjectManager.h" #include "fsfw/serialize/SerializeAdapter.h" #include "fsfw/serviceinterface/ServiceInterface.h" #include "fsfw/serviceinterface/serviceInterfaceDefintions.h" #include "mission/com/syrlinksDefs.h" CcsdsIpCoreHandler::CcsdsIpCoreHandler(object_id_t objectId, object_id_t tcDestination, PtmeConfig& ptmeConfig, std::atomic_bool& linkState, GpioIF* gpioIF, PtmeGpios gpioIds, std::atomic_bool& ptmeLocked) : SystemObject(objectId), linkState(linkState), ptmeLocked(ptmeLocked), tcDestination(tcDestination), parameterHelper(this), actionHelper(this, nullptr), modeHelper(this), ptmeConfig(ptmeConfig), ptmeGpios(gpioIds), gpioIF(gpioIF) { commandQueue = QueueFactory::instance()->createMessageQueue(QUEUE_SIZE); auto mqArgs = MqArgs(objectId, static_cast(this)); eventQueue = QueueFactory::instance()->createMessageQueue(10, EventMessage::EVENT_MESSAGE_SIZE, &mqArgs); ptmeLocked = true; } CcsdsIpCoreHandler::~CcsdsIpCoreHandler() = default; ReturnValue_t CcsdsIpCoreHandler::performOperation(uint8_t operationCode) { readCommandQueue(); performPtmeUpdateWhenApplicable(); return returnvalue::OK; } ReturnValue_t CcsdsIpCoreHandler::initialize() { AcceptsTelecommandsIF* tcDistributor = ObjectManager::instance()->get(tcDestination); if (tcDistributor == nullptr) { #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::error << "CcsdsHandler::initialize: Invalid TC Distributor object" << std::endl; #endif return ObjectManagerIF::CHILD_INIT_FAILED; } tcDistributorQueueId = tcDistributor->getRequestQueue(); ReturnValue_t result = parameterHelper.initialize(); if (result != returnvalue::OK) { return result; } result = actionHelper.initialize(commandQueue); if (result != returnvalue::OK) { return result; } result = modeHelper.initialize(); if (result != returnvalue::OK) { return result; } result = ptmeConfig.initialize(); if (result != returnvalue::OK) { return ObjectManagerIF::CHILD_INIT_FAILED; } // This also pulls the PTME out of reset state. if (batPriorityParam == 0) { disablePrioritySelectMode(); } else { enablePrioritySelectMode(); } resetPtme(); ptmeLocked = false; #if OBSW_SYRLINKS_SIMULATED == 1 // Update data on rising edge ptmeConfig.invertTxClock(false); linkState = LINK_UP; #endif /* OBSW_SYRLINKS_SIMULATED == 1*/ return result; } void CcsdsIpCoreHandler::readCommandQueue(void) { CommandMessage commandMessage; ReturnValue_t result = returnvalue::FAILED; result = commandQueue->receiveMessage(&commandMessage); if (result == returnvalue::OK) { result = parameterHelper.handleParameterMessage(&commandMessage); if (result == returnvalue::OK) { return; } result = actionHelper.handleActionMessage(&commandMessage); if (result == returnvalue::OK) { return; } result = modeHelper.handleModeCommand(&commandMessage); if (result == returnvalue::OK) { return; } CommandMessage reply; reply.setReplyRejected(CommandMessage::UNKNOWN_COMMAND, commandMessage.getCommand()); commandQueue->reply(&reply); return; } } MessageQueueId_t CcsdsIpCoreHandler::getCommandQueue() const { return commandQueue->getId(); } ReturnValue_t CcsdsIpCoreHandler::getParameter(uint8_t domainId, uint8_t uniqueIdentifier, ParameterWrapper* parameterWrapper, const ParameterWrapper* newValues, uint16_t startAtIndex) { if ((domainId == 0) and (uniqueIdentifier == ParamId::BAT_PRIORITY)) { uint8_t newVal = 0; ReturnValue_t result = newValues->getElement(&newVal); if (result != returnvalue::OK) { return result; } if (newVal > 1) { return HasParametersIF::INVALID_VALUE; } parameterWrapper->set(batPriorityParam); if (newVal != batPriorityParam) { // This ensures that the BAT priority is updated at some point when an update of the PTME is // allowed updateContext.updateBatPrio = true; // If we are off, we can do the update after X cycles. Otherwise, wait until the transmitter // goes off. if (mode == MODE_OFF) { initPtmeUpdateAfterXCycles(); } } return returnvalue::OK; } return HasParametersIF::INVALID_IDENTIFIER_ID; } uint32_t CcsdsIpCoreHandler::getIdentifier() const { return 0; } MessageQueueId_t CcsdsIpCoreHandler::getRequestQueue() const { // Forward packets directly to the CCSDS TC distributor return tcDistributorQueueId; } ReturnValue_t CcsdsIpCoreHandler::executeAction(ActionId_t actionId, MessageQueueId_t commandedBy, const uint8_t* data, size_t size) { ReturnValue_t result = returnvalue::OK; switch (actionId) { case ARBITRARY_RATE: { uint32_t bitrate = 0; SerializeAdapter::deSerialize(&bitrate, &data, &size, SerializeIF::Endianness::BIG); result = ptmeConfig.setRate(bitrate); break; } case ENABLE_TX_CLK_MANIPULATOR: { result = ptmeConfig.configTxManipulator(true); break; } case DISABLE_TX_CLK_MANIPULATOR: { result = ptmeConfig.configTxManipulator(false); break; } case UPDATE_ON_RISING_EDGE: { result = ptmeConfig.invertTxClock(false); break; } case UPDATE_ON_FALLING_EDGE: { result = ptmeConfig.invertTxClock(true); break; } default: return COMMAND_NOT_IMPLEMENTED; } if (result != returnvalue::OK) { return result; } return EXECUTION_FINISHED; } void CcsdsIpCoreHandler::updateLinkState() { linkState = LINK_UP; } void CcsdsIpCoreHandler::enableTransmit() { gpioIF->pullHigh(ptmeGpios.enableTxClock); gpioIF->pullHigh(ptmeGpios.enableTxData); linkState = LINK_UP; } void CcsdsIpCoreHandler::getMode(Mode_t* mode, Submode_t* submode) { *mode = this->mode; *submode = this->submode; } ReturnValue_t CcsdsIpCoreHandler::checkModeCommand(Mode_t mode, Submode_t submode, uint32_t* msToReachTheMode) { if (mode == HasModesIF::MODE_ON) { if (submode != static_cast(com::CcsdsSubmode::DATARATE_HIGH) and submode != static_cast(com::CcsdsSubmode::DATARATE_LOW) and submode != static_cast(com::CcsdsSubmode::DATARATE_DEFAULT)) { return HasModesIF::INVALID_SUBMODE; } } else if (mode != HasModesIF::MODE_OFF) { return returnvalue::FAILED; } *msToReachTheMode = 2000; return returnvalue::OK; } void CcsdsIpCoreHandler::startTransition(Mode_t mode, Submode_t submode) { triggerEvent(CHANGING_MODE, mode, submode); if (mode == HasModesIF::MODE_ON) { if (this->submode != submode) { initPtmeUpdateAfterXCycles(); updateContext.enableTransmitAfterPtmeUpdate = true; updateContext.updateClockRate = true; this->submode = submode; this->mode = mode; updateContext.setModeAfterUpdate = true; return; } // No rate change, so enable transmitter right away. enableTransmit(); } else if (mode == HasModesIF::MODE_OFF) { disableTransmit(); } setMode(mode, submode); } void CcsdsIpCoreHandler::announceMode(bool recursive) { triggerEvent(MODE_INFO, mode, submode); } void CcsdsIpCoreHandler::disableTransmit() { #ifndef TE0720_1CFA gpioIF->pullLow(ptmeGpios.enableTxClock); gpioIF->pullLow(ptmeGpios.enableTxData); #endif linkState = LINK_DOWN; // Some parameters need update and transmitter is off now. if (updateContext.updateBatPrio or updateContext.updateClockRate) { initPtmeUpdateAfterXCycles(); } } const char* CcsdsIpCoreHandler::getName() const { return "CCSDS Handler"; } const HasHealthIF* CcsdsIpCoreHandler::getOptHealthIF() const { return nullptr; } const HasModesIF& CcsdsIpCoreHandler::getModeIF() const { return *this; } ReturnValue_t CcsdsIpCoreHandler::connectModeTreeParent(HasModeTreeChildrenIF& parent) { return modetree::connectModeTreeParent(parent, *this, nullptr, modeHelper); } ModeTreeChildIF& CcsdsIpCoreHandler::getModeTreeChildIF() { return *this; } object_id_t CcsdsIpCoreHandler::getObjectId() const { return SystemObject::getObjectId(); } void CcsdsIpCoreHandler::enablePrioritySelectMode() { ptmeConfig.enableBatPriorityBit(true); } void CcsdsIpCoreHandler::disablePrioritySelectMode() { ptmeConfig.enableBatPriorityBit(false); } void CcsdsIpCoreHandler::updateBatPriorityFromParam() { if (batPriorityParam == 0) { disablePrioritySelectMode(); } else { enablePrioritySelectMode(); } } void CcsdsIpCoreHandler::setMode(Mode_t mode, Submode_t submode) { this->submode = submode; this->mode = mode; modeHelper.modeChanged(mode, submode); announceMode(false); } void CcsdsIpCoreHandler::performPtmeUpdateWhenApplicable() { if (not updateContext.performPtmeUpdateAfterXCycles) { return; } if (updateContext.ptmeUpdateCycleCount >= 2) { if (updateContext.updateBatPrio) { updateBatPriorityFromParam(); updateContext.updateBatPrio = false; } ReturnValue_t result; if (updateContext.updateClockRate) { if (submode == static_cast(com::CcsdsSubmode::DATARATE_DEFAULT)) { com::Datarate currentDatarate = com::getCurrentDatarate(); if (currentDatarate == com::Datarate::LOW_RATE_MODULATION_BPSK) { result = ptmeConfig.setRate(RATE_100KBPS); } else if (currentDatarate == com::Datarate::HIGH_RATE_MODULATION_0QPSK) { result = ptmeConfig.setRate(RATE_500KBPS); } } else if (submode == static_cast(com::CcsdsSubmode::DATARATE_HIGH)) { result = ptmeConfig.setRate(RATE_500KBPS); } else if (submode == static_cast(com::CcsdsSubmode::DATARATE_LOW)) { result = ptmeConfig.setRate(RATE_100KBPS); } if (result != returnvalue::OK) { sif::error << "CcsdsIpCoreHandler: Setting datarate failed" << std::endl; } updateContext.updateClockRate = false; } bool doResetPtme = true; if (not updateContext.updateBatPrio and not updateContext.updateClockRate) { doResetPtme = false; } finishPtmeUpdateAfterXCycles(doResetPtme); return; } updateContext.ptmeUpdateCycleCount++; } void CcsdsIpCoreHandler::resetPtme() { gpioIF->pullLow(ptmeGpios.ptmeResetn); usleep(10); gpioIF->pullHigh(ptmeGpios.ptmeResetn); } void CcsdsIpCoreHandler::initPtmeUpdateAfterXCycles() { if (not updateContext.performPtmeUpdateAfterXCycles) { updateContext.performPtmeUpdateAfterXCycles = true; updateContext.ptmeUpdateCycleCount = 0; ptmeLocked = true; } } void CcsdsIpCoreHandler::finishPtmeUpdateAfterXCycles(bool doResetPtme) { if (doResetPtme) { resetPtme(); } ptmeLocked = false; updateContext.performPtmeUpdateAfterXCycles = false; updateContext.ptmeUpdateCycleCount = 0; if (updateContext.enableTransmitAfterPtmeUpdate) { enableTransmit(); updateContext.enableTransmitAfterPtmeUpdate = false; } if (updateContext.setModeAfterUpdate) { setMode(mode, submode); updateContext.setModeAfterUpdate = false; } }