#include "../../timemanager/Clock.h"
#include "RtemsBasic.h"
#include <rtems/score/todimpl.h>

uint16_t Clock::leapSeconds = 0;
MutexIF* Clock::timeMutex = nullptr;

uint32_t Clock::getTicksPerSecond(void){
	rtems_interval ticks_per_second = rtems_clock_get_ticks_per_second();
	return static_cast<uint32_t>(ticks_per_second);
}

ReturnValue_t Clock::setClock(const TimeOfDay_t* time) {
	rtems_time_of_day timeRtems;
	timeRtems.year = time->year;
	timeRtems.month = time->month;
	timeRtems.day = time->day;
	timeRtems.hour = time->hour;
	timeRtems.minute  = time->minute;
	timeRtems.second = time->second;
	timeRtems.ticks = time->usecond * getTicksPerSecond() / 1e6;
	rtems_status_code status = rtems_clock_set(&timeRtems);
	switch(status){
	case RTEMS_SUCCESSFUL:
		return HasReturnvaluesIF::RETURN_OK;
	case RTEMS_INVALID_ADDRESS:
		return HasReturnvaluesIF::RETURN_FAILED;
	case RTEMS_INVALID_CLOCK:
		return HasReturnvaluesIF::RETURN_FAILED;
	default:
		return HasReturnvaluesIF::RETURN_FAILED;
	}
}

ReturnValue_t Clock::setClock(const timeval* time) {
	//TODO This routine uses _TOD_Set which is not
	timespec newTime;
	newTime.tv_sec = time->tv_sec;
	newTime.tv_nsec = time->tv_usec * TOD_NANOSECONDS_PER_MICROSECOND;
	//SHOULDDO: Not sure if we need to protect this call somehow (by thread lock or something).
	//Uli: rtems docu says you can call this from an ISR, not sure if this means no protetion needed
	//TODO Second parameter is ISR_lock_Context
	_TOD_Set(&newTime,nullptr);
	return HasReturnvaluesIF::RETURN_OK;
}

ReturnValue_t Clock::getClock_timeval(timeval* time) {
	//Callable from ISR
	rtems_status_code status = rtems_clock_get_tod_timeval(time);
	switch(status){
	case RTEMS_SUCCESSFUL:
		return HasReturnvaluesIF::RETURN_OK;
	case RTEMS_NOT_DEFINED:
		return HasReturnvaluesIF::RETURN_FAILED;
	default:
		return HasReturnvaluesIF::RETURN_FAILED;
	}
}

ReturnValue_t Clock::getUptime(timeval* uptime) {
	//According to docs.rtems.org for rtems 5 this method is more accurate than rtems_clock_get_ticks_since_boot
	timespec time;
	rtems_status_code status = rtems_clock_get_uptime(&time);
	uptime->tv_sec = time.tv_sec;
	time.tv_nsec = time.tv_nsec / 1000;
	uptime->tv_usec = time.tv_nsec;
	switch(status){
	case RTEMS_SUCCESSFUL:
		return HasReturnvaluesIF::RETURN_OK;
	default:
		return HasReturnvaluesIF::RETURN_FAILED;
	}
}

ReturnValue_t Clock::getUptime(uint32_t* uptimeMs) {
	//This counter overflows after 50 days
	*uptimeMs = rtems_clock_get_ticks_since_boot();
	return HasReturnvaluesIF::RETURN_OK;
}

ReturnValue_t Clock::getClock_usecs(uint64_t* time) {
	timeval temp_time;
	rtems_status_code returnValue = rtems_clock_get_tod_timeval(&temp_time);
	*time = ((uint64_t) temp_time.tv_sec * 1000000) + temp_time.tv_usec;
	switch(returnValue){
	case RTEMS_SUCCESSFUL:
		return HasReturnvaluesIF::RETURN_OK;
	default:
		return HasReturnvaluesIF::RETURN_FAILED;
	}
}

ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) {
	rtems_time_of_day* timeRtems = reinterpret_cast<rtems_time_of_day*>(time);
	rtems_status_code status = rtems_clock_get_tod(timeRtems);
	switch (status) {
	case RTEMS_SUCCESSFUL:
		return HasReturnvaluesIF::RETURN_OK;
	case RTEMS_NOT_DEFINED:
		//system date and time is not set
		return HasReturnvaluesIF::RETURN_FAILED;
	case RTEMS_INVALID_ADDRESS:
		//time_buffer is NULL
		return HasReturnvaluesIF::RETURN_FAILED;
	default:
		return HasReturnvaluesIF::RETURN_FAILED;
	}
}

ReturnValue_t Clock::convertTimeOfDayToTimeval(const TimeOfDay_t* from,
		timeval* to) {
	//Fails in 2038..
	rtems_time_of_day timeRtems;
	timeRtems.year = from->year;
	timeRtems.month = from->month;
	timeRtems.day = from->day;
	timeRtems.hour = from->hour;
	timeRtems.minute  = from->minute;
	timeRtems.second = from->second;
	timeRtems.ticks = from->usecond * getTicksPerSecond() / 1e6;
	to->tv_sec = _TOD_To_seconds(&timeRtems);
	to->tv_usec = from->usecond;
	return HasReturnvaluesIF::RETURN_OK;
}

ReturnValue_t Clock::convertTimevalToJD2000(timeval time, double* JD2000) {
	*JD2000 = (time.tv_sec - 946728000. + time.tv_usec / 1000000.) / 24.
			/ 3600.;
	return HasReturnvaluesIF::RETURN_OK;
}

ReturnValue_t Clock::convertUTCToTT(timeval utc, timeval* tt) {
	//SHOULDDO: works not for dates in the past (might have less leap seconds)
	if (timeMutex == nullptr) {
		return HasReturnvaluesIF::RETURN_FAILED;
	}

	uint16_t leapSeconds;
	ReturnValue_t result = getLeapSeconds(&leapSeconds);
	if (result != HasReturnvaluesIF::RETURN_OK) {
		return result;
	}
	timeval leapSeconds_timeval = { 0, 0 };
	leapSeconds_timeval.tv_sec = leapSeconds;

	//initial offset between UTC and TAI
	timeval UTCtoTAI1972 = { 10, 0 };

	timeval TAItoTT = { 32, 184000 };

	*tt = utc + leapSeconds_timeval + UTCtoTAI1972 + TAItoTT;

	return HasReturnvaluesIF::RETURN_OK;
}

ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) {
	if(checkOrCreateClockMutex()!=HasReturnvaluesIF::RETURN_OK){
		return HasReturnvaluesIF::RETURN_FAILED;
	}
	MutexHelper helper(timeMutex);


	leapSeconds = leapSeconds_;


	return HasReturnvaluesIF::RETURN_OK;
}

ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) {
	if(timeMutex==nullptr){
		return HasReturnvaluesIF::RETURN_FAILED;
	}
	MutexHelper helper(timeMutex);

	*leapSeconds_ = leapSeconds;

	return HasReturnvaluesIF::RETURN_OK;
}

ReturnValue_t Clock::checkOrCreateClockMutex(){
	if(timeMutex==nullptr){
		MutexFactory* mutexFactory = MutexFactory::instance();
		if (mutexFactory == nullptr) {
			return HasReturnvaluesIF::RETURN_FAILED;
		}
		timeMutex = mutexFactory->createMutex();
		if (timeMutex == nullptr) {
			return HasReturnvaluesIF::RETURN_FAILED;
		}
	}
	return HasReturnvaluesIF::RETURN_OK;
}