#include "GyroL3GD20Handler.h" #include #include "fsfw/datapool/PoolReadGuard.h" GyroHandlerL3GD20H::GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication, CookieIF *comCookie, uint32_t transitionDelayMs) : DeviceHandlerBase(objectId, deviceCommunication, comCookie), transitionDelayMs(transitionDelayMs), dataset(this) {} GyroHandlerL3GD20H::~GyroHandlerL3GD20H() {} void GyroHandlerL3GD20H::doStartUp() { if (internalState == InternalState::NONE) { internalState = InternalState::CONFIGURE; } if (internalState == InternalState::CONFIGURE) { if (commandExecuted) { internalState = InternalState::CHECK_REGS; commandExecuted = false; } } if (internalState == InternalState::CHECK_REGS) { if (commandExecuted) { internalState = InternalState::NORMAL; if (goNormalModeImmediately) { setMode(MODE_NORMAL); } else { setMode(_MODE_TO_ON); } commandExecuted = false; } } } void GyroHandlerL3GD20H::doShutDown() { setMode(_MODE_POWER_DOWN); } ReturnValue_t GyroHandlerL3GD20H::buildTransitionDeviceCommand(DeviceCommandId_t *id) { switch (internalState) { case (InternalState::NONE): case (InternalState::NORMAL): { return NOTHING_TO_SEND; } case (InternalState::CONFIGURE): { *id = L3GD20H::CONFIGURE_CTRL_REGS; uint8_t command[5]; command[0] = L3GD20H::CTRL_REG_1_VAL; command[1] = L3GD20H::CTRL_REG_2_VAL; command[2] = L3GD20H::CTRL_REG_3_VAL; command[3] = L3GD20H::CTRL_REG_4_VAL; command[4] = L3GD20H::CTRL_REG_5_VAL; return buildCommandFromCommand(*id, command, 5); } case (InternalState::CHECK_REGS): { *id = L3GD20H::READ_REGS; return buildCommandFromCommand(*id, nullptr, 0); } default: #if FSFW_CPP_OSTREAM_ENABLED == 1 /* Might be a configuration error. */ sif::warning << "GyroL3GD20Handler::buildTransitionDeviceCommand: " "Unknown internal state!" << std::endl; #else sif::printDebug( "GyroL3GD20Handler::buildTransitionDeviceCommand: " "Unknown internal state!\n"); #endif return HasReturnvaluesIF::RETURN_OK; } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t GyroHandlerL3GD20H::buildNormalDeviceCommand(DeviceCommandId_t *id) { *id = L3GD20H::READ_REGS; return buildCommandFromCommand(*id, nullptr, 0); } ReturnValue_t GyroHandlerL3GD20H::buildCommandFromCommand(DeviceCommandId_t deviceCommand, const uint8_t *commandData, size_t commandDataLen) { switch (deviceCommand) { case (L3GD20H::READ_REGS): { commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK | L3GD20H::READ_MASK; std::memset(commandBuffer + 1, 0, L3GD20H::READ_LEN); rawPacket = commandBuffer; rawPacketLen = L3GD20H::READ_LEN + 1; break; } case (L3GD20H::CONFIGURE_CTRL_REGS): { commandBuffer[0] = L3GD20H::CTRL_REG_1 | L3GD20H::AUTO_INCREMENT_MASK; if (commandData == nullptr or commandDataLen != 5) { return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; } ctrlReg1Value = commandData[0]; ctrlReg2Value = commandData[1]; ctrlReg3Value = commandData[2]; ctrlReg4Value = commandData[3]; ctrlReg5Value = commandData[4]; bool fsH = ctrlReg4Value & L3GD20H::SET_FS_1; bool fsL = ctrlReg4Value & L3GD20H::SET_FS_0; if (not fsH and not fsL) { sensitivity = L3GD20H::SENSITIVITY_00; } else if (not fsH and fsL) { sensitivity = L3GD20H::SENSITIVITY_01; } else { sensitivity = L3GD20H::SENSITIVITY_11; } commandBuffer[1] = ctrlReg1Value; commandBuffer[2] = ctrlReg2Value; commandBuffer[3] = ctrlReg3Value; commandBuffer[4] = ctrlReg4Value; commandBuffer[5] = ctrlReg5Value; rawPacket = commandBuffer; rawPacketLen = 6; break; } case (L3GD20H::READ_CTRL_REGS): { commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK | L3GD20H::READ_MASK; std::memset(commandBuffer + 1, 0, 5); rawPacket = commandBuffer; rawPacketLen = 6; break; } default: return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t GyroHandlerL3GD20H::scanForReply(const uint8_t *start, size_t len, DeviceCommandId_t *foundId, size_t *foundLen) { // For SPI, the ID will always be the one of the last sent command *foundId = this->getPendingCommand(); *foundLen = this->rawPacketLen; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t GyroHandlerL3GD20H::interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) { ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; switch (id) { case (L3GD20H::CONFIGURE_CTRL_REGS): { commandExecuted = true; break; } case (L3GD20H::READ_CTRL_REGS): { if (packet[1] == ctrlReg1Value and packet[2] == ctrlReg2Value and packet[3] == ctrlReg3Value and packet[4] == ctrlReg4Value and packet[5] == ctrlReg5Value) { commandExecuted = true; } else { // Attempt reconfiguration internalState = InternalState::CONFIGURE; return DeviceHandlerIF::DEVICE_REPLY_INVALID; } break; } case (L3GD20H::READ_REGS): { if (packet[1] != ctrlReg1Value and packet[2] != ctrlReg2Value and packet[3] != ctrlReg3Value and packet[4] != ctrlReg4Value and packet[5] != ctrlReg5Value) { return DeviceHandlerIF::DEVICE_REPLY_INVALID; } else { if (internalState == InternalState::CHECK_REGS) { commandExecuted = true; } } statusReg = packet[L3GD20H::STATUS_IDX]; int16_t angVelocXRaw = packet[L3GD20H::OUT_X_H] << 8 | packet[L3GD20H::OUT_X_L]; int16_t angVelocYRaw = packet[L3GD20H::OUT_Y_H] << 8 | packet[L3GD20H::OUT_Y_L]; int16_t angVelocZRaw = packet[L3GD20H::OUT_Z_H] << 8 | packet[L3GD20H::OUT_Z_L]; float angVelocX = angVelocXRaw * sensitivity; float angVelocY = angVelocYRaw * sensitivity; float angVelocZ = angVelocZRaw * sensitivity; int8_t temperaturOffset = (-1) * packet[L3GD20H::TEMPERATURE_IDX]; float temperature = 25.0 + temperaturOffset; if (periodicPrintout) { if (debugDivider.checkAndIncrement()) { /* Set terminal to utf-8 if there is an issue with micro printout. */ #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::info << "GyroHandlerL3GD20H: Angular velocities (deg/s):" << std::endl; sif::info << "X: " << angVelocX << std::endl; sif::info << "Y: " << angVelocY << std::endl; sif::info << "Z: " << angVelocZ << std::endl; #else sif::printInfo("GyroHandlerL3GD20H: Angular velocities (deg/s):\n"); sif::printInfo("X: %f\n", angVelocX); sif::printInfo("Y: %f\n", angVelocY); sif::printInfo("Z: %f\n", angVelocZ); #endif } } PoolReadGuard readSet(&dataset); if (readSet.getReadResult() == HasReturnvaluesIF::RETURN_OK) { if (std::abs(angVelocX) < this->absLimitX) { dataset.angVelocX = angVelocX; dataset.angVelocX.setValid(true); } else { dataset.angVelocX.setValid(false); } if (std::abs(angVelocY) < this->absLimitY) { dataset.angVelocY = angVelocY; dataset.angVelocY.setValid(true); } else { dataset.angVelocY.setValid(false); } if (std::abs(angVelocZ) < this->absLimitZ) { dataset.angVelocZ = angVelocZ; dataset.angVelocZ.setValid(true); } else { dataset.angVelocZ.setValid(false); } dataset.temperature = temperature; dataset.temperature.setValid(true); } break; } default: return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; } return result; } uint32_t GyroHandlerL3GD20H::getTransitionDelayMs(Mode_t from, Mode_t to) { return this->transitionDelayMs; } void GyroHandlerL3GD20H::setToGoToNormalMode(bool enable) { this->goNormalModeImmediately = true; } ReturnValue_t GyroHandlerL3GD20H::initializeLocalDataPool(localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) { localDataPoolMap.emplace(L3GD20H::ANG_VELOC_X, new PoolEntry({0.0})); localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Y, new PoolEntry({0.0})); localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Z, new PoolEntry({0.0})); localDataPoolMap.emplace(L3GD20H::TEMPERATURE, new PoolEntry({0.0})); poolManager.subscribeForPeriodicPacket(dataset.getSid(), false, 10.0, false); return HasReturnvaluesIF::RETURN_OK; } void GyroHandlerL3GD20H::fillCommandAndReplyMap() { insertInCommandAndReplyMap(L3GD20H::READ_REGS, 1, &dataset); insertInCommandAndReplyMap(L3GD20H::CONFIGURE_CTRL_REGS, 1); insertInCommandAndReplyMap(L3GD20H::READ_CTRL_REGS, 1); } void GyroHandlerL3GD20H::modeChanged() { internalState = InternalState::NONE; } void GyroHandlerL3GD20H::setAbsoluteLimits(float limitX, float limitY, float limitZ) { this->absLimitX = limitX; this->absLimitY = limitY; this->absLimitZ = limitZ; } void GyroHandlerL3GD20H::enablePeriodicPrintouts(bool enable, uint8_t divider) { periodicPrintout = enable; debugDivider.setDivider(divider); }