#include "MgmLIS3MDLHandler.h" #include #include "fsfw/datapool/PoolReadGuard.h" MgmLIS3MDLHandler::MgmLIS3MDLHandler(object_id_t objectId, object_id_t deviceCommunication, CookieIF *comCookie, uint32_t transitionDelay) : DeviceHandlerBase(objectId, deviceCommunication, comCookie), dataset(this), transitionDelay(transitionDelay) { // Set to default values right away registers[0] = MGMLIS3MDL::CTRL_REG1_DEFAULT; registers[1] = MGMLIS3MDL::CTRL_REG2_DEFAULT; registers[2] = MGMLIS3MDL::CTRL_REG3_DEFAULT; registers[3] = MGMLIS3MDL::CTRL_REG4_DEFAULT; registers[4] = MGMLIS3MDL::CTRL_REG5_DEFAULT; } MgmLIS3MDLHandler::~MgmLIS3MDLHandler() {} void MgmLIS3MDLHandler::doStartUp() { switch (internalState) { case (InternalState::STATE_NONE): { internalState = InternalState::STATE_FIRST_CONTACT; break; } case (InternalState::STATE_FIRST_CONTACT): { /* Will be set by checking device ID (WHO AM I register) */ if (commandExecuted) { commandExecuted = false; internalState = InternalState::STATE_SETUP; } break; } case (InternalState::STATE_SETUP): { internalState = InternalState::STATE_CHECK_REGISTERS; break; } case (InternalState::STATE_CHECK_REGISTERS): { /* Set up cached registers which will be used to configure the MGM. */ if (commandExecuted) { commandExecuted = false; if (goToNormalMode) { setMode(MODE_NORMAL); } else { setMode(_MODE_TO_ON); } } break; } default: break; } } void MgmLIS3MDLHandler::doShutDown() { setMode(_MODE_POWER_DOWN); } ReturnValue_t MgmLIS3MDLHandler::buildTransitionDeviceCommand(DeviceCommandId_t *id) { switch (internalState) { case (InternalState::STATE_NONE): case (InternalState::STATE_NORMAL): { return DeviceHandlerBase::NOTHING_TO_SEND; } case (InternalState::STATE_FIRST_CONTACT): { *id = MGMLIS3MDL::IDENTIFY_DEVICE; break; } case (InternalState::STATE_SETUP): { *id = MGMLIS3MDL::SETUP_MGM; break; } case (InternalState::STATE_CHECK_REGISTERS): { *id = MGMLIS3MDL::READ_CONFIG_AND_DATA; break; } default: { /* might be a configuration error. */ #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::warning << "GyroHandler::buildTransitionDeviceCommand: Unknown internal state!" << std::endl; #else sif::printWarning("GyroHandler::buildTransitionDeviceCommand: Unknown internal state!\n"); #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ return returnvalue::OK; } } return buildCommandFromCommand(*id, NULL, 0); } uint8_t MgmLIS3MDLHandler::readCommand(uint8_t command, bool continuousCom) { command |= (1 << MGMLIS3MDL::RW_BIT); if (continuousCom == true) { command |= (1 << MGMLIS3MDL::MS_BIT); } return command; } uint8_t MgmLIS3MDLHandler::writeCommand(uint8_t command, bool continuousCom) { command &= ~(1 << MGMLIS3MDL::RW_BIT); if (continuousCom == true) { command |= (1 << MGMLIS3MDL::MS_BIT); } return command; } void MgmLIS3MDLHandler::setupMgm() { registers[0] = MGMLIS3MDL::CTRL_REG1_DEFAULT; registers[1] = MGMLIS3MDL::CTRL_REG2_DEFAULT; registers[2] = MGMLIS3MDL::CTRL_REG3_DEFAULT; registers[3] = MGMLIS3MDL::CTRL_REG4_DEFAULT; registers[4] = MGMLIS3MDL::CTRL_REG5_DEFAULT; prepareCtrlRegisterWrite(); } ReturnValue_t MgmLIS3MDLHandler::buildNormalDeviceCommand(DeviceCommandId_t *id) { // Data/config register will be read in an alternating manner. if (communicationStep == CommunicationStep::DATA) { *id = MGMLIS3MDL::READ_CONFIG_AND_DATA; communicationStep = CommunicationStep::TEMPERATURE; return buildCommandFromCommand(*id, NULL, 0); } else { *id = MGMLIS3MDL::READ_TEMPERATURE; communicationStep = CommunicationStep::DATA; return buildCommandFromCommand(*id, NULL, 0); } } ReturnValue_t MgmLIS3MDLHandler::buildCommandFromCommand(DeviceCommandId_t deviceCommand, const uint8_t *commandData, size_t commandDataLen) { switch (deviceCommand) { case (MGMLIS3MDL::READ_CONFIG_AND_DATA): { std::memset(commandBuffer, 0, sizeof(commandBuffer)); commandBuffer[0] = readCommand(MGMLIS3MDL::CTRL_REG1, true); rawPacket = commandBuffer; rawPacketLen = MGMLIS3MDL::NR_OF_DATA_AND_CFG_REGISTERS + 1; return returnvalue::OK; } case (MGMLIS3MDL::READ_TEMPERATURE): { std::memset(commandBuffer, 0, 3); commandBuffer[0] = readCommand(MGMLIS3MDL::TEMP_LOWBYTE, true); rawPacket = commandBuffer; rawPacketLen = 3; return returnvalue::OK; } case (MGMLIS3MDL::IDENTIFY_DEVICE): { return identifyDevice(); } case (MGMLIS3MDL::TEMP_SENSOR_ENABLE): { return enableTemperatureSensor(commandData, commandDataLen); } case (MGMLIS3MDL::SETUP_MGM): { setupMgm(); return returnvalue::OK; } case (MGMLIS3MDL::ACCURACY_OP_MODE_SET): { return setOperatingMode(commandData, commandDataLen); } default: return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; } return returnvalue::FAILED; } ReturnValue_t MgmLIS3MDLHandler::identifyDevice() { uint32_t size = 2; commandBuffer[0] = readCommand(MGMLIS3MDL::IDENTIFY_DEVICE_REG_ADDR); commandBuffer[1] = 0x00; rawPacket = commandBuffer; rawPacketLen = size; return returnvalue::OK; } ReturnValue_t MgmLIS3MDLHandler::scanForReply(const uint8_t *start, size_t len, DeviceCommandId_t *foundId, size_t *foundLen) { *foundLen = len; if (len == MGMLIS3MDL::NR_OF_DATA_AND_CFG_REGISTERS + 1) { *foundLen = len; *foundId = MGMLIS3MDL::READ_CONFIG_AND_DATA; // Check validity by checking config registers if (start[1] != registers[0] or start[2] != registers[1] or start[3] != registers[2] or start[4] != registers[3] or start[5] != registers[4]) { #if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::warning << "MGMHandlerLIS3MDL::scanForReply: Invalid registers!" << std::endl; #else sif::printWarning("MGMHandlerLIS3MDL::scanForReply: Invalid registers!\n"); #endif #endif return DeviceHandlerIF::INVALID_DATA; } if (mode == _MODE_START_UP) { commandExecuted = true; } } else if (len == MGMLIS3MDL::TEMPERATURE_REPLY_LEN) { *foundLen = len; *foundId = MGMLIS3MDL::READ_TEMPERATURE; } else if (len == MGMLIS3MDL::SETUP_REPLY_LEN) { *foundLen = len; *foundId = MGMLIS3MDL::SETUP_MGM; } else if (len == SINGLE_COMMAND_ANSWER_LEN) { *foundLen = len; *foundId = getPendingCommand(); if (*foundId == MGMLIS3MDL::IDENTIFY_DEVICE) { if (start[1] != MGMLIS3MDL::DEVICE_ID) { #if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::warning << "MGMHandlerLIS3MDL::scanForReply: " "Device identification failed!" << std::endl; #else sif::printWarning( "MGMHandlerLIS3MDL::scanForReply: " "Device identification failed!\n"); #endif #endif return DeviceHandlerIF::INVALID_DATA; } if (mode == _MODE_START_UP) { commandExecuted = true; } } } else { return DeviceHandlerIF::INVALID_DATA; } /* Data with SPI Interface always has this answer */ if (start[0] == 0b11111111) { return returnvalue::OK; } else { return DeviceHandlerIF::INVALID_DATA; } } ReturnValue_t MgmLIS3MDLHandler::interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) { switch (id) { case MGMLIS3MDL::IDENTIFY_DEVICE: { break; } case MGMLIS3MDL::SETUP_MGM: { break; } case MGMLIS3MDL::READ_CONFIG_AND_DATA: { // TODO: Store configuration in new local datasets. float sensitivityFactor = getSensitivityFactor(getSensitivity(registers[2])); int16_t mgmMeasurementRawX = packet[MGMLIS3MDL::X_HIGHBYTE_IDX] << 8 | packet[MGMLIS3MDL::X_LOWBYTE_IDX]; int16_t mgmMeasurementRawY = packet[MGMLIS3MDL::Y_HIGHBYTE_IDX] << 8 | packet[MGMLIS3MDL::Y_LOWBYTE_IDX]; int16_t mgmMeasurementRawZ = packet[MGMLIS3MDL::Z_HIGHBYTE_IDX] << 8 | packet[MGMLIS3MDL::Z_LOWBYTE_IDX]; // Target value in microtesla float mgmX = static_cast(mgmMeasurementRawX) * sensitivityFactor * MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR; float mgmY = static_cast(mgmMeasurementRawY) * sensitivityFactor * MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR; float mgmZ = static_cast(mgmMeasurementRawZ) * sensitivityFactor * MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR; if (periodicPrintout) { if (debugDivider.checkAndIncrement()) { #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::info << "MGMHandlerLIS3: Magnetic field strength in" " microtesla:" << std::endl; sif::info << "X: " << mgmX << " uT" << std::endl; sif::info << "Y: " << mgmY << " uT" << std::endl; sif::info << "Z: " << mgmZ << " uT" << std::endl; #else sif::printInfo("MGMHandlerLIS3: Magnetic field strength in microtesla:\n"); sif::printInfo("X: %f uT\n", mgmX); sif::printInfo("Y: %f uT\n", mgmY); sif::printInfo("Z: %f uT\n", mgmZ); #endif /* FSFW_CPP_OSTREAM_ENABLED == 0 */ } } PoolReadGuard readHelper(&dataset); if (readHelper.getReadResult() == returnvalue::OK) { if (std::abs(mgmX) > absLimitX or std::abs(mgmY) > absLimitY or std::abs(mgmZ) > absLimitZ) { dataset.fieldStrengths.setValid(false); } if (std::abs(mgmX) < absLimitX) { dataset.fieldStrengths[0] = mgmX; } if (std::abs(mgmY) < absLimitY) { dataset.fieldStrengths[1] = mgmY; } if (std::abs(mgmZ) < absLimitZ) { dataset.fieldStrengths[2] = mgmZ; } dataset.fieldStrengths.setValid(true); } break; } case MGMLIS3MDL::READ_TEMPERATURE: { int16_t tempValueRaw = packet[2] << 8 | packet[1]; float tempValue = 25.0 + ((static_cast(tempValueRaw)) / 8.0); if (periodicPrintout) { if (debugDivider.check()) { #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::info << "MGMHandlerLIS3: Temperature: " << tempValue << " C" << std::endl; #else sif::printInfo("MGMHandlerLIS3: Temperature: %f C\n"); #endif } } ReturnValue_t result = dataset.read(); if (result == returnvalue::OK) { dataset.temperature = tempValue; dataset.commit(); } break; } default: { return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY; } } return returnvalue::OK; } MGMLIS3MDL::Sensitivies MgmLIS3MDLHandler::getSensitivity(uint8_t ctrlRegister2) { bool fs0Set = ctrlRegister2 & (1 << MGMLIS3MDL::FSO); // Checks if FS0 bit is set bool fs1Set = ctrlRegister2 & (1 << MGMLIS3MDL::FS1); // Checks if FS1 bit is set if (fs0Set && fs1Set) return MGMLIS3MDL::Sensitivies::GAUSS_16; else if (!fs0Set && fs1Set) return MGMLIS3MDL::Sensitivies::GAUSS_12; else if (fs0Set && !fs1Set) return MGMLIS3MDL::Sensitivies::GAUSS_8; else return MGMLIS3MDL::Sensitivies::GAUSS_4; } float MgmLIS3MDLHandler::getSensitivityFactor(MGMLIS3MDL::Sensitivies sens) { switch (sens) { case (MGMLIS3MDL::GAUSS_4): { return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_4_SENS; } case (MGMLIS3MDL::GAUSS_8): { return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_8_SENS; } case (MGMLIS3MDL::GAUSS_12): { return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_12_SENS; } case (MGMLIS3MDL::GAUSS_16): { return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_16_SENS; } default: { // Should never happen return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_4_SENS; } } } ReturnValue_t MgmLIS3MDLHandler::enableTemperatureSensor(const uint8_t *commandData, size_t commandDataLen) { triggerEvent(CHANGE_OF_SETUP_PARAMETER); uint32_t size = 2; commandBuffer[0] = writeCommand(MGMLIS3MDL::CTRL_REG1); if (commandDataLen > 1) { return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS; } switch (*commandData) { case (MGMLIS3MDL::ON): { commandBuffer[1] = registers[0] | (1 << 7); break; } case (MGMLIS3MDL::OFF): { commandBuffer[1] = registers[0] & ~(1 << 7); break; } default: return INVALID_COMMAND_PARAMETER; } registers[0] = commandBuffer[1]; rawPacket = commandBuffer; rawPacketLen = size; return returnvalue::OK; } ReturnValue_t MgmLIS3MDLHandler::setOperatingMode(const uint8_t *commandData, size_t commandDataLen) { triggerEvent(CHANGE_OF_SETUP_PARAMETER); if (commandDataLen != 1) { return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS; } switch (commandData[0]) { case MGMLIS3MDL::LOW: registers[0] = (registers[0] & (~(1 << MGMLIS3MDL::OM1))) & (~(1 << MGMLIS3MDL::OM0)); registers[3] = (registers[3] & (~(1 << MGMLIS3MDL::OMZ1))) & (~(1 << MGMLIS3MDL::OMZ0)); break; case MGMLIS3MDL::MEDIUM: registers[0] = (registers[0] & (~(1 << MGMLIS3MDL::OM1))) | (1 << MGMLIS3MDL::OM0); registers[3] = (registers[3] & (~(1 << MGMLIS3MDL::OMZ1))) | (1 << MGMLIS3MDL::OMZ0); break; case MGMLIS3MDL::HIGH: registers[0] = (registers[0] | (1 << MGMLIS3MDL::OM1)) & (~(1 << MGMLIS3MDL::OM0)); registers[3] = (registers[3] | (1 << MGMLIS3MDL::OMZ1)) & (~(1 << MGMLIS3MDL::OMZ0)); break; case MGMLIS3MDL::ULTRA: registers[0] = (registers[0] | (1 << MGMLIS3MDL::OM1)) | (1 << MGMLIS3MDL::OM0); registers[3] = (registers[3] | (1 << MGMLIS3MDL::OMZ1)) | (1 << MGMLIS3MDL::OMZ0); break; default: break; } return prepareCtrlRegisterWrite(); } void MgmLIS3MDLHandler::fillCommandAndReplyMap() { insertInCommandAndReplyMap(MGMLIS3MDL::READ_CONFIG_AND_DATA, 1, &dataset); insertInCommandAndReplyMap(MGMLIS3MDL::READ_TEMPERATURE, 1); insertInCommandAndReplyMap(MGMLIS3MDL::SETUP_MGM, 1); insertInCommandAndReplyMap(MGMLIS3MDL::IDENTIFY_DEVICE, 1); insertInCommandAndReplyMap(MGMLIS3MDL::TEMP_SENSOR_ENABLE, 1); insertInCommandAndReplyMap(MGMLIS3MDL::ACCURACY_OP_MODE_SET, 1); } void MgmLIS3MDLHandler::setToGoToNormalMode(bool enable) { this->goToNormalMode = enable; } ReturnValue_t MgmLIS3MDLHandler::prepareCtrlRegisterWrite() { commandBuffer[0] = writeCommand(MGMLIS3MDL::CTRL_REG1, true); for (size_t i = 0; i < MGMLIS3MDL::NR_OF_CTRL_REGISTERS; i++) { commandBuffer[i + 1] = registers[i]; } rawPacket = commandBuffer; rawPacketLen = MGMLIS3MDL::NR_OF_CTRL_REGISTERS + 1; // We dont have to check if this is working because we just did i return returnvalue::OK; } void MgmLIS3MDLHandler::doTransition(Mode_t modeFrom, Submode_t subModeFrom) { DeviceHandlerBase::doTransition(modeFrom, subModeFrom); } uint32_t MgmLIS3MDLHandler::getTransitionDelayMs(Mode_t from, Mode_t to) { return transitionDelay; } void MgmLIS3MDLHandler::modeChanged(void) { internalState = InternalState::STATE_NONE; } ReturnValue_t MgmLIS3MDLHandler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) { localDataPoolMap.emplace(MGMLIS3MDL::FIELD_STRENGTHS, &mgmXYZ); localDataPoolMap.emplace(MGMLIS3MDL::TEMPERATURE_CELCIUS, &temperature); poolManager.subscribeForRegularPeriodicPacket( subdp::RegularHkPeriodicParams(dataset.getSid(), false, 10.0)); return returnvalue::OK; } void MgmLIS3MDLHandler::setAbsoluteLimits(float xLimit, float yLimit, float zLimit) { this->absLimitX = xLimit; this->absLimitY = yLimit; this->absLimitZ = zLimit; } void MgmLIS3MDLHandler::enablePeriodicPrintouts(bool enable, uint8_t divider) { periodicPrintout = enable; debugDivider.setDivider(divider); }