#include "fsfw-tests/internal/serialize/IntTestSerialization.h" #include "fsfw-tests/internal/UnittDefinitions.h" #include #include #include #include using retval = HasReturnvaluesIF; std::array testserialize::test_array = { 0 }; ReturnValue_t testserialize::test_serialization() { // Here, we test all serialization tools. First test basic cases. ReturnValue_t result = test_endianness_tools(); if(result != retval::RETURN_OK) { return result; } result = test_autoserialization(); if(result != retval::RETURN_OK) { return result; } result = test_serial_buffer_adapter(); if(result != retval::RETURN_OK) { return result; } return retval::RETURN_OK; } ReturnValue_t testserialize::test_endianness_tools() { std::string id = "[test_endianness_tools]"; test_array[0] = 0; test_array[1] = 0; uint16_t two_byte_value = 1; size_t size = 0; uint8_t* p_array = test_array.data(); SerializeAdapter::serialize(&two_byte_value, &p_array, &size, 2, SerializeIF::Endianness::MACHINE); // Little endian: Value one on first byte if(test_array[0] != 1 and test_array[1] != 0) { return unitt::put_error(id); } p_array = test_array.data(); size = 0; SerializeAdapter::serialize(&two_byte_value, &p_array, &size, 2, SerializeIF::Endianness::BIG); // Big endian: Value one on second byte if(test_array[0] != 0 and test_array[1] != 1) { return unitt::put_error(id); } return retval::RETURN_OK; } ReturnValue_t testserialize::test_autoserialization() { std::string id = "[test_autoserialization]"; // Unit Test getSerializedSize if(SerializeAdapter:: getSerializedSize(&tv::tv_bool) != sizeof(tv::tv_bool) or SerializeAdapter:: getSerializedSize(&tv::tv_uint8) != sizeof(tv::tv_uint8) or SerializeAdapter:: getSerializedSize(&tv::tv_uint16) != sizeof(tv::tv_uint16) or SerializeAdapter:: getSerializedSize(&tv::tv_uint32) != sizeof(tv::tv_uint32) or SerializeAdapter:: getSerializedSize(&tv::tv_uint64) != sizeof(tv::tv_uint64) or SerializeAdapter:: getSerializedSize(&tv::tv_int8) != sizeof(tv::tv_int8) or SerializeAdapter:: getSerializedSize(&tv::tv_double) != sizeof(tv::tv_double) or SerializeAdapter:: getSerializedSize(&tv::tv_int16) != sizeof(tv::tv_int16) or SerializeAdapter:: getSerializedSize(&tv::tv_int32) != sizeof(tv::tv_int32) or SerializeAdapter:: getSerializedSize(&tv::tv_float) != sizeof(tv::tv_float)) { return unitt::put_error(id); } size_t serialized_size = 0; uint8_t * p_array = test_array.data(); SerializeAdapter::serialize(&tv::tv_bool, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&tv::tv_uint8, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&tv::tv_uint16, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&tv::tv_uint32, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&tv::tv_int8, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&tv::tv_int16, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&tv::tv_int32, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&tv::tv_uint64, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&tv::tv_float, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&tv::tv_double, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&tv::tv_sfloat, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&tv::tv_sdouble, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); // expected size is 1 + 1 + 2 + 4 + 1 + 2 + 4 + 8 + 4 + 8 + 4 + 8 if(serialized_size != 47) { return unitt::put_error(id); } p_array = test_array.data(); size_t remaining_size = serialized_size; bool tv_bool; uint8_t tv_uint8; uint16_t tv_uint16; uint32_t tv_uint32; int8_t tv_int8; int16_t tv_int16; int32_t tv_int32; uint64_t tv_uint64; float tv_float; double tv_double; float tv_sfloat; double tv_sdouble; SerializeAdapter::deSerialize(&tv_bool, const_cast(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE); SerializeAdapter::deSerialize(&tv_uint8, const_cast(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE); SerializeAdapter::deSerialize(&tv_uint16, const_cast(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE); SerializeAdapter::deSerialize(&tv_uint32, const_cast(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE); SerializeAdapter::deSerialize(&tv_int8, const_cast(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE); SerializeAdapter::deSerialize(&tv_int16, const_cast(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE); SerializeAdapter::deSerialize(&tv_int32, const_cast(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE); SerializeAdapter::deSerialize(&tv_uint64, const_cast(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE); SerializeAdapter::deSerialize(&tv_float, const_cast(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE); SerializeAdapter::deSerialize(&tv_double, const_cast(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE); SerializeAdapter::deSerialize(&tv_sfloat, const_cast(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE); SerializeAdapter::deSerialize(&tv_sdouble, const_cast(&p_array), &remaining_size, SerializeIF::Endianness::MACHINE); if(tv_bool != tv::tv_bool or tv_uint8 != tv::tv_uint8 or tv_uint16 != tv::tv_uint16 or tv_uint32 != tv::tv_uint32 or tv_uint64 != tv::tv_uint64 or tv_int8 != tv::tv_int8 or tv_int16 != tv::tv_int16 or tv_int32 != tv::tv_int32) { return unitt::put_error(id); } // These epsilon values were just guessed.. It appears to work though. if(abs(tv_float - tv::tv_float) > 0.0001 or abs(tv_double - tv::tv_double) > 0.01 or abs(tv_sfloat - tv::tv_sfloat) > 0.0001 or abs(tv_sdouble - tv::tv_sdouble) > 0.01) { return unitt::put_error(id); } // Check overflow return retval::RETURN_OK; } // TODO: Also test for constant buffers. ReturnValue_t testserialize::test_serial_buffer_adapter() { std::string id = "[test_serial_buffer_adapter]"; // I will skip endian swapper testing, its going to be changed anyway.. // uint8_t tv::tv_uint8_swapped = EndianSwapper::swap(tv::tv_uint8); size_t serialized_size = 0; uint8_t * p_array = test_array.data(); std::array test_serial_buffer {5, 4, 3, 2, 1}; SerialBufferAdapter tv_serial_buffer_adapter = SerialBufferAdapter(test_serial_buffer.data(), test_serial_buffer.size(), false); uint16_t testUint16 = 16; SerializeAdapter::serialize(&tv::tv_bool, &p_array,&serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&tv_serial_buffer_adapter, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&testUint16, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); if(serialized_size != 8 or test_array[0] != true or test_array[1] != 5 or test_array[2] != 4 or test_array[3] != 3 or test_array[4] != 2 or test_array[5] != 1) { return unitt::put_error(id); } memcpy(&testUint16, test_array.data() + 6, sizeof(testUint16)); if(testUint16 != 16) { return unitt::put_error(id); } // Serialize with size field SerialBufferAdapter tv_serial_buffer_adapter2 = SerialBufferAdapter(test_serial_buffer.data(), test_serial_buffer.size(), true); serialized_size = 0; p_array = test_array.data(); SerializeAdapter::serialize(&tv::tv_bool, &p_array,&serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&tv_serial_buffer_adapter2, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); SerializeAdapter::serialize(&testUint16, &p_array, &serialized_size, test_array.size(), SerializeIF::Endianness::MACHINE); if(serialized_size != 9 or test_array[0] != true or test_array[1] != 5 or test_array[2] != 5 or test_array[3] != 4 or test_array[4] != 3 or test_array[5] != 2 or test_array[6] != 1) { return unitt::put_error(id); } memcpy(&testUint16, test_array.data() + 7, sizeof(testUint16)); if(testUint16 != 16) { return unitt::put_error(id); } return retval::RETURN_OK; }