/** * @file UnitTestClass.cpp * * @date 11.04.2020 * @author R. Mueller */ #include #include #include #include #include #if defined(UNIT_TEST) #include "catch.hpp" #define CATCH_CONFIG_MAIN TEST_CASE( "Serialization Size tests", "[single-file]") { //REQUIRE(UnitTestClass::test_serialization == RETURN_OK ); } #endif UnitTestClass::UnitTestClass() {} UnitTestClass::~UnitTestClass() {} ReturnValue_t UnitTestClass::perform_tests() { ReturnValue_t result = test_serialization(); if(result != RETURN_OK) { return result; } return RETURN_OK; } ReturnValue_t UnitTestClass::test_serialization() { // Here, we test all serialization tools. First test basic cases. ReturnValue_t result = test_endianness_tools(); if(result != RETURN_OK) { return result; } result = test_autoserialization(); if(result != RETURN_OK) { return result; } result = test_serial_buffer_adapter(); if(result != RETURN_OK) { return result; } return RETURN_OK; } ReturnValue_t UnitTestClass::test_endianness_tools() { test_array[0] = 0; test_array[1] = 0; uint16_t two_byte_value = 1; size_t size = 0; uint8_t* p_array = test_array.data(); AutoSerializeAdapter::serialize(&two_byte_value, &p_array, &size, 2, false); // Little endian: Value one on first byte if(test_array[0] != 1 and test_array[1] != 0) { return put_error(TestIds::ENDIANNESS_TOOLS); } p_array = test_array.data(); size = 0; AutoSerializeAdapter::serialize(&two_byte_value, &p_array, &size, 2, true); // Big endian: Value one on second byte if(test_array[0] != 0 and test_array[1] != 1) { return put_error(TestIds::ENDIANNESS_TOOLS); } // Endianness paameter will be changed later. // p_array = test_array.data(); // ssize_t ssize = size; // // Resulting parameter should be big endian // AutoSerializeAdapter::deSerialize(&two_byte_value, // const_cast(&p_array), &ssize, true); // if(two_byte_value != 1) { // return put_error(TestIds::ENDIANNESS_TOOLS); // } // // ssize = size; // p_array = test_array.data(); // // Resulting parameter should be little endian // AutoSerializeAdapter::deSerialize(&two_byte_value, // const_cast(&p_array), &ssize, false); // if(two_byte_value != 256) { // return put_error(TestIds::ENDIANNESS_TOOLS); // } return RETURN_OK; } ReturnValue_t UnitTestClass::test_autoserialization() { current_id = TestIds::AUTO_SERIALIZATION_SIZE; // Unit Test getSerializedSize if(AutoSerializeAdapter:: getSerializedSize(&test_value_bool) != sizeof(test_value_bool) or AutoSerializeAdapter:: getSerializedSize(&tv_uint8) != sizeof(tv_uint8) or AutoSerializeAdapter:: getSerializedSize(&tv_uint16) != sizeof(tv_uint16) or AutoSerializeAdapter:: getSerializedSize(&tv_uint32) != sizeof(tv_uint32) or AutoSerializeAdapter:: getSerializedSize(&tv_uint64) != sizeof(tv_uint64) or AutoSerializeAdapter:: getSerializedSize(&tv_int8) != sizeof(tv_int8) or AutoSerializeAdapter:: getSerializedSize(&tv_double) != sizeof(tv_double) or AutoSerializeAdapter:: getSerializedSize(&tv_int16) != sizeof(tv_int16) or AutoSerializeAdapter:: getSerializedSize(&tv_int32) != sizeof(tv_int32) or AutoSerializeAdapter:: getSerializedSize(&tv_float) != sizeof(tv_float)) { return put_error(current_id); } // Unit Test AutoSerializeAdapter deserialize current_id = TestIds::AUTO_SERIALIZATION_SERIALIZE; size_t serialized_size = 0; uint8_t * p_array = test_array.data(); AutoSerializeAdapter::serialize(&test_value_bool, &p_array, &serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_uint8, &p_array, &serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_uint16, &p_array, &serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_uint32, &p_array, &serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_int8, &p_array, &serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_int16, &p_array, &serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_int32, &p_array, &serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_uint64, &p_array, &serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_float, &p_array, &serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_double, &p_array, &serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_sfloat, &p_array, &serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_sdouble, &p_array, &serialized_size, test_array.size(), false); // expected size is 1 + 1 + 2 + 4 + 1 + 2 + 4 + 8 + 4 + 8 + 4 + 8 if(serialized_size != 47) { return put_error(current_id); } // Unit Test AutoSerializeAdapter serialize current_id = TestIds::AUTO_SERIALIZATION_DESERIALIZE; p_array = test_array.data(); size_t remaining_size = serialized_size; AutoSerializeAdapter::deSerialize(&test_value_bool, const_cast(&p_array), &remaining_size, false); AutoSerializeAdapter::deSerialize(&tv_uint8, const_cast(&p_array), &remaining_size, false); AutoSerializeAdapter::deSerialize(&tv_uint16, const_cast(&p_array), &remaining_size, false); AutoSerializeAdapter::deSerialize(&tv_uint32, const_cast(&p_array), &remaining_size, false); AutoSerializeAdapter::deSerialize(&tv_int8, const_cast(&p_array), &remaining_size, false); AutoSerializeAdapter::deSerialize(&tv_int16, const_cast(&p_array), &remaining_size, false); AutoSerializeAdapter::deSerialize(&tv_int32, const_cast(&p_array), &remaining_size, false); AutoSerializeAdapter::deSerialize(&tv_uint64, const_cast(&p_array), &remaining_size, false); AutoSerializeAdapter::deSerialize(&tv_float, const_cast(&p_array), &remaining_size, false); AutoSerializeAdapter::deSerialize(&tv_double, const_cast(&p_array), &remaining_size, false); AutoSerializeAdapter::deSerialize(&tv_sfloat, const_cast(&p_array), &remaining_size, false); AutoSerializeAdapter::deSerialize(&tv_sdouble, const_cast(&p_array), &remaining_size, false); if(test_value_bool != true or tv_uint8 != 5 or tv_uint16 != 283 or tv_uint32 != 929221 or tv_uint64 != 2929329429 or tv_int8 != -16 or tv_int16 != -829 or tv_int32 != -2312) { return put_error(current_id); } // These epsilon values were just guessed.. It appears to work though. if(abs(tv_float - 8.214921) > 0.0001 or abs(tv_double - 9.2132142141e8) > 0.01 or abs(tv_sfloat - (-922.2321321)) > 0.0001 or abs(tv_sdouble - (-2.2421e19)) > 0.01) { return put_error(current_id); } // Check overflow return RETURN_OK; } // TODO: Also test for constant buffers. ReturnValue_t UnitTestClass::test_serial_buffer_adapter() { current_id = TestIds::SERIALIZATION_BUFFER_ADAPTER; // I will skip endian swapper testing, its going to be changed anyway.. // uint8_t tv_uint8_swapped = EndianSwapper::swap(tv_uint8); size_t serialized_size = 0; test_value_bool = true; uint8_t * p_array = test_array.data(); std::array test_serial_buffer {5, 4, 3, 2, 1}; SerialBufferAdapter tv_serial_buffer_adapter = SerialBufferAdapter(test_serial_buffer.data(), test_serial_buffer.size(), false); tv_uint16 = 16; AutoSerializeAdapter::serialize(&test_value_bool, &p_array,&serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_serial_buffer_adapter, &p_array, &serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_uint16, &p_array, &serialized_size, test_array.size(), false); if(serialized_size != 8 or test_array[0] != true or test_array[1] != 5 or test_array[2] != 4 or test_array[3] != 3 or test_array[4] != 2 or test_array[5] != 1) { return put_error(current_id); } memcpy(&tv_uint16, test_array.data() + 6, sizeof(tv_uint16)); if(tv_uint16 != 16) { return put_error(current_id); } // Serialize with size field SerialBufferAdapter tv_serial_buffer_adapter2 = SerialBufferAdapter(test_serial_buffer.data(), test_serial_buffer.size(), true); serialized_size = 0; p_array = test_array.data(); AutoSerializeAdapter::serialize(&test_value_bool, &p_array,&serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_serial_buffer_adapter2, &p_array, &serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_uint16, &p_array, &serialized_size, test_array.size(), false); if(serialized_size != 9 or test_array[0] != true or test_array[1] != 5 or test_array[2] != 5 or test_array[3] != 4 or test_array[4] != 3 or test_array[5] != 2 or test_array[6] != 1) { return put_error(current_id); } memcpy(&tv_uint16, test_array.data() + 7, sizeof(tv_uint16)); if(tv_uint16 != 16) { return put_error(current_id); } // Serialize with size field SerialBufferAdapter tv_serial_buffer_adapter3 = SerialBufferAdapter( const_cast(test_serial_buffer.data()), test_serial_buffer.size(), false); serialized_size = 0; p_array = test_array.data(); AutoSerializeAdapter::serialize(&test_value_bool, &p_array,&serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_serial_buffer_adapter3, &p_array, &serialized_size, test_array.size(), false); AutoSerializeAdapter::serialize(&tv_uint16, &p_array, &serialized_size, test_array.size(), false); if(serialized_size != 8 or test_array[0] != true or test_array[1] != 5 or test_array[2] != 4 or test_array[3] != 3 or test_array[4] != 2 or test_array[5] != 1) { return put_error(current_id); } memcpy(&tv_uint16, test_array.data() + 6, sizeof(tv_uint16)); if(tv_uint16 != 16) { return put_error(current_id); } return RETURN_OK; } ReturnValue_t UnitTestClass::put_error(TestIds currentId) { auto errorIter = testResultMap.find(currentId); if(errorIter != testResultMap.end()) { testResultMap.emplace(currentId, 1); } else { errorIter->second ++; } error << "Unit Tester failed at test ID " << static_cast(currentId) << "\r\n" << std::flush; return RETURN_FAILED; }