BASTET/ERA5_stitching.py

101 lines
2.0 KiB
Python
Raw Normal View History

import numpy as np
import math
import xarray as xr
import matplotlib.pyplot as plt
from scipy.spatial import cKDTree
from scipy import interpolate
import cartopy.crs as ccrs
from datetime import datetime
from netCDF4 import Dataset
begin_time = datetime.now()
import pandas as pd
name = ["testneu1.nc", "testneu2.nc", "testneu3.nc", "testneu4.nc"]
ds = xr.open_mfdataset(name, combine='by_coords', concat_dim="time")
#res = Dataset(name)
res1 = Dataset('testneu1.nc')
# res2 = Dataset('testneu2.nc')
# res3 = Dataset('testneu3.nc')
res4 = Dataset('testneu4.nc')
#print(res1.variables['time'][0])
#print(res1.variables['time'][-1])
start = int(res1.variables['time'][0])
end = int(res4.variables['time'][-1])
a = np.linspace(start, end, (end - start) + 1)
ds = ds.assign_coords(time=a)
res_comp = Dataset("testfull.nc")
#ERAtime1 = res1.variables['time'][:]
#ERAtime2 = res2.variables['time'][:]
#ERAtime3 = res3.variables['time'][:]
#ERAtime4 = res4.variables['time'][:]
#ERAtemp1 = res1.variables['t'][:]
#ERAtemp2 = res2.variables['t'][:]
#ERAtemp3 = res3.variables['t'][:]
#ERAtemp4 = res4.variables['t'][:]
ERAtemp = ds.variables['z'][:].values
ERAtime_sel = ds.variables['time'][:]
ERAtemp_sel = ERAtemp[:, 6, 82, 21]
ERAtime0 = res_comp.variables['time'][:]
ERAtemp0 = res_comp.variables['z'][:]
#ERAtemp1_sel = ERAtemp1[:, 6, 82, 21]
#ERAtemp2_sel = ERAtemp2[:, 6, 82, 21]
#ERAtemp3_sel = ERAtemp3[:, 6, 82, 21]
#ERAtemp4_sel = ERAtemp4[:, 6, 82, 21]
ERAtemp_sel = ERAtemp[:, 6, 82, 21]
ERAtemp0_sel = ERAtemp0[:, 6, 82, 21]
#print(ERAtime2[0])
#ERAtime_sel = ds.variables['time'][:]
ERAtimecomp_sel = res_comp.variables['time'][:]
plt.plot(ERAtime_sel, ERAtemp_sel, 'rx')
plt.plot(ERAtimecomp_sel, ERAtemp0_sel, 'k-')
plt.show()
#print("hier")
#print(int(ds['time'][0]))
#print(int(ds['time'][1]))
#print(type(ds['time'][0]))
#print(type(datetime(1900, 1, 1)))
#print(ds['time'])
# print(ds['time'])
ds.to_netcdf('single_new2.nc')
df = Dataset('single_new2.nc')
#print(df.variables['z'][:])
#print(df.variables['time'][:])