101 lines
2.0 KiB
Python
101 lines
2.0 KiB
Python
|
import numpy as np
|
||
|
import math
|
||
|
import xarray as xr
|
||
|
import matplotlib.pyplot as plt
|
||
|
from scipy.spatial import cKDTree
|
||
|
from scipy import interpolate
|
||
|
import cartopy.crs as ccrs
|
||
|
from datetime import datetime
|
||
|
from netCDF4 import Dataset
|
||
|
begin_time = datetime.now()
|
||
|
import pandas as pd
|
||
|
|
||
|
name = ["testneu1.nc", "testneu2.nc", "testneu3.nc", "testneu4.nc"]
|
||
|
|
||
|
ds = xr.open_mfdataset(name, combine='by_coords', concat_dim="time")
|
||
|
#res = Dataset(name)
|
||
|
|
||
|
res1 = Dataset('testneu1.nc')
|
||
|
# res2 = Dataset('testneu2.nc')
|
||
|
# res3 = Dataset('testneu3.nc')
|
||
|
res4 = Dataset('testneu4.nc')
|
||
|
#print(res1.variables['time'][0])
|
||
|
#print(res1.variables['time'][-1])
|
||
|
|
||
|
start = int(res1.variables['time'][0])
|
||
|
end = int(res4.variables['time'][-1])
|
||
|
|
||
|
a = np.linspace(start, end, (end - start) + 1)
|
||
|
|
||
|
ds = ds.assign_coords(time=a)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
res_comp = Dataset("testfull.nc")
|
||
|
|
||
|
#ERAtime1 = res1.variables['time'][:]
|
||
|
#ERAtime2 = res2.variables['time'][:]
|
||
|
#ERAtime3 = res3.variables['time'][:]
|
||
|
#ERAtime4 = res4.variables['time'][:]
|
||
|
#ERAtemp1 = res1.variables['t'][:]
|
||
|
#ERAtemp2 = res2.variables['t'][:]
|
||
|
#ERAtemp3 = res3.variables['t'][:]
|
||
|
#ERAtemp4 = res4.variables['t'][:]
|
||
|
|
||
|
ERAtemp = ds.variables['z'][:].values
|
||
|
ERAtime_sel = ds.variables['time'][:]
|
||
|
|
||
|
ERAtemp_sel = ERAtemp[:, 6, 82, 21]
|
||
|
|
||
|
ERAtime0 = res_comp.variables['time'][:]
|
||
|
ERAtemp0 = res_comp.variables['z'][:]
|
||
|
|
||
|
#ERAtemp1_sel = ERAtemp1[:, 6, 82, 21]
|
||
|
#ERAtemp2_sel = ERAtemp2[:, 6, 82, 21]
|
||
|
#ERAtemp3_sel = ERAtemp3[:, 6, 82, 21]
|
||
|
#ERAtemp4_sel = ERAtemp4[:, 6, 82, 21]
|
||
|
|
||
|
|
||
|
ERAtemp_sel = ERAtemp[:, 6, 82, 21]
|
||
|
ERAtemp0_sel = ERAtemp0[:, 6, 82, 21]
|
||
|
|
||
|
#print(ERAtime2[0])
|
||
|
|
||
|
|
||
|
#ERAtime_sel = ds.variables['time'][:]
|
||
|
ERAtimecomp_sel = res_comp.variables['time'][:]
|
||
|
|
||
|
|
||
|
plt.plot(ERAtime_sel, ERAtemp_sel, 'rx')
|
||
|
plt.plot(ERAtimecomp_sel, ERAtemp0_sel, 'k-')
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
#print("hier")
|
||
|
#print(int(ds['time'][0]))
|
||
|
#print(int(ds['time'][1]))
|
||
|
#print(type(ds['time'][0]))
|
||
|
|
||
|
#print(type(datetime(1900, 1, 1)))
|
||
|
|
||
|
#print(ds['time'])
|
||
|
|
||
|
|
||
|
# print(ds['time'])
|
||
|
|
||
|
ds.to_netcdf('single_new2.nc')
|
||
|
df = Dataset('single_new2.nc')
|
||
|
|
||
|
|
||
|
#print(df.variables['z'][:])
|
||
|
#print(df.variables['time'][:])
|
||
|
|
||
|
|
||
|
|