diff --git a/main_netCDF_new.py b/main_netCDF_new.py new file mode 100644 index 0000000..792abd2 --- /dev/null +++ b/main_netCDF_new.py @@ -0,0 +1,387 @@ +import numpy as np +import math +import xarray as xr +import matplotlib.pyplot as plt +from scipy.spatial import cKDTree +from scipy import interpolate +import cartopy.crs as ccrs +from datetime import datetime +start = datetime.now() +print(start) +begin_time = datetime.now() +from models.sun import sun_angles_analytical +from models.sun import sun_angles_astropy +from models.drag import drag, c_d +from input.user_input import * +from input.natural_constants import * +from astropy.time import Time +import astropy.units as unit +from models.thermal import AirMass +from netCDF4 import Dataset +import pandas as pd + +data = pd.read_excel(r'C:\Users\marcel\PycharmProjects\MasterThesis\Mappe1.xls', sheet_name='Tabelle3') + +comp_time = pd.DataFrame(data, columns= ['Time']) +comp_height = pd.DataFrame(data, columns= ['Height']) + + +def transform(lon, lat, t): + # WGS 84 reference coordinate system parameters + A = 6378137.0 # major axis [m] + E2 = 6.69437999014e-3 # eccentricity squared + + t_s = 1000 * t + + lon_rad = np.radians(lon) + lat_rad = np.radians(lat) + # convert to cartesian coordinates + r_n = A / (np.sqrt(1 - E2 * (np.sin(lat_rad) ** 2))) + x = r_n * np.cos(lat_rad) * np.cos(lon_rad) + y = r_n * np.cos(lat_rad) * np.sin(lon_rad) + z = r_n * (1 - E2) * np.sin(lat_rad) + return x, y, z, t_s + +data = Dataset("test2021.nc", "r", format="NETCDF4") + +ERAtime = data.variables['time'][:] # time +ERAlat = data.variables['latitude'][:] # latitude +ERAlon = data.variables['longitude'][:] # longitude +ERAz = data.variables['z'][:]/g # geopotential to geopotential height +ERApress = data.variables['level'][:] # pressure level +ERAtemp = data.variables['t'][:] # temperature in K + +vw_x = data.variables['u'][:] # v_x +vw_y = data.variables['v'][:] # v_y +vw_z = data.variables['w'][:] # v_z + +lon_era2d, lat_era2d, time_era = np.meshgrid(ERAlon, ERAlat, ERAtime) + +xs, ys, zs, ts = transform(lon_era2d.flatten(), lat_era2d.flatten(), time_era.flatten()) + +tree = cKDTree(np.column_stack((xs, ys, zs, ts))) # ! + + + + +lat = start_lat # deg +lon = start_lon # deg + +t = 0 # simulation time in seconds +h = start_height +utc = Time(start_utc) +epoch_diff = (Time(start_utc).jd - Time('1900-01-01 00:00:00.0').jd) * 24.000000 +t_epoch = epoch_diff + + + +xt, yt, zt, tt = transform(lon, lat, t) # test coordinates + +d, inds = tree.query(np.column_stack((xt, yt, zt, tt)), k=8) # longitude, latitude, time in h # ! +w = 1.0 / d[0] ** 2 + +lat_sel = np.unravel_index(inds[0], lon_era2d.shape)[0] +lon_sel = np.unravel_index(inds[0], lon_era2d.shape)[1] +time_sel = np.unravel_index(inds[0], lon_era2d.shape)[2] + +interp4d_height = np.ma.dot(w, ERAz[time_sel, :, lat_sel, lon_sel]) / np.sum(w) +interp4d_temp = np.ma.dot(w, ERAtemp[time_sel, :, lat_sel, lon_sel]) / np.sum(w) +interp4d_vw_x = np.ma.dot(w, vw_x[time_sel, :, lat_sel, lon_sel]) / np.sum(w) +interp4d_vw_y = np.ma.dot(w, vw_y[time_sel, :, lat_sel, lon_sel]) / np.sum(w) +interp4d_vw_z = np.ma.dot(w, vw_z[time_sel, :, lat_sel, lon_sel]) / np.sum(w) + +pressure_hPa = np.array([1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 125, 150, 175, 200,225, 250, 300, 350, 400, + 450, 500, 550, 600, 650, 700, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000]) + +pressure = 100 * pressure_hPa +print(pressure) + + +# height_interp1d = interpolate.interp1d(interp4d_height, pressure) +temp_interp1d = interpolate.interp1d(interp4d_height, interp4d_temp) +press_interp1d = interpolate.interp1d(interp4d_height, pressure) +vw_x_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_x) +vw_y_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_y) +vw_z_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_z) + + +#u = 0 +#v = 0 +#w = 0 +T_air = temp_interp1d(h) +p_air = press_interp1d(h) +rho_air = p_air/(R_air * T_air) + +u = vw_x_interp1d(h) +v = vw_y_interp1d(h) +w = -1 / g * vw_z_interp1d(h) * R_air * T_air / p_air + + +v_x = 0 +v_y = 0 +v_z = 0 + +v_rel = 0 + +T_gas = T_air +T_film = T_gas + +t_list = [] +h_list = [] +v_list = [] +lat_list = [] +lon_list = [] +p_list = [] +Temp_list = [] +rho_list = [] + +while t <= t_end and h >= 0: + t_list.append(t) + h_list.append(h) + v_list.append(v_rel) + lat_list.append(lat) + lon_list.append(lon) + + p_list.append(p_air) + Temp_list.append(T_air) + rho_list.append(rho_air) + + t_epoch = epoch_diff + t/3600 + + xt, yt, zt, tt = transform(lon, lat, t_epoch) # current balloon coordinates in cartesian coordinates: x [m], y [m], z [m], time [h since 1900-01-01 00:00:00.0] + + d, inds = tree.query(np.column_stack((xt, yt, zt, tt)), k=8) # longitude, latitude, time in h # ! + w = 1.0 / d[0] ** 2 + + lat_sel = np.unravel_index(inds[0], lon_era2d.shape)[0] + lon_sel = np.unravel_index(inds[0], lon_era2d.shape)[1] + time_sel = np.unravel_index(inds[0], lon_era2d.shape)[2] + + interp4d_height = np.ma.dot(w, ERAz[time_sel, :, lat_sel, lon_sel]) / np.sum(w) + interp4d_temp = np.ma.dot(w, ERAtemp[time_sel, :, lat_sel, lon_sel]) / np.sum(w) + interp4d_vw_x = np.ma.dot(w, vw_x[time_sel, :, lat_sel, lon_sel]) / np.sum(w) + interp4d_vw_y = np.ma.dot(w, vw_y[time_sel, :, lat_sel, lon_sel]) / np.sum(w) + interp4d_vw_z = np.ma.dot(w, vw_z[time_sel, :, lat_sel, lon_sel]) / np.sum(w) + + press_interp1d = interpolate.interp1d(interp4d_height, pressure) + temp_interp1d = interpolate.interp1d(interp4d_height, interp4d_temp) + vw_x_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_x) + vw_y_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_y) + vw_z_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_z) + + + try: + p_air = press_interp1d(h) + T_air = temp_interp1d(h) + except: + if (h > interp4d_height[0]): + h = interp4d_height[0] + else: + h = interp4d_height[-1] + + p_air = press_interp1d(h) + T_air = temp_interp1d(h) + + #print("height") + #print(h) + #print("temperature") + #print(temp_interp1d(h)) + #print("pressure") + #print(press_interp1d(h)) + #print("vw_x") + #print(vw_x_interp1d(h)) + + p_gas = p_air + rho_air = p_air / (R_air * T_air) + u = vw_x_interp1d(h) + v = vw_y_interp1d(h) + w = -1/g * vw_z_interp1d(h) * R_air * T_air / p_air + + v_relx = u - v_x + v_rely = v - v_y + v_relz = w - v_z + + v_rel = (v_relx ** 2 + v_rely ** 2 + v_relz ** 2) ** (1/2) + + rho_gas = p_gas/(R_gas * T_gas) # calculate gas density through ideal(!) gas equation + + V_b = m_gas/rho_gas # calculate balloon volume from current gas mass and gas density + + if V_b > V_design: + V_b = V_design + #m_gas = V_design * rho_gas + else: + pass + + m_gross = m_pl + m_film + m_tot = m_pl + m_film + m_gas + m_virt = m_tot + c_virt * rho_air * V_b + + d_b = 1.383 * V_b ** (1/3) # calculate diameter of balloon from its volume + L_goreB = 1.914 * V_b ** (1/3) + h_b = 0.748 * d_b + A_surf = 4.94 * V_b ** (2/3) + A_surf1 = 4.94 * V_design ** (2/3) * (1 - np.cos(np.pi * L_goreB/L_goreDesign)) + A_eff = 0.65 * A_surf + 0.35 * A_surf1 + A_top = np.pi/4 * d_b ** 2 + + D = drag(c_d, rho_air, d_b, v_rel) # calculate drag force + + if v_rel == 0: + Drag_x = 0 + Drag_y = 0 + Drag_z = 0 + else: + Drag_x = D * v_relx/v_rel + Drag_y = D * v_rely/v_rel + Drag_z = D * v_relz/v_rel + + I = g * V_b * (rho_air - rho_gas) # calculate gross inflation + W = g * m_gross # calculate weight (force) + F = I - W + Drag_z + + AZ, ELV = sun_angles_analytical(lat, lon, utc) + + A_proj = A_top * (0.9125 + 0.0875 * np.cos(np.pi - 2 * np.deg2rad(ELV))) + + # CALCULATIONS FOR THERMAL MODEL + + if ELV >= -(180 / np.pi * np.arccos(R_E / (R_E + h))): + tau_atm = 0.5 * (np.exp(-0.65 * AirMass(p_air, p_0, ELV, h)) + np.exp(-0.095 * AirMass(p_air, p_0, ELV, h))) + tau_atmIR = 1.716 - 0.5 * (np.exp(-0.65 * p_air / p_0) + np.exp(-0.095 * p_air / p_0)) + else: + tau_atm = 0 + tau_atmIR = 0 + + doy = int(utc.doy) + + MA = (357.52911 + 0.98560028 * (utc.jd - 2451545)) % 360 # in degree, reference: see folder "literature" + TA = MA + 2 * e * np.sin(np.deg2rad(MA)) + 5 / 4 * e ** 2 * np.sin(np.deg2rad(2 * MA)) + I_Sun = 1367.5 * ((1 + e * np.cos(np.deg2rad(TA))) / (1 - e ** 2)) ** 2 + I_SunZ = I_Sun * tau_atm + q_sun = I_SunZ + q_IRground = epsilon_ground * sigma * T_ground ** 4 + q_IREarth = q_IRground * tau_atmIR + + if ELV <= 0: + q_Albedo = 0 + else: + q_Albedo = Albedo * I_Sun * np.sin(np.deg2rad(ELV)) + + my_air = (1.458 * 10 ** -6 * T_air ** 1.5) / (T_air + 110.4) + my_gas = 1.895 * 10 ** -5 * (T_gas / 273.15) ** 0.647 + k_air = 0.0241 * (T_air / 273.15) ** 0.9 + k_gas = 0.144 * (T_gas / 273.15) ** 0.7 + Pr_air = 0.804 - 3.25 * 10 ** (-4) * T_air + Pr_gas = 0.729 - 1.6 * 10 ** (-4) * T_gas + + Gr_air = (rho_air ** 2 * g * np.abs(T_film - T_air) * d_b ** 3) / (T_air * my_air ** 2) + Nu_air = 2 + 0.45 * (Gr_air * Pr_air) ** 0.25 + HC_free = Nu_air * k_air / d_b + Re = np.abs(v_relz) * d_b * rho_air / my_air + + HC_forced = k_air / d_b * (2 + 0.41 * Re ** 0.55) + HC_internal = 0.13 * k_gas * ((rho_gas ** 2 * g * np.abs(T_film - T_gas) * Pr_gas) / (T_gas * my_air ** 2)) ** ( + 1 / 3) + HC_external = np.maximum(HC_free, HC_forced) + + HalfConeAngle = np.arcsin(R_E / (R_E + h)) + ViewFactor = (1 - np.cos(HalfConeAngle)) / 2 + + Q_Sun = alpha_VIS * A_proj * q_sun * (1 + tau_VIS / (1 - r_VIS)) + Q_Albedo = alpha_VIS * A_surf * q_Albedo * ViewFactor * (1 + tau_VIS / (1 - r_VIS)) + Q_IREarth = alpha_IR * A_surf * q_IREarth * ViewFactor * (1 + tau_IR / (1 - r_IR)) + Q_IRfilm = sigma * epsilon * alpha_IR * A_surf * T_film ** 4 * 1 / (1 - r_IR) + Q_IRout = sigma * epsilon * A_surf * T_film ** 4 * (1 * tau_IR / (1 - r_IR)) + Q_ConvExt = HC_external * A_eff * (T_air - T_film) + Q_ConvInt = HC_internal * A_eff * (T_film - T_gas) + + # RoC = -v_z + # dT_gas = (Q_ConvInt / (gamma * m_gas * c_v) - (gamma - 1) / gamma * rho_air(h) * g / (rho_gas * R_gas) * RoC) * dt + # dT_film = ((Q_Sun + Q_Albedo + Q_IREarth + Q_IRfilm + Q_ConvExt - Q_ConvInt - Q_IRout) / (c_f * m_film)) * dt + # v_w = w + # v = v_z + + s = h + + a_x = Drag_x/m_virt + a_y = Drag_y/m_virt + a_z = F/m_virt + + # DIFFERENTIAL EQUATIONS + + dx = dt * v_x + 0.5 * a_x * dt ** 2 # lon + dy = dt * v_y + 0.5 * a_y * dt ** 2 # lat + + lon = lon + np.rad2deg(np.arctan(dx/((6371229.0 + h) * np.cos(np.deg2rad(lat))))) + lat = lat + np.rad2deg(np.arctan(dy/(6371229.0 + h))) + + v_xn = v_x + dt * a_x + v_yn = v_y + dt * a_y + + s_n = s + dt * v_z + 0.5 * a_z * dt ** 2 + dh = s_n - s + v_n = v_z + dt * a_z + + T_gn = T_gas + dt * (Q_ConvInt / (gamma * c_v * m_gas) - g * R_gas * T_gas * dh / (c_v * gamma * T_air * R_air)) + T_en = T_film + (Q_Sun + Q_Albedo + Q_IREarth + Q_IRfilm + Q_ConvExt - Q_ConvInt - Q_IRout) / (c_f * m_film) * dt + + T_g = T_gn + T_e = T_en + s = s_n + v_x = v_xn + v_y = v_yn + v_z = v_n + + h = s + T_gas = T_g + T_film = T_e +# v_z = v + + t += dt # time increment + utc = Time(start_utc) + t * unit.second + + + +#print(len(lon_list), len(lat_list)) +#""" +#plt.plot(start_lon, start_lat, 'rx') +#plt.plot(ax=ax, lon_list, lat_list, transform=ccrs.PlateCarree()) +#plt.show() +#""" + + +### WORKS! +### +###dset = xr.open_dataset("test2021.nc") +### +###print(dset['t'][1][0]) # [time] [level] +### +#fig = plt.figure() #figsize=[120,50]) +### +#ax = fig.add_subplot(111, projection=ccrs.PlateCarree()) +### +###dset['t'][1][0].plot(ax=ax, cmap='jet', transform=ccrs.PlateCarree()) +###ax.coastlines() +###plt.show() + +#print(len(ERAlat)) +#print(len(ERAlon)) +#print(len(ERAz)) + + + + + +#""" +plt.plot(comp_time, comp_height, 'r--', label='PoGo Flight Test') +#plt.plot(t_list, v_list, 'k--', label='Ballon v_rel') +plt.plot(t_list, h_list, 'k-', label='Balloon Altitude') +#plt.plot(t_list, p_list, 'r-', label='Air Pressure [Pa]') +#plt.plot(t_list, Temp_list, 'b-', label='Air Temperature [K]') +#plt.plot(t_list, rho_list, 'g-', label='Air Density in [kg/m$^3$]') +plt.xlabel('time in s') +plt.ylabel('Balloon Altitude in m') +plt.legend() +plt.show() +#"""