cleaned up

This commit is contained in:
Marcel Christian Frommelt 2021-06-18 21:58:13 +09:00
parent b6527552cd
commit f803053f0d

View File

@ -1,54 +1,82 @@
from input.natural_constants import * from input.natural_constants import *
# BALLOON DATA m_pl = 2747 # payload mass in [kg] (incl. flight-chain)
m_pl = 917 #2174 # payload mass in [kg] (incl. flight-chain) m_bal_init = 0 # initial ballast mass in [kg]
m_bal_init = 540 #500 # initial ballast mass in [kg] m_film = 1883.77 # mass of balloon film in [kg]
m_film = 0.74074232733 * 1838 # mass balloon film in [kg]
FreeLift = 10 # (initial) free lift in [%] FreeLift = 10 # (initial) free lift in [%]
V_design = 1120497.6 # (max.) balloon design volume in [m^3]
start_height = -25.9254 # start altitude in [m]
start_lat = -77.8535 # start latitude in [deg]
start_lon = 167.2022 # start longitude in [deg]
start_utc = '2019-12-15 13:56:00.000' # start date and time in UTC
simple = False # simple mode (no use of ERA5 radiation data)
c_virt = 0.37 c_virt = 0.37
t_sim = 25000 #1000000 # simulated flight duration in [s]
drag_model = 'Palumbo' # 'PalumboLow' # 'PalumboHigh' # 'Sphere_Re'
#ERA5_ascent = ['ERA5/ascent.nc'] # list of all ERA5 atmospheric data for ASCENT
#ERA5_float = ['ERA5/float1.nc', 'ERA5/float2.nc'] # list of all ERA5 atmospheric data for FLOAT
#ERA5_single = ['ERA5/radiation1.nc', 'ERA5/radiation2.nc'] # list of all ERA5 RADIATION data
ERA5_ascent = 'ERA5/ASCENT_McMurdo_2019_12.nc' # list of all ERA5 atmospheric data for ASCENT
ERA5_float = 'ERA5/FLOAT_McMurdo_2019_12to2020_1.nc' # list of all ERA5 atmospheric data for FLOAT
ERA5_single = 'ERA5/SINGLE_McMurdo_2019_12to2020_1.nc' # list of all ERA5 RADIATION data
# BALLOON DATA STUDIO
#m_pl = 917
#m_bal_init = 540
#m_film = 0.74074232733 * 1838 # scaled down proportional to volume decrease between Raven 39.57 and 29.47
#FreeLift = 10
#V_design = 834497.469
# SIMULATION # SIMULATION
start_height = 384.9 # start altitude in [m] # start_lat = 78.22 Svalbard
start_lat = 67.887382 # start latitude in [deg] # start_lon = 15.65
start_lon = 21.081452 # start longitude in [deg]
start_utc_old = '2016-07-12 03:17:24.000' # start date and time in UTC
start_utc = '2019-06-19 03:17:24.000' # start date and time in UTC
# possible start dates: between May 22 and June 22
simple = True
# ONLY IN CASE OF APPLICATION OF SIMPLE MODEL: # ONLY IN CASE OF APPLICATION OF SIMPLE MODEL:
epsilon_ground = 0.95 # ground emissivity epsilon_ground = 0.95 # ground emissivity
T_ground = 288.15 # ground temperature T_ground = 288.15 # ground temperature
Albedo = 0.3 # total albedo Albedo = 0.3 # total albedo
##cc = 0.1 # cloud cover cc = 0 # cloud cover
c_d = 0.47 # drag coefficient balloon (spherical) [-] # 0.8
m_gas_init = ((m_pl + m_film + m_bal_init) * (FreeLift/100 + 1))/(R_gas/R_air - 1) # lifting gas mass in [kg] m_gas_init = ((m_pl + m_film + m_bal_init) * (FreeLift/100 + 1))/(R_gas/R_air - 1) # lifting gas mass in [kg]
print("initial gas mass:") print("Reading balloon data...")
print(m_gas_init) print("")
print("Calculated initial gas mass based on free lift input:")
print('{:.5}'.format(m_gas_init)+' kg')
#GROSSER BALLON # GROSSER BALLON
#V_design = 1120497.6 # maximum fillable balloon volume in [m^3] #V_design = 1120497.6 # maximum fillable balloon volume in [m^3]
#L_goreDesign = 1.914 * V_design ** (1/3) #L_goreDesign = 1.914 * V_design ** (1/3)
#c_ducts = 0.62 #c_ducts = 0.62
#c_valve = 0.77 # estimated c_valve = 0.77 # estimated
#A_ducts = 76.54 # estimated A_ducts = 76.54 # estimated
#A_valve = 0.140 A_valve = 0.140
#t_open = 20 # time it takes to open vents in [s] #t_open = 20 # time it takes to open vents in [s]
#t_close = 20 # time it takes to open vents in [s] #t_close = 20 # time it takes to open vents in [s]
#m_baldot = m_bal_init/1375 # ballast mass drop rate in [kg/s] #m_baldot = m_bal_init/1375 # ballast mass drop rate in [kg/s]
# kleiner Ballon # kleiner Ballon
V_design = 834497.469 # maximum fillable balloon volume in [m^3]
L_goreDesign = 1.914 * V_design ** (1/3) L_goreDesign = 1.914 * V_design ** (1/3)
c_ducts = 0.62 c_ducts = 0.62
c_valve = 0.72 # estimated #c_valve = 0.72 # estimated for STUDIO balloon
A_ducts = 55.743 # estimated #A_ducts = 55.743 # estimated for STUDIO balloon
A_valve = 0.1297 #A_valve = 0.1297
t_open = 20 # time it takes to open vents in [s] t_open = 20 # time it takes to open vents in [s]
t_close = 20 # time it takes to open vents in [s] t_close = 20 # time it takes to close vents in [s]
m_baldot = m_bal_init/1375 # ballast mass drop rate in [kg/s] m_baldot = m_bal_init/1375 # ballast mass drop rate in [kg/s]
@ -64,8 +92,4 @@ r_IR = 0.040
c_f = 2092 # [J/(kg*K)] specific heat balloon film c_f = 2092 # [J/(kg*K)] specific heat balloon film
# DRAG
# c_d = 0.47 # drag coefficient balloon (spherical) [-]