import numpy as np import math import xarray as xr import matplotlib.pyplot as plt from scipy.spatial import cKDTree from scipy import interpolate from scipy.integrate import odeint, solve_ivp import cartopy.crs as ccrs from datetime import datetime start = datetime.now() print(start) begin_time = datetime.now() from models.sun import sun_angles_analytical, tau # from models.sun import sun_angles_astropy from models.drag import drag, Cd_model from models.transformation import visible_cells, transform, radii from input.user_input import * from input.natural_constants import * from astropy.time import Time import astropy.units as unit # from models.thermal import from netCDF4 import Dataset import pandas as pd data = pd.read_excel(r'C:\Users\marcel\PycharmProjects\MasterThesis\Mappe1.xls', sheet_name='Tabelle3') # Tabelle3 comp_time = pd.DataFrame(data, columns=['Time']).to_numpy().squeeze() comp_height = pd.DataFrame(data, columns=['Height']).to_numpy().squeeze() comp_lat = pd.DataFrame(data, columns=['Latitude']).to_numpy().squeeze() comp_lon = pd.DataFrame(data, columns=['Longitude']).to_numpy().squeeze() print("Initialisiere Simulation...") print("STARTORT: Längengrad %.4f, Breitengrad: %.4f" % (start_lon, start_lat)) print("STARTZEIT: " + str(start_utc) + " (UTC)") #print("SIMULATION INITIALISIERT. Simulierte Flugdauer %.2f Stunden (oder %.2f Tage)" % ( #t_end / 3600, t_end / (3600 * 24))) #print("GESCHÄTZE SIMULATIONSDAUER: %.2f Minuten" % (t_end / (3600 * 10))) level_data = Dataset("level.nc", "r", format="NETCDF4") single_data = Dataset("single.nc", "r", format="NETCDF4") ERAtime = level_data.variables['time'][:] # time ERAlat = level_data.variables['latitude'][:] # latitude (multi-level) ERAlon = level_data.variables['longitude'][:] # longitude (multi-level) ERAlats = single_data.variables['latitude'][:] # latitude (single level) ERAlons = single_data.variables['longitude'][:] # longitude (single level) ERAz = level_data.variables['z'][:] / g # geopotential to geopotential height ERApress = level_data.variables['level'][:] # pressure level ERAtemp = level_data.variables['t'][:] # air temperature in K ERAtcc = single_data.variables['tcc'][:] # total cloud cover [0 to 1] ERAal = single_data.variables['fal'][:] # forecast albedo [0 to 1] # ERAst = single_data.variables['skt'][:] # skin (ground) temperature in K ERAcbh = single_data.variables['cbh'][:] # cloud base height in m ERAlcc = single_data.variables['lcc'][:] # low cloud cover ERAmcc = single_data.variables['mcc'][:] # medium cloud cover ERAhcc = single_data.variables['hcc'][:] # high cloud cover ERAssr = single_data.variables['ssr'][:] # surface net solar radiation ERAstrn = single_data.variables['str'][:] # surface net thermal radiation ERAstrd = single_data.variables['strd'][:] # surface thermal radiation downwards ERAssrd = single_data.variables['ssrd'][:] # surface solar radiation downwards ERAtsr = single_data.variables['tsr'][:] # top net solar radiation ERAttr = single_data.variables['ttr'][:] # top net thermal radiation ERAsst = single_data.variables['sst'][:] # sea surface temperature ERAtisr = single_data.variables['tisr'][:] # TOA incident solar radiation ERAstrdc = single_data.variables['strdc'][:] # surface thermal radiation downward clear-sky vw_x = level_data.variables['u'][:] # v_x vw_y = level_data.variables['v'][:] # v_y vw_z = level_data.variables['w'][:] # v_z lon_era2d, lat_era2d = np.meshgrid(ERAlon, ERAlat) lon_era2ds, lat_era2ds = np.meshgrid(ERAlons, ERAlats) xs, ys, zs = transform(lon_era2d.flatten(), lat_era2d.flatten()) xs2, ys2, zs2 = transform(lon_era2ds.flatten(), lat_era2ds.flatten()) tree = cKDTree(np.column_stack((xs, ys, zs))) tree2 = cKDTree(np.column_stack((xs2, ys2, zs2))) # INITIALISATION TIME-COUNTERS # MAYBE LATER # t_pre = int(t_epoch) # t_post = t_pre + 1 # t1 = np.searchsorted(ERAtime, t_pre, side='left') # t2 = t1 + 1 def ERA5Data(lon, lat, h, t, deltaT_ERA): t_epoch = deltaT_ERA + t/3600 t_pre = int(t_epoch) # t_post = t_pre + 1 t_pre_ind = t_pre - ERAtime[0] t_post_ind = t_pre_ind + 1 xt, yt, zt = transform(lon, lat) # current coordinates d1, inds1 = tree.query(np.column_stack((xt, yt, zt)), k=4) # longitude, latitude d2, inds2 = tree2.query(np.column_stack((xt, yt, zt)), k=visible_cells(h)) # longitude, latitude w1 = 1.0 / d1[0] # ** 2 w2 = 1.0 / d2[0] ** 2 lat_ind1 = np.unravel_index(inds1[0], lon_era2d.shape)[0] lon_ind1 = np.unravel_index(inds1[0], lon_era2d.shape)[1] lat_ind2 = np.unravel_index(inds2[0], lon_era2ds.shape)[0] lon_ind2 = np.unravel_index(inds2[0], lon_era2ds.shape)[1] interp4d_temp_pre = np.ma.dot(w1, ERAtemp[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_temp_post = np.ma.dot(w1, ERAtemp[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_temp = (interp4d_temp_post - interp4d_temp_pre) * (t_epoch - t_pre) + interp4d_temp_pre interp4d_height_pre = np.ma.dot(w1, ERAz[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_height_post = np.ma.dot(w1, ERAz[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_height = (interp4d_height_post - interp4d_height_pre) * (t_epoch - t_pre) + interp4d_height_pre interp4d_vw_x_pre = np.ma.dot(w1, vw_x[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_vw_x_post = np.ma.dot(w1, vw_x[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_vw_x = (interp4d_vw_x_post - interp4d_vw_x_pre) * (t_epoch - t_pre) + interp4d_vw_x_pre interp4d_vw_y_pre = np.ma.dot(w1, vw_y[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_vw_y_post = np.ma.dot(w1, vw_y[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_vw_y = (interp4d_vw_y_post - interp4d_vw_y_pre) * (t_epoch - t_pre) + interp4d_vw_y_pre interp4d_vw_z_pre = np.ma.dot(w1, vw_z[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_vw_z_post = np.ma.dot(w1, vw_z[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_vw_z = (interp4d_vw_z_post - interp4d_vw_z_pre) * (t_epoch - t_pre) + interp4d_vw_z_pre albedo_pre = np.ma.dot(w2, ERAal[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) albedo_post = np.ma.dot(w2, ERAal[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) al = (albedo_post - albedo_pre) * (t_epoch - t_pre) + albedo_pre tcc_pre = np.ma.dot(w2, ERAtcc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) tcc_post = np.ma.dot(w2, ERAtcc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) tcc = (tcc_post - tcc_pre) * (t_epoch - t_pre) + tcc_pre cbh_pre = np.ma.dot(w2, ERAcbh[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) cbh_post = np.ma.dot(w2, ERAcbh[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) cbh = (cbh_post - cbh_pre) * (t_epoch - t_pre) + cbh_pre lcc_pre = np.ma.dot(w2, ERAlcc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) lcc_post = np.ma.dot(w2, ERAlcc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) lcc = (lcc_post - lcc_pre) * (t_epoch - t_pre) + lcc_pre mcc_pre = np.ma.dot(w2, ERAmcc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) mcc_post = np.ma.dot(w2, ERAmcc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) mcc = (mcc_post - mcc_pre) * (t_epoch - t_pre) + mcc_pre hcc_pre = np.ma.dot(w2, ERAhcc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) hcc_post = np.ma.dot(w2, ERAhcc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) hcc = (hcc_post - hcc_pre) * (t_epoch - t_pre) + hcc_pre ssr_pre = np.ma.dot(w2, ERAssr[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) ssr_post = np.ma.dot(w2, ERAssr[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) ssr = ((ssr_post - ssr_pre) * (t_epoch - t_pre) + ssr_pre)/3600 strn_pre = np.ma.dot(w2, ERAstrn[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) strn_post = np.ma.dot(w2, ERAstrn[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) strn = ((strn_post - strn_pre) * (t_epoch - t_pre) + strn_pre)/3600 strd_pre = np.ma.dot(w2, ERAstrd[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) strd_post = np.ma.dot(w2, ERAstrd[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) strd = ((strd_post - strd_pre) * (t_epoch - t_pre) + strd_pre)/3600 strdc_pre = np.ma.dot(w2, ERAstrdc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) strdc_post = np.ma.dot(w2, ERAstrdc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) strdc = ((strdc_post - strdc_pre) * (t_epoch - t_pre) + strdc_pre) / 3600 ssrd_pre = np.ma.dot(w2, ERAssrd[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) ssrd_post = np.ma.dot(w2, ERAssrd[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) ssrd = ((ssrd_post - ssrd_pre) * (t_epoch - t_pre) + ssrd_pre)/3600 tsr_pre = np.ma.dot(w2, ERAtsr[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) tsr_post = np.ma.dot(w2, ERAtsr[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) tsr = ((tsr_post - tsr_pre) * (t_epoch - t_pre) + tsr_pre)/3600 tisr_pre = np.ma.dot(w2, ERAtisr[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) tisr_post = np.ma.dot(w2, ERAtisr[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) tisr = ((tisr_post - tisr_pre) * (t_epoch - t_pre) + tisr_pre)/3600 ttr_pre = np.ma.dot(w2, ERAttr[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) ttr_post = np.ma.dot(w2, ERAttr[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) ttr = ((ttr_post - ttr_pre) * (t_epoch - t_pre) + ttr_pre)/3600 pressure_hPa = np.array([1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000]) pressure = 100 * pressure_hPa temp_interp1d = interpolate.interp1d(interp4d_height, interp4d_temp) press_interp1d = interpolate.interp1d(interp4d_height, pressure) vw_x_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_x) vw_y_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_y) vw_z_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_z) if h > interp4d_height[0]: p_air = press_interp1d(interp4d_height[0]) T_air = temp_interp1d(interp4d_height[0]) u = vw_x_interp1d(interp4d_height[0]) v = vw_y_interp1d(interp4d_height[0]) w = -1 / g * vw_z_interp1d(interp4d_height[0]) * R_air * T_air / p_air elif h < interp4d_height[-1]: p_air = press_interp1d(interp4d_height[-1]) T_air = temp_interp1d(interp4d_height[-1]) u = vw_x_interp1d(interp4d_height[-1]) v = vw_y_interp1d(interp4d_height[-1]) w = -1 / g * vw_z_interp1d(interp4d_height[-1]) * R_air * T_air / p_air else: p_air = press_interp1d(h) T_air = temp_interp1d(h) u = vw_x_interp1d(h) v = vw_y_interp1d(h) w = -1 / g * vw_z_interp1d(h) * R_air * T_air / p_air rho_air = p_air / (R_air * T_air) return p_air, T_air, rho_air, u, v, w, cbh, tcc, lcc, mcc, hcc, ssr, strn, strd, ssrd, tsr, ttr, al, tisr, strdc # p_air, T_air, rho_air, u, v, w, cbh, tcc, lcc, mcc, hcc, ssr, strn, strd, ssrd, tsr, ttr, al, tisr deltaT_ERA = (Time(start_utc).jd - Time('1900-01-01 00:00:00.0').jd) * 24.000000 p_air0, T_air0, rho_air0, u0, v0, w0, cbh0, tcc0, lcc0, mcc0, hcc0, ssr0, strn0, strd0, ssrd0, tsr0, ttr0, al0, tisr0, strdc0 = ERA5Data(start_lon, start_lat, start_height, 0, deltaT_ERA) y0 = [start_lon, start_lat, start_height, 0, 0, 0, T_air0, T_air0, m_gas_init, 0] ## y = [longitude [deg], latitude [deg], height [m], v_x (lon) [m/s], v_y [m/s], v_z [m/s], T_gas [K], T_film [K], m_gas_init [kg], c2_init [-]] valving = False def model(t, y, m_pl, m_film, m_bal, c_virt): utc = Time(start_utc) + t * unit.second lon = y[0] # 1 lat = y[1] # 2 h = y[2] # 3 v_x = y[3] # 4 v_y = y[4] # 5 v_z = y[5] # 6 T_gas = y[6] # 7 T_film = y[7] # 8 m_gas = y[8] # 9 c2 = y[9] # 10 r_lon, r_lat = radii(lat, h) deltaT_ERA = (Time(start_utc).jd - Time('1900-01-01 00:00:00.0').jd) * 24.000000 # conversion to ERA5 time format p_air, T_air, rho_air, u, v, w, cbh, tcc, lcc, mcc, hcc, ssr, strn, strd, ssrd, tsr, ttr, al, tisr, strdc = ERA5Data(lon, lat, h, t, deltaT_ERA) p_gas = p_air h_valve = 1.034 * V_design ** (1 / 3) h_duct = 0.47 * h_valve v_relx = u - v_x # relative wind velocity x-dir (balloon frame) v_rely = v - v_y # relative wind velocity y-dir (balloon frame) v_relz = w - v_z # relative wind velocity z-dir (balloon frame) v_rel = np.sqrt(v_relx ** 2 + v_rely ** 2 + v_relz ** 2) # total relative wind velocity (balloon frame) alpha = np.arcsin(v_relz / v_rel) # "angle of attack": angle between longitudinal axis and rel. wind (in [rad]) rho_gas = p_gas / (R_gas * T_gas) # calculate gas density through *ideal* gas equation dP_valve = g * (rho_air - rho_gas) * h_valve dP_duct = g * (rho_air - rho_gas) * h_duct V_b = m_gas / rho_gas # calculate balloon volume from current gas mass and gas density if V_b > V_design: c_duct = c_ducts else: c_duct = 0 #if valving == True: # opening valve process # if c2 == 0: # c2 = 1.0 # c2dot = 0 # elif c_valve < c2 <= 1.0: # c2dot = (c_valve - 1.0) / t_open # else: # c2dot = 0 # c2 = c_valve #if valving == False: # closing valve process # if c2 == 0: # c2dot = 0 # elif c_valve <= c2 < 1.0: # c2dot = (1.0 - c_valve) / t_close # else: # c2dot = 0 # c2 = 0 ## m_gas/dt = -(A_valv * c2 * np.sqrt(2 * dP_valve * rho_gas)) # mass loss due to valving m_gross = m_pl + m_film + m_bal m_tot = m_pl + m_film + m_gas m_virt = m_tot + c_virt * rho_air * V_b d_b = 1.383 * V_b ** (1 / 3) # calculate diameter of balloon from its volume L_goreB = 1.914 * V_b ** (1 / 3) A_surf = 4.94 * V_b ** (2 / 3) A_surf1 = 4.94 * V_design ** (2 / 3) * (1 - np.cos(np.pi * L_goreB / L_goreDesign)) A_eff = 0.65 * A_surf + 0.35 * A_surf1 A_top = np.pi / 4 * d_b ** 2 AZ, ELV = sun_angles_analytical(lat, lon, utc) A_proj = A_top * (0.9125 + 0.0875 * np.cos(np.pi - 2 * np.deg2rad(ELV))) # projected area for sun radiation A_drag = A_top * (0.9125 + 0.0875 * np.cos(np.pi - 2 * alpha)) # projected area for drag # CALCULATIONS FOR THERMAL MODEL tau_atm, tau_atmIR = tau(ELV, h, p_air) tau_atm0, tau_atmIR0 = tau(ELV, 0, p_0) MA = (357.52911 + 0.98560028 * (utc.jd - 2451545)) % 360 # in degree, reference: see folder "literature" TA = MA + 2 * e * np.sin(np.deg2rad(MA)) + 5 / 4 * e ** 2 * np.sin(np.deg2rad(2 * MA)) I_Sun = 1367.5 * ((1 + e * np.cos(np.deg2rad(TA))) / (1 - e ** 2)) ** 2 I_SunZ = I_Sun * tau_atm I_Sun0 = I_Sun * tau_atm0 ## q_sun = I_SunZ ## q_IRground = np.abs(str) #epsilon_ground * sigma * T_ground ** 4 ## q_IREarth = q_IRground * tau_atmIR tcc = 0 if tcc <= 0.01: q_IRground = strd - strn q_IREarth = q_IRground * tau_atmIR q_sun = I_SunZ if ELV <= 0: q_Albedo = 0 else: q_Albedo = (1 - ssr/ssrd) * I_Sun0 * np.sin(np.deg2rad(ELV)) # ssrd - ssr else: q_IRground_bc = (strd - strn) + (strd - strdc) q_IREarth_bc = q_IRground_bc * tau_atmIR q_sun_bc = I_SunZ * (1 - tcc) q_Albedo_bc = (1 - ssr/ssrd) * (1 - tcc) * I_Sun * np.sin(np.deg2rad(ELV)) q_IREarth_ac = np.abs(ttr) #q_IRground_bc * tau_atmIR * (1 - tcc) q_sun_ac = I_SunZ q_Albedo_ac = (tisr - tsr)/tisr * I_Sun * np.sin(np.deg2rad(ELV)) if h <= cbh: # "below clouds" q_IREarth = q_IREarth_bc q_sun = q_sun_bc if ELV <= 0: q_Albedo = 0 else: q_Albedo = q_Albedo_bc elif h >= 12000: # "above clouds" q_IREarth = q_IREarth_ac q_sun = q_sun_ac if ELV <= 0: q_Albedo = 0 else: q_Albedo = q_Albedo_ac elif h >= 6000: if hcc >= 0.01: q_IREarth = ((h - 6000) / 6000 * hcc + mcc + lcc) / (hcc + mcc + lcc) * (q_IREarth_ac - q_IREarth_bc) + q_IREarth_bc q_sun = ((h - 6000) / 6000 * hcc + mcc + lcc) / (hcc + mcc + lcc) * (q_sun_ac - q_sun_bc) + q_sun_bc if ELV <= 0: q_Albedo = 0 else: q_Albedo = ((h - 6000) / 6000 * hcc + mcc + lcc) / (hcc + mcc + lcc) * (q_Albedo_ac - q_Albedo_bc) + q_Albedo_bc else: q_IREarth = q_IREarth_ac q_sun = q_sun_ac if ELV <= 0: q_Albedo = 0 else: q_Albedo = q_Albedo_ac elif h >= 2000: if mcc > 0.01 or hcc > 0.01: q_IREarth = ((h - 2000)/4000 * mcc + lcc)/(hcc + mcc + lcc) * (q_IREarth_ac - q_IREarth_bc) + q_IREarth_bc q_sun = ((h - 2000)/4000 * mcc + lcc)/(hcc + mcc + lcc) * (q_sun_ac - q_sun_bc) + q_sun_bc if ELV <= 0: q_Albedo = 0 else: q_Albedo = ((h - 2000)/4000 * mcc + lcc)/(hcc + mcc + lcc) * (q_Albedo_ac - q_Albedo_bc) + q_Albedo_bc else: q_IREarth = q_IREarth_ac q_sun = q_sun_ac if ELV <= 0: q_Albedo = 0 else: q_Albedo = q_Albedo_ac else: q_IREarth = (h/2000 * lcc)/(hcc + mcc + lcc) * (q_IREarth_ac - q_IREarth_bc) + q_IREarth_bc q_sun = (h/2000 * lcc)/(hcc + mcc + lcc) * (q_sun_ac - q_sun_bc) + q_sun_bc if ELV <= 0: q_Albedo = 0 else: q_Albedo = (h/2000 * lcc)/(hcc + mcc + lcc) * (q_Albedo_ac - q_Albedo_bc) + q_Albedo_bc my_air = (1.458 * 10 ** -6 * T_air ** 1.5) / (T_air + 110.4) k_air = 0.0241 * (T_air / 273.15) ** 0.9 k_gas = 0.144 * (T_gas / 273.15) ** 0.7 Pr_air = 0.804 - 3.25 * 10 ** (-4) * T_air Pr_gas = 0.729 - 1.6 * 10 ** (-4) * T_gas Gr_air = (rho_air ** 2 * g * np.abs(T_film - T_air) * d_b ** 3) / (T_air * my_air ** 2) Nu_air = 2 + 0.45 * (Gr_air * Pr_air) ** 0.25 HC_free = Nu_air * k_air / d_b Re = np.abs(v_rel) * d_b * rho_air / my_air Fr = np.abs(v_rel) / np.sqrt(g * d_b) HC_forced = k_air / d_b * (2 + 0.41 * Re ** 0.55) HC_internal = 0.13 * k_gas * ( (rho_gas ** 2 * g * np.abs(T_film - T_gas) * Pr_gas) / (T_gas * my_air ** 2)) ** ( 1 / 3) HC_external = np.maximum(HC_free, HC_forced) HalfConeAngle = np.arcsin(R_E / (R_E + h)) ViewFactor = (1 - np.cos(HalfConeAngle)) / 2 Q_Sun = alpha_VIS * A_proj * q_sun * (1 + tau_VIS / (1 - r_VIS)) Q_Albedo = alpha_VIS * A_surf * q_Albedo * ViewFactor * (1 + tau_VIS / (1 - r_VIS)) Q_IREarth = alpha_IR * A_surf * q_IREarth * ViewFactor * (1 + tau_IR / (1 - r_IR)) Q_IRFilm = sigma * epsilon * alpha_IR * A_surf * T_film ** 4 * 1 / (1 - r_IR) Q_IRout = sigma * epsilon * A_surf * T_film ** 4 * (1 * tau_IR / (1 - r_IR)) Q_ConvExt = HC_external * A_eff * (T_air - T_film) Q_ConvInt = HC_internal * A_eff * (T_film - T_gas) c_d = Cd_model(Fr, Re, A_top) D = drag(c_d, rho_air, A_drag, v_rel) # calculate drag force if v_rel == 0: Drag_x, Dray_y, Drag_z = 0, 0, 0 else: Drag_x, Drag_y, Drag_z = D * v_relx / v_rel, D * v_rely / v_rel, D * v_relz / v_rel F = g * V_b * (rho_air - rho_gas) - g * m_gross + Drag_z # gross inflation - weight + drag a_x, a_y, a_z = Drag_x / m_virt, Drag_y / m_virt, F / m_virt eqn1 = np.rad2deg(y[3] / r_lon) eqn2 = np.rad2deg(y[4] / r_lat) eqn3 = y[5] eqn4 = a_x eqn5 = a_y eqn6 = a_z eqn7 = Q_ConvInt/(gamma * c_v * m_gas) - (gamma - 1)/gamma * (rho_air * g)/(rho_gas * R_gas) * y[5] eqn8 = (Q_Sun + Q_Albedo + Q_IREarth + Q_IRFilm + Q_ConvExt - Q_ConvInt - Q_IRout) / (c_f * m_film) eqn9 = -(A_ducts * c_duct * np.sqrt(2 * dP_duct * rho_gas)) # - (A_valve * c2 * np.sqrt(2 * dP_valve * rho_gas)) eqn10 = 0 #c2dot return [eqn1, eqn2, eqn3, eqn4, eqn5, eqn6, eqn7, eqn8, eqn9, eqn10] m_pl = 1728 + 172 + 500 # + 500 # mass of payload and flight chain in [kg] m_bal = 0 # initial ballast mass in [kg] m_film = 1897 # mass of balloon film in [kg] FreeLift = 4 # [%] t_max = 100000 #0 dt = 1.0 t = np.arange(2.0, t_max, dt) m_gas = ((m_pl + m_bal + m_film) * (FreeLift/100 + 1))/(R_gas/R_air - 1) def ending(t, y): return y[2] sol = solve_ivp(fun=model, t_span=[2.0, t_max], y0=y0, t_eval=t, args=(m_pl, m_film, m_bal, c_virt), max_step=35.0) #, events=ending.terminal) # events= print("hier:") print(sol.message) res = sol.y[2, :] end = datetime.now() print(end-start) plt.plot(comp_time, comp_height, 'r--', label='PoGo Flight Test') plt.plot(t, res) plt.xlabel('time in s') plt.ylabel('Balloon Altitude in m') plt.xlim(0, t_max) plt.show() plt.clf() ax = plt.axes(projection=ccrs.Mollweide()) ax.coastlines() ax.gridlines() ax.stock_img() ax.set_extent([-120, 30, 60, 80], crs=ccrs.PlateCarree()) plt.plot(start_lon, start_lat, 'rx', transform=ccrs.Geodetic()) plt.plot(sol.y[0, :], sol.y[1, :], 'k--', transform=ccrs.Geodetic()) plt.plot(comp_lon, comp_lat, 'r-', transform=ccrs.Geodetic()) # plt.xticks() # figname = "LatLon_%.2f_%.2f.png" % (Albedo, epsilon_ground) # plt.savefig(os.path.join(rootdir, figname)) plt.show()