import sys import pickle from pyfiglet import Figlet import warnings import numpy as np import xarray as xr import pandas as pd import pickle as pkl import cartopy.crs as ccrs import astropy.units as unit import matplotlib.pyplot as plt from dask import delayed from datetime import datetime starttime = datetime.now() print('----------------------------------------') ascii_banner = Figlet(font="slant") print(ascii_banner.renderText("BASTET")) print("Ver. 1.0, 2021 by Marcel Frommelt") print('----------------------------------------') print("") print("") from netCDF4 import Dataset from astropy.time import Time from scipy import interpolate from scipy.spatial import cKDTree from scipy.integrate import solve_ivp from input.user_input import * from input.natural_constants import * from models.gravity import grav from models.valving import valving from models.ballasting import ballasting from dask.diagnostics import ProgressBar from models.simple_atmosphere import T_air_simple, p_air_simple, rho_air_simple from models.sun import sun_angles_analytical, tau from models.drag import drag, cd_PalumboLow, cd_Palumbo, cd_PalumboHigh, cd_PalumboMC, cd_sphere from models.transformation import visible_cells, transform, radii, transform2 from multiprocessing import Process starttime = datetime.now() if not sys.warnoptions: warnings.simplefilter("ignore") data = pd.read_excel(r'C:\Users\marcel\PycharmProjects\MasterThesis\Data_PoGo2016.xls', sheet_name='SuperTIGER2') # Tabelle3 comp_time = pd.DataFrame(data, columns=['Time']).to_numpy().squeeze() comp_height = pd.DataFrame(data, columns=['Height']).to_numpy().squeeze() comp_lat = pd.DataFrame(data, columns=['Latitude']).to_numpy().squeeze() comp_lon = pd.DataFrame(data, columns=['Longitude']).to_numpy().squeeze() print("") print("INITIALISING SIMULATION...") print("") print("Launch location:") print("longitude: %.4f deg" % (start_lon)) print("latitude: %.4f deg" % (start_lat)) print("Launch time: " + str(start_utc) + " (UTC)") print("") print("Reading ERA5-datasets, please wait.") first_file = Dataset(ERA5_float[0]) last_file = Dataset(ERA5_float[-1]) tstart = int(first_file.variables['time'][0]) tend = int(last_file.variables['time'][-1]) first_file.close() last_file.close() df1 = xr.open_mfdataset(ERA5_float, combine='by_coords', engine='netcdf4', concat_dim="time", parallel=True) float_data = df1.assign_coords(time=np.linspace(tstart, tend, (tend - tstart) + 1)) # ERA5 MULTI-LEVEL FLOAT (WIND + ATMOSPHERIC DATA DURING FLOAT) ERAtime = float_data.variables['time'][:] # time ERAlat1 = float_data.variables['latitude'][:].values # latitude [deg] ERAlon1 = float_data.variables['longitude'][:].values # longitude [deg] ERAz_float = float_data.variables['z'][:].values / g # geopotential [m^-2/s^-2] to geopotential height [m] ERApress_float = float_data.variables['level'][:].values # pressure level [-] ERAtemp_float = float_data.variables['t'][:].values # air temperature in [K] vw_x_float = float_data.variables['u'][:].values # v_x in [m/s] vw_y_float = float_data.variables['v'][:].values # v_y in [m/s] vw_z_float = float_data.variables['w'][:].values # v_z in [m/s] first_file = Dataset(ERA5_single[0]) last_file = Dataset(ERA5_single[-1]) tstart = int(first_file.variables['time'][0]) tend = int(last_file.variables['time'][-1]) first_file.close() last_file.close() df2 = xr.open_mfdataset(ERA5_single, combine='by_coords', engine='netcdf4', concat_dim="time", parallel=True) single_data = df2.assign_coords(time=np.linspace(tstart, tend, (tend - tstart) + 1)) # ERA5 SINGLE-LEVEL (RADIATIVE ENVIRONMENT) ERAlat2 = single_data.variables['latitude'][:].values # latitude [deg] ERAlon2 = single_data.variables['longitude'][:].values # longitude [deg] ERAtcc = single_data.variables['tcc'][:].values # total cloud cover [-] ERAskt = single_data.variables['skt'][:].values # skin (ground) temperature in [K] ERAcbh = single_data.variables['cbh'][:].values # cloud base height in [m] ERAlcc = single_data.variables['lcc'][:].values # low cloud cover [-] ERAmcc = single_data.variables['mcc'][:].values # medium cloud cover [-] ERAhcc = single_data.variables['hcc'][:].values # high cloud cover [-] ERAssr = single_data.variables['ssr'][:].values # hourly accumulated surface net solar radiation [J/m^2] ERAstrn = single_data.variables['str'][:].values # hourly accumulated surface net thermal radiation [J/m^2] ERAstrd = single_data.variables['strd'][:].values # hourly accumulated surface thermal radiation downwards [J/m^2] ERAssrd = single_data.variables['ssrd'][:].values # hourly accumulated surface solar radiation downwards [J/m^2] ERAtsr = single_data.variables['tsr'][:].values # hourly accumulated top net solar radiation [J/m^2] ERAttr = single_data.variables['ttr'][:].values # hourly accumulated top net thermal radiation [J/m^2] ERAtisr = single_data.variables['tisr'][:].values # hourly accumulated TOA incident solar radiation [J/m^2] ERAstrdc = single_data.variables['strdc'][:].values # hourly accumulated surface thermal radiation downward clear-sky [J/m^2] ERAsp = single_data.variables['sp'][:].values # surface pressure in [Pa] first_file = Dataset(ERA5_ascent[0]) last_file = Dataset(ERA5_ascent[-1]) tstart = int(first_file.variables['time'][0]) tend = int(last_file.variables['time'][-1]) first_file.close() last_file.close() df3 = xr.open_mfdataset(ERA5_ascent, combine='by_coords', engine='netcdf4', concat_dim="time", parallel=True) ascent_data = df3.assign_coords(time=np.linspace(tstart, tend, (tend - tstart) + 1)) # ERA5 MULTI-LEVEL ASCENT (WIND + ATMOSPHERIC DATA DURING ASCENT) ERAlat0 = ascent_data.variables['latitude'][:].values # latitude [deg] ERAlon0 = ascent_data.variables['longitude'][:].values # longitude [deg] ERAz_ascent = ascent_data.variables['z'][:].values / g # geopotential [m^-2/s^-2] to geopotential height [m] ERApress_ascent = ascent_data.variables['level'][:].values # pressure level [-] ERAtemp_ascent = ascent_data.variables['t'][:].values # air temperature in K vw_x_ascent = ascent_data.variables['u'][:].values # v_x in [m/s] vw_y_ascent = ascent_data.variables['v'][:].values # v_y in [m/s] vw_z_ascent = ascent_data.variables['w'][:].values # v_z in [m/s] ascent_data.close() print("Finished reading ERA5-datasets.") lon_era2d0, lat_era2d0 = np.meshgrid(ERAlon0, ERAlat0) lon_era2d1, lat_era2d1 = np.meshgrid(ERAlon1, ERAlat1) lon_era2d2, lat_era2d2 = np.meshgrid(ERAlon2, ERAlat2) xs0, ys0, zs0 = transform(lon_era2d0.flatten(), lat_era2d0.flatten()) xs1, ys1, zs1 = transform(lon_era2d1.flatten(), lat_era2d1.flatten()) xs2, ys2, zs2 = transform(lon_era2d2.flatten(), lat_era2d2.flatten()) print("") tree0 = cKDTree(np.column_stack((xs0, ys0, zs0))) tree1 = cKDTree(np.column_stack((xs1, ys1, zs1))) tree2 = cKDTree(np.column_stack((xs2, ys2, zs2))) print("Built kd-trees.") print("") wflag1, wflag2, wflag3, wflag4, wflag5, wflag6, wflag7, wflag8, wflag9, wflag10, wflag11, wflag12, wflag13, wflag14, wflag15, wflag16, wflag17, wflag18, wflag19 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 flag_arr = np.zeros(20) def ERA5Data(lon, lat, h, t, deltaT_ERA, flag_arr): t_epoch = deltaT_ERA + t / 3600 t_pre = int(t_epoch) t_pre_ind = t_pre - int(ERAtime[0]) t_post_ind = t_pre_ind + 1 xt, yt, zt = transform(lon, lat) # current coordinates d0, inds0 = tree0.query(np.column_stack((xt, yt, zt)), k=4) d1, inds1 = tree1.query(np.column_stack((xt, yt, zt)), k=4) # longitude, latitude d2, inds2 = tree2.query(np.column_stack((xt, yt, zt)), k=visible_cells(h)) # longitude, latitude visible_cells(h) w0 = 1.0 / d0[0] w1 = 1.0 / d1[0] w2 = 1.0 / d2[0] ** 2 lat_ind0 = np.unravel_index(inds0[0], lon_era2d0.shape)[0] lon_ind0 = np.unravel_index(inds0[0], lon_era2d0.shape)[1] lat_ind1 = np.unravel_index(inds1[0], lon_era2d1.shape)[0] lon_ind1 = np.unravel_index(inds1[0], lon_era2d1.shape)[1] lat_ind2 = np.unravel_index(inds2[0], lon_era2d2.shape)[0] lon_ind2 = np.unravel_index(inds2[0], lon_era2d2.shape)[1] if h >= 30000: try: interp4d_temp_pre = np.ma.dot(w1, ERAtemp_float[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_temp_post = np.ma.dot(w1, ERAtemp_float[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_temp = (interp4d_temp_post - interp4d_temp_pre) * (t_epoch - t_pre) + interp4d_temp_pre interp4d_height_pre = np.ma.dot(w1, ERAz_float[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_height_post = np.ma.dot(w1, ERAz_float[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_height = (interp4d_height_post - interp4d_height_pre) * (t_epoch - t_pre) + interp4d_height_pre interp4d_vw_x_pre = np.ma.dot(w1, vw_x_float[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_vw_x_post = np.ma.dot(w1, vw_x_float[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_vw_x = (interp4d_vw_x_post - interp4d_vw_x_pre) * (t_epoch - t_pre) + interp4d_vw_x_pre interp4d_vw_y_pre = np.ma.dot(w1, vw_y_float[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_vw_y_post = np.ma.dot(w1, vw_y_float[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_vw_y = (interp4d_vw_y_post - interp4d_vw_y_pre) * (t_epoch - t_pre) + interp4d_vw_y_pre interp4d_vw_z_pre = np.ma.dot(w1, vw_z_float[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_vw_z_post = np.ma.dot(w1, vw_z_float[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1) interp4d_vw_z = (interp4d_vw_z_post - interp4d_vw_z_pre) * (t_epoch - t_pre) + interp4d_vw_z_pre pressure_hPa = np.array([1, 2, 3, 5, 7, 10, 20, 30]) # !!! pressure = 100 * pressure_hPa temp_interp1d = interpolate.interp1d(interp4d_height, interp4d_temp) press_interp1d = interpolate.interp1d(interp4d_height, pressure) vw_x_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_x) vw_y_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_y) vw_z_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_z) except IndexError: if flag_arr[18] == 0: print("Error: Please check time range of ERA5 data!") flag_arr[18] = 1 else: flag_arr[18] = 1 elif np.abs(lat - start_lat) <= 10.0 and np.abs(lon - start_lon) <= 10.0: try: interp4d_temp_pre = np.ma.dot(w0, ERAtemp_ascent[t_pre_ind, :, lat_ind0, lon_ind0]) / np.sum(w0) interp4d_temp_post = np.ma.dot(w0, ERAtemp_ascent[t_post_ind, :, lat_ind0, lon_ind0]) / np.sum(w0) interp4d_temp = (interp4d_temp_post - interp4d_temp_pre) * (t_epoch - t_pre) + interp4d_temp_pre interp4d_height_pre = np.ma.dot(w0, ERAz_ascent[t_pre_ind, :, lat_ind0, lon_ind0]) / np.sum(w0) interp4d_height_post = np.ma.dot(w0, ERAz_ascent[t_post_ind, :, lat_ind0, lon_ind0]) / np.sum(w0) interp4d_height = (interp4d_height_post - interp4d_height_pre) * (t_epoch - t_pre) + interp4d_height_pre interp4d_vw_x_pre = np.ma.dot(w0, vw_x_ascent[t_pre_ind, :, lat_ind0, lon_ind0]) / np.sum(w0) interp4d_vw_x_post = np.ma.dot(w0, vw_x_ascent[t_post_ind, :, lat_ind0, lon_ind0]) / np.sum(w0) interp4d_vw_x = (interp4d_vw_x_post - interp4d_vw_x_pre) * (t_epoch - t_pre) + interp4d_vw_x_pre interp4d_vw_y_pre = np.ma.dot(w0, vw_y_ascent[t_pre_ind, :, lat_ind0, lon_ind0]) / np.sum(w0) interp4d_vw_y_post = np.ma.dot(w0, vw_y_ascent[t_post_ind, :, lat_ind0, lon_ind0]) / np.sum(w0) interp4d_vw_y = (interp4d_vw_y_post - interp4d_vw_y_pre) * (t_epoch - t_pre) + interp4d_vw_y_pre interp4d_vw_z_pre = np.ma.dot(w0, vw_z_ascent[t_pre_ind, :, lat_ind0, lon_ind0]) / np.sum(w0) interp4d_vw_z_post = np.ma.dot(w0, vw_z_ascent[t_post_ind, :, lat_ind0, lon_ind0]) / np.sum(w0) interp4d_vw_z = (interp4d_vw_z_post - interp4d_vw_z_pre) * (t_epoch - t_pre) + interp4d_vw_z_pre pressure_hPa = np.array( [1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000]) pressure = 100 * pressure_hPa temp_interp1d = interpolate.interp1d(interp4d_height, interp4d_temp) press_interp1d = interpolate.interp1d(interp4d_height, pressure) vw_x_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_x) vw_y_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_y) vw_z_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_z) except IndexError: if flag_arr[19] == 0: print("Error: Check time range of ERA5 data!") flag_arr[19] = 1 else: flag_arr[19] = 1 else: pass tcc_pre = np.ma.dot(w2, ERAtcc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) tcc_post = np.ma.dot(w2, ERAtcc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) tcc = (tcc_post - tcc_pre) * (t_epoch - t_pre) + tcc_pre if isinstance(tcc, float) != True: if flag_arr[1] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"tcc\"!") print("Assuming simplified value for parameter \"tcc\".") flag_arr[1] = 1 else: flag_arr[1] = 1 tcc = cc cbh_pre = np.ma.dot(w2, ERAcbh[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) cbh_post = np.ma.dot(w2, ERAcbh[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) cbh = (cbh_post - cbh_pre) * (t_epoch - t_pre) + cbh_pre if isinstance(tcc, float) != True: if flag_arr[2] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"cbh\"!") print("Assuming simplified value for parameter \"cbh\".") flag_arr[2] = 1 else: flag_arr[2] = 1 cbh = 2000 lcc_pre = np.ma.dot(w2, ERAlcc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) lcc_post = np.ma.dot(w2, ERAlcc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) lcc = (lcc_post - lcc_pre) * (t_epoch - t_pre) + lcc_pre if isinstance(lcc, float) != True: if flag_arr[3] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"lcc\"!") print("Assuming simplified value for parameter \"lcc\".") flag_arr[3] = 1 else: flag_arr[3] = 1 lcc = cc/3 mcc_pre = np.ma.dot(w2, ERAmcc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) mcc_post = np.ma.dot(w2, ERAmcc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) mcc = (mcc_post - mcc_pre) * (t_epoch - t_pre) + mcc_pre if isinstance(mcc, float) != True: if flag_arr[4] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"mcc\"!") print("Assuming simplified value for parameter \"mcc\".") flag_arr[4] = 1 else: flag_arr[4] = 1 mcc = cc/3 hcc_pre = np.ma.dot(w2, ERAhcc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) hcc_post = np.ma.dot(w2, ERAhcc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) hcc = (hcc_post - hcc_pre) * (t_epoch - t_pre) + hcc_pre if isinstance(hcc, float) != True: if flag_arr[5] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"hcc\"!") print("Assuming simplified value for parameter \"hcc\".") flag_arr[5] = 1 else: flag_arr[5] = 1 hcc = cc/3 ssr_pre = np.ma.dot(w2, ERAssr[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) ssr_post = np.ma.dot(w2, ERAssr[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) ssr = ((ssr_post - ssr_pre) * (t_epoch - t_pre) + ssr_pre) / 3600 strn_pre = np.ma.dot(w2, ERAstrn[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) strn_post = np.ma.dot(w2, ERAstrn[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) strn = ((strn_post - strn_pre) * (t_epoch - t_pre) + strn_pre) / 3600 if isinstance(strn, float) != True: if flag_arr[6] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"strn\"!") print("Assuming simplified value for parameter \"strn\".") flag_arr[6] = 1 else: flag_arr[6] = 1 strn = 0 skt_pre = np.ma.dot(w2, ERAskt[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) skt_post = np.ma.dot(w2, ERAskt[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) skt = ((skt_post - skt_pre) * (t_epoch - t_pre) + skt_pre) if isinstance(skt, float) != True: if flag_arr[7] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"skt\"!") print("Assuming simplified value for parameter \"skt\".") flag_arr[7] = 1 else: flag_arr[7] = 1 skt = T_ground strd_pre = np.ma.dot(w2, ERAstrd[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) strd_post = np.ma.dot(w2, ERAstrd[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) strd = ((strd_post - strd_pre) * (t_epoch - t_pre) + strd_pre) / 3600 if isinstance(strd, float) != True: if flag_arr[8] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"strd\"!") print("Assuming simplified value for parameter \"strd\".") flag_arr[8] = 1 else: flag_arr[8] = 1 strd = epsilon_ground * sigma * T_ground ** 4 strdc_pre = np.ma.dot(w2, ERAstrdc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) strdc_post = np.ma.dot(w2, ERAstrdc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) strdc = ((strdc_post - strdc_pre) * (t_epoch - t_pre) + strdc_pre) / 3600 if isinstance(strdc, float) != True: if flag_arr[9] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"strdc\"!") print("Assuming simplified value for parameter \"strdc\".") flag_arr[9] = 1 else: flag_arr[9] = 1 strdc = epsilon_ground * sigma * T_ground ** 4 ssrd_pre = np.ma.dot(w2, ERAssrd[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) ssrd_post = np.ma.dot(w2, ERAssrd[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) ssrd = ((ssrd_post - ssrd_pre) * (t_epoch - t_pre) + ssrd_pre) / 3600 if isinstance(ssrd, float) != True: if flag_arr[10] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"ssrd\"!") print("Assuming simplified value for parameter \"ssrd\".") flag_arr[10] = 1 else: flag_arr[10] = 1 ssrd = 1 ssr = 1 - Albedo if isinstance(ssr, float) != True: if flag_arr[11] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"ssr\"!") print("Assuming simplified value for parameter \"ssr\".") flag_arr[11] = 1 else: flag_arr[11] = 1 ssrd = 1 ssr = 1 - Albedo tsr_pre = np.ma.dot(w2, ERAtsr[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) tsr_post = np.ma.dot(w2, ERAtsr[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) tsr = ((tsr_post - tsr_pre) * (t_epoch - t_pre) + tsr_pre) / 3600 tisr_pre = np.ma.dot(w2, ERAtisr[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) tisr_post = np.ma.dot(w2, ERAtisr[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) tisr = ((tisr_post - tisr_pre) * (t_epoch - t_pre) + tisr_pre) / 3600 if isinstance(tisr, float) != True: if flag_arr[12] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"tisr\"!") print("Assuming simplified value for parameter \"tisr\".") flag_arr[12] = 1 else: flag_arr[12] = 1 utc = deltaT_ERA * unit.second * 3600 + Time('1900-01-01 00:00:00.0') AZ, ELV = sun_angles_analytical(lat, lon, h, utc) MA = (357.52911 + 0.98560028 * (utc.jd - 2451545)) % 360 # in degree, reference: see folder "literature" TA = MA + 2 * e * np.sin(np.deg2rad(MA)) + 5 / 4 * e ** 2 * np.sin(np.deg2rad(2 * MA)) I_Sun = 1367.5 * ((1 + e * np.cos(np.deg2rad(TA))) / (1 - e ** 2)) ** 2 tisr = I_Sun * np.sin(np.deg2rad(ELV)) if isinstance(tsr, float) != True: if flag_arr[13] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"tsr\"!") print("Assuming simplified value for parameter \"tsr\".") flag_arr[13] = 1 else: flag_arr[13] = 1 tsr = (1 - Albedo) * tisr ttr_pre = np.ma.dot(w2, ERAttr[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) ttr_post = np.ma.dot(w2, ERAttr[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) ttr = ((ttr_post - ttr_pre) * (t_epoch - t_pre) + ttr_pre) / 3600 p0_pre = np.ma.dot(w2, ERAsp[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2) p0_post = np.ma.dot(w2, ERAsp[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2) p0 = (p0_post - p0_pre) * (t_epoch - t_pre) + p0_pre if isinstance(p0, float) != True: if flag_arr[14] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"sp\"!") print("Assuming simplified value for parameter \"sp\".") flag_arr[14] = 1 else: flag_arr[14] = 1 p0 = 101325.0 if isinstance(ttr, float) != True: if flag_arr[15] == 0: print("WARNING: Corrupt or missing ERA5 Data for parameter \"ttr\"!") print("Assuming simplified value for parameter \"ttr\".") flag_arr[15] = 1 else: flag_arr[15] = 1 utc = deltaT_ERA * unit.second * 3600 + Time('1900-01-01 00:00:00.0') AZ, ELV = sun_angles_analytical(lat, lon, h, utc) tau_atm, tau_atmIR = tau(ELV, h, p_air, p0) HalfConeAngle = np.arcsin(R_E / (R_E + h)) ViewFactor = (1 - np.cos(HalfConeAngle)) / 2 ttr = epsilon_ground * sigma * T_ground ** 4 * tau_atmIR * ViewFactor * 2 if h > np.amax(interp4d_height): if flag_arr[16] == 0: print("WARNING: Balloon altitude above interpolation area!") flag_arr[16] = 1 else: flag_arr[16] = 1 p_air = press_interp1d(np.amax(interp4d_height)) T_air = temp_interp1d(np.amax(interp4d_height)) u = vw_x_interp1d(np.amax(interp4d_height)) v = vw_y_interp1d(np.amax(interp4d_height)) w = -1 / grav(lat, h) * vw_z_interp1d(np.amax(interp4d_height)) * R_air * T_air / p_air elif h < np.amin(interp4d_height): if flag_arr[17] == 0: print("WARNING: Balloon altitude below interpolation area!") flag_arr[17] = 1 else: flag_arr[17] = 1 p_air = press_interp1d(np.amin(interp4d_height)) T_air = temp_interp1d(np.amin(interp4d_height)) u = vw_x_interp1d(np.amin(interp4d_height)) v = vw_y_interp1d(np.amin(interp4d_height)) w = -1 / grav(lat, h) * vw_z_interp1d(np.amin(interp4d_height)) * R_air * T_air / p_air else: p_air = press_interp1d(h) T_air = temp_interp1d(h) u = vw_x_interp1d(h) v = vw_y_interp1d(h) w = -1 / grav(lat, h) * vw_z_interp1d(h) * R_air * T_air / p_air rho_air = p_air / (R_air * T_air) return p_air, p0, T_air, rho_air, u, v, w, cbh, tcc, lcc, mcc, hcc, ssr, strn, strd, strdc, ssrd, tsr, ttr, tisr, skt t_start = Time(start_utc) m_gas_init = ((m_pl + m_film + m_bal_init) * (FreeLift / 100 + 1)) / (R_gas / R_air - 1) deltaT_ERA = (t_start.jd - Time('1900-01-01 00:00:00.0').jd) * 24.000000 p_air0, p00, T_air0, rho_air0, u0, v0, w0, cbh0, tcc0, lcc0, mcc0, hcc0, ssr0, strn0, strd0, strdc0, ssrd0, tsr0, ttr0, tisr0, skt0 = ERA5Data(start_lon, start_lat, start_height, 0, deltaT_ERA, flag_arr) A_top0 = np.pi/4 * 1.383 ** 2 * (m_gas_init * R_gas * T_air0 / p_air0) ** (2/3) y0 = [ start_lon, # start longitude [deg] start_lat, # start latitude [deg] start_height, # start altitude [m] 0, # initial v_x [m/s] 0, # initial v_y [m/s] 0, # initial v_z [m/s] T_air0, # initial gas temperature [K] = initial air temperature [K] T_air0, # initial film temperature [K] = initial air temperature [K] m_gas_init, # initial lifting gas mass [kg] 0, # initial factor c2 [-] m_bal_init # initial ballast mass [kg] ] t_list, h_list, v_list = [], [], [] lat_list, lon_list = [], [] p_list, rho_list = [], [] Temp_list, Tgas_list, T_film_list = [], [], [] rhog_list = [] V_b_list = [] Q_Albedo_list = [] Q_IREarth_list = [] Q_Sun_list = [] Q_IRFilm_list = [] Q_IRout_list = [] Q_ConvExt_list = [] Q_ConvInt_list = [] utc_list = [] ssr_list = [] ssrd_list = [] ttr_list = [] strd_list = [] strn_list = [] tisr_list = [] tsr_list = [] def model(t, y, m_pl, m_film, c_virt, A_top0, t_start): utc = t_start + t * unit.second lon = y[0] # 1 lat = y[1] # 2 h = y[2] # 3 v_x = y[3] # 4 v_y = y[4] # 5 v_z = y[5] # 6 T_gas = y[6] # 7 T_film = y[7] # 8 m_gas = y[8] # 9 c2 = y[9] # 10 m_bal = y[10] # 11 if (lon % 360) > 180: # convert longitude to value in standard interval [-180, 180] lon = (lon % 360) - 360 else: lon = (lon % 360) if lat > 90: # set plausible limits for latitudes lat = 90 elif lat < -90: lat = -90 else: lat = lat if h > 53700: h = 53700 elif h < 0: h = 0 else: h = h h_list.append(h) utc_list.append(utc) lat_list.append(lat) lon_list.append(lon) Tgas_list.append(T_gas) T_film_list.append(T_film) r_lon, r_lat = radii(lat, h) # calculate radii for velocity conversion between cartesian and Earth reference frame deltaT_ERA = (t_start.jd - Time('1900-01-01 00:00:00.0').jd) * 24.000000 # conversion to ERA5 time format AZ, ELV = sun_angles_analytical(lat, lon, h, utc) MA = (357.52911 + 0.98560028 * (utc.jd - 2451545)) % 360 # in degree, reference: see folder "literature" TA = MA + 2 * e * np.sin(np.deg2rad(MA)) + 5 / 4 * e ** 2 * np.sin(np.deg2rad(2 * MA)) I_Sun = 1367.5 * ((1 + e * np.cos(np.deg2rad(TA))) / (1 - e ** 2)) ** 2 HalfConeAngle = np.arcsin(R_E / (R_E + h)) ViewFactor = (1 - np.cos(HalfConeAngle)) / 2 try: p_air, p0, T_air, rho_air, u, v, w, cbh, tcc, lcc, mcc, hcc, ssr, strn, strd, strdc, ssrd, tsr, ttr, tisr, skt = ERA5Data(lon, lat, h, t, deltaT_ERA, flag_arr) tau_atm, tau_atmIR = tau(ELV, h, p_air, p0) tau_atm0, tau_atmIR0 = tau(ELV, 0, p0, p0) I_SunZ = I_Sun * tau_atm I_Sun0 = I_Sun * tau_atm0 except: # in case of solver (temporarily) exceeding interpolation area (with subsequent correction by the solver itself) # or permanent drift out of interpolation area if h >= 30000 or (np.abs(lat - start_lat) <= 10.0 and np.abs(lon - start_lon) <= 10.0): p0 = 101325 p_air = p_air_simple(h) tau_atm, tau_atmIR = tau(ELV, h, p_air, p0) tau_atm0, tau_atmIR0 = tau(ELV, 0, p0, p0) I_SunZ = I_Sun * tau_atm I_Sun0 = I_Sun * tau_atm0 p_air, p0, T_air, rho_air, u, v, w, cbh, tcc, lcc, mcc, hcc, ssr, strn, strd, strdc, ssrd, tsr, ttr, tisr, skt = p_air_simple(h), 101325, T_air_simple(h), rho_air_simple(h), 0, 0, 0, 2000, cc, cc/3, cc/3, cc/3, (1 - Albedo), 0, (epsilon_ground * sigma * T_ground ** 4), (epsilon_ground * sigma * T_ground ** 4), 1, (1 - Albedo) * (I_Sun * np.sin(np.deg2rad(ELV))), (epsilon_ground * sigma * T_ground ** 4 * tau_atmIR * ViewFactor * 2), (I_Sun * np.sin(np.deg2rad(ELV))), T_ground else: p0 = 101325 p_air = p_air_simple(h) tau_atm, tau_atmIR = tau(ELV, h, p_air, p0) tau_atm0, tau_atmIR0 = tau(ELV, 0, p0, p0) I_SunZ = I_Sun * tau_atm I_Sun0 = I_Sun * tau_atm0 p_air, p0, T_air, rho_air, u, v, w, cbh, tcc, lcc, mcc, hcc, ssr, strn, strd, strdc, ssrd, tsr, ttr, tisr, skt = p_air_simple(h), 101325, T_air_simple(h), rho_air_simple(h), 0, 0, 0, 2000, cc, cc/3, cc/3, cc/3, (1 - Albedo), 0, (epsilon_ground * sigma * T_ground ** 4), (epsilon_ground * sigma * T_ground ** 4), 1, (1 - Albedo) * (I_Sun * np.sin(np.deg2rad(ELV))), (epsilon_ground * sigma * T_ground ** 4 * tau_atmIR * ViewFactor * 2), (I_Sun * np.sin(np.deg2rad(ELV))), T_ground p_gas = p_air h_valve = 1.034 * V_design ** (1 / 3) h_duct = 0.47 * h_valve v_relx = u - v_x # relative wind velocity x-dir (balloon frame) v_rely = v - v_y # relative wind velocity y-dir (balloon frame) v_relz = w - v_z # relative wind velocity z-dir (balloon frame) v_rel = np.sqrt(v_relx ** 2 + v_rely ** 2 + v_relz ** 2) # total relative wind velocity (balloon frame) alpha = np.arcsin(v_relz / v_rel) # "angle of attack": angle between longitudinal axis and rel. wind (in [rad]) rho_gas = p_gas / (R_gas * T_gas) # calculate gas density through *ideal* gas equation dP_valve = grav(lat, h) * (rho_air - rho_gas) * h_valve dP_duct = grav(lat, h) * (rho_air - rho_gas) * h_duct if m_gas < 0: # limit gas mass to plausible value m_gas = 0 V_b = m_gas / rho_gas # calculate balloon volume from current gas mass and gas density rhog_list.append(rho_gas) if V_b > V_design: c_duct = c_ducts elif V_b < 0: c_duct = 0 V_b = 1.0 else: c_duct = 0 V_b_list.append(V_b) if ballasting(utc) == True: if m_bal >= 0: mdot = m_baldot else: mdot = 0 else: mdot = 0 if valving(utc) == True: # opening valve process if c2 == 0: c2 = 1.0 c2dot = 0 elif c_valve < c2 <= 1.0: c2dot = (c_valve - 1.0) / t_open else: c2dot = 0 c2 = c_valve if valving(utc) == False: # closing valve process if c2 == 0: c2dot = 0 elif c_valve <= c2 < 1.0: c2dot = (1.0 - c_valve) / t_close else: c2dot = 0 c2 = 0 m_gross = m_pl + m_film + m_bal m_tot = m_pl + m_film + m_gas m_virt = m_tot + c_virt * rho_air * V_b d_b = 1.383 * V_b ** (1 / 3) # calculate diameter of balloon from its volume L_goreB = 1.914 * V_b ** (1 / 3) A_surf = 4.94 * V_b ** (2 / 3) A_surf1 = 4.94 * V_design ** (2 / 3) * (1 - np.cos(np.pi * L_goreB / L_goreDesign)) A_eff = 0.65 * A_surf + 0.35 * A_surf1 A_top = np.pi / 4 * d_b ** 2 A_top0 = A_top0 A_proj = A_top * (0.9125 + 0.0875 * np.cos(np.pi - 2 * np.deg2rad(ELV))) # projected area for sun radiation A_drag = A_top * (0.9125 + 0.0875 * np.cos(np.pi - 2 * alpha)) # projected area for drag # CALCULATIONS FOR THERMAL MODEL if simple == True: q_IREarth = epsilon_ground * sigma * T_ground ** 4 * tau_atmIR if ELV <= 0: q_Albedo = 0 else: q_Albedo = Albedo * I_Sun * np.sin(np.deg2rad(ELV)) Q_Albedo = alpha_VIS * A_surf * q_Albedo * ViewFactor * (1 + tau_VIS / (1 - r_VIS)) Q_IREarth = alpha_IR * A_surf * q_IREarth * ViewFactor * (1 + tau_IR / (1 - r_IR)) q_sun = I_SunZ else: if tcc <= 0.01: q_IREarth1 = alpha_IR * A_surf * (strd - strn) * tau_atmIR * ViewFactor * (1 + tau_VIS / (1 - r_VIS)) q_IREarth2 = alpha_IR * A_surf * np.abs(ttr) * 0.5 * (1 + tau_IR / (1 - r_IR)) # q_IREarth2 = alpha_IR * A_surf * (0.04321906 * np.abs(ttr) + 84.67820281) * (1 + tau_IR / (1 - r_IR)) if h > 40000: Q_IREarth = q_IREarth2 else: Q_IREarth = (q_IREarth2 - q_IREarth1) / 40000 * h + q_IREarth1 if ELV <= 0: q_Albedo1 = 0 q_Albedo2 = 0 else: if ssrd == 0: q_Albedo1 = 0 else: q_Albedo1 = alpha_VIS * A_surf * (1 - ssr / ssrd) * I_Sun0 * tau_atmIR * np.sin( np.deg2rad(ELV)) * ViewFactor * (1 + tau_VIS / (1 - r_VIS)) # ! if tisr == 0: q_Albedo2 = 0 else: q_Albedo2 = alpha_VIS * A_surf * (1 - tsr / tisr) * I_Sun * np.sin(np.deg2rad(ELV)) * 0.5 * ( 1 + tau_VIS / (1 - r_VIS)) # ! if h > 40000: Q_Albedo = q_Albedo2 else: Q_Albedo = (q_Albedo2 - q_Albedo1) / 40000 * h + q_Albedo1 q_sun = I_SunZ else: q_IRground_bc = (strd - strn) + (strd - strdc) q_IREarth_bc = alpha_IR * A_surf * q_IRground_bc * tau_atmIR * ViewFactor * (1 + tau_VIS / (1 - r_VIS)) q_sun_bc = I_SunZ * (1 - tcc) q_Albedo_bc = alpha_VIS * A_surf * (1 - ssr / ssrd) * I_Sun0 * tau_atmIR * np.sin( np.deg2rad(ELV)) * ViewFactor * (1 + tau_VIS / (1 - r_VIS)) # q_IREarth_ac = alpha_IR * A_surf * (0.04321906 * np.abs(ttr) + 84.67820281) * (1 + tau_IR / (1 - r_IR)) q_IREarth_ac = alpha_IR * A_surf * np.abs(ttr) * 0.5 * (1 + tau_VIS / (1 - r_VIS)) q_sun_ac = I_SunZ q_Albedo_ac = alpha_VIS * A_surf * (1 - tsr / tisr) * I_Sun * np.sin(np.deg2rad(ELV)) * ViewFactor * ( 1 + tau_VIS / (1 - r_VIS)) if h <= cbh: # "below clouds" Q_IREarth = q_IREarth_bc q_sun = q_sun_bc if ELV <= 0: Q_Albedo = 0 else: Q_Albedo = q_Albedo_bc elif h >= 12000: # "above clouds" Q_IREarth = q_IREarth_ac q_sun = q_sun_ac if ELV <= 0: Q_Albedo = 0 else: Q_Albedo = q_Albedo_ac elif h >= 6000: if hcc >= 0.01: Q_IREarth = ((h - 6000) / 6000 * hcc + mcc + lcc) / (hcc + mcc + lcc) * ( q_IREarth_ac - q_IREarth_bc) + q_IREarth_bc q_sun = ((h - 6000) / 6000 * hcc + mcc + lcc) / (hcc + mcc + lcc) * (q_sun_ac - q_sun_bc) + q_sun_bc if ELV <= 0: Q_Albedo = 0 else: Q_Albedo = ((h - 6000) / 6000 * hcc + mcc + lcc) / (hcc + mcc + lcc) * ( q_Albedo_ac - q_Albedo_bc) + q_Albedo_bc else: Q_IREarth = q_IREarth_ac q_sun = q_sun_ac if ELV <= 0: Q_Albedo = 0 else: Q_Albedo = q_Albedo_ac elif h >= 2000: if mcc > 0.01 or hcc > 0.01: Q_IREarth = ((h - 2000) / 4000 * mcc + lcc) / (hcc + mcc + lcc) * ( q_IREarth_ac - q_IREarth_bc) + q_IREarth_bc q_sun = ((h - 2000) / 4000 * mcc + lcc) / (hcc + mcc + lcc) * (q_sun_ac - q_sun_bc) + q_sun_bc if ELV <= 0: Q_Albedo = 0 else: Q_Albedo = ((h - 2000) / 4000 * mcc + lcc) / (hcc + mcc + lcc) * ( q_Albedo_ac - q_Albedo_bc) + q_Albedo_bc else: Q_IREarth = q_IREarth_ac q_sun = q_sun_ac if ELV <= 0: Q_Albedo = 0 else: Q_Albedo = q_Albedo_ac else: Q_IREarth = (h / 2000 * lcc) / (hcc + mcc + lcc) * (q_IREarth_ac - q_IREarth_bc) + q_IREarth_bc q_sun = (h / 2000 * lcc) / (hcc + mcc + lcc) * (q_sun_ac - q_sun_bc) + q_sun_bc if ELV <= 0: Q_Albedo = 0 else: Q_Albedo = (h / 2000 * lcc) / (hcc + mcc + lcc) * (q_Albedo_ac - q_Albedo_bc) + q_Albedo_bc my_air = (1.458 * 10 ** -6 * T_air ** 1.5) / (T_air + 110.4) k_air = 0.0241 * (T_air / 273.15) ** 0.9 k_gas = 0.144 * (T_gas / 273.15) ** 0.7 Pr_air = 0.804 - 3.25 * 10 ** (-4) * T_air Pr_gas = 0.729 - 1.6 * 10 ** (-4) * T_gas Gr_air = (rho_air ** 2 * grav(lat, h) * np.abs(T_film - T_air) * d_b ** 3) / (T_air * my_air ** 2) Nu_air = 2 + 0.45 * (Gr_air * Pr_air) ** 0.25 HC_free = Nu_air * k_air / d_b Re = np.abs(v_rel) * d_b * rho_air / my_air Fr = np.abs(v_rel) / np.sqrt(grav(lat, h) * d_b) HC_forced = k_air / d_b * (2 + 0.41 * Re ** 0.55) HC_internal = 0.13 * k_gas * ( (rho_gas ** 2 * grav(lat, h) * np.abs(T_film - T_gas) * Pr_gas) / (T_gas * my_air ** 2)) ** ( 1 / 3) HC_external = np.maximum(HC_free, HC_forced) Q_Sun = alpha_VIS * A_proj * q_sun * (1 + tau_VIS / (1 - r_VIS)) Q_IRFilm = sigma * epsilon * alpha_IR * A_surf * T_film ** 4 * 1 / (1 - r_IR) Q_IRout = sigma * epsilon * A_surf * T_film ** 4 * (1 + tau_IR / (1 - r_IR)) Q_ConvExt = HC_external * A_eff * (T_air - T_film) Q_ConvInt = HC_internal * A_eff * (T_film - T_gas) Q_Albedo_list.append(Q_Albedo) Q_IREarth_list.append(Q_IREarth) Q_Sun_list.append(Q_Sun) Q_IRFilm_list.append(Q_IRFilm) Q_IRout_list.append(Q_IRout) Q_ConvExt_list.append(Q_ConvExt) Q_ConvInt_list.append(Q_ConvInt) ssr_list.append(ssr) ssrd_list.append(ssrd) ttr_list.append(ttr) strd_list.append(strd) strn_list.append(strn) tisr_list.append(tisr) tsr_list.append(tsr) if simple == True: c_d = c_d else: if drag_model == 'PalumboHigh': c_d = cd_PalumboHigh(Fr, Re, A_top, A_top0) elif drag_model == 'Palumbo': c_d = cd_Palumbo(Fr, Re, A_top, A_top0) elif drag_model == 'PalumboLow': c_d = cd_PalumboLow(Fr, Re, A_top, A_top0) else: c_d = cd_sphere(Re) D = drag(c_d, rho_air, A_drag, v_rel) # calculate drag force if v_rel == 0: Drag_x, Drag_y, Drag_z = 0, 0, 0 else: Drag_x, Drag_y, Drag_z = D * v_relx / v_rel, D * v_rely / v_rel, D * v_relz / v_rel F = grav(lat, h) * V_b * (rho_air - rho_gas) - grav(lat, h) * m_gross + Drag_z # gross inflation - weight + drag a_x, a_y, a_z = Drag_x / m_virt, Drag_y / m_virt, F / m_virt eqn1 = np.rad2deg(y[3] / r_lon) eqn2 = np.rad2deg(y[4] / r_lat) eqn3 = v_z eqn4 = a_x eqn5 = a_y eqn6 = a_z eqn7 = Q_ConvInt / (gamma * c_v * m_gas) - (gamma - 1) / gamma * (rho_air * grav(lat, h)) / (rho_gas * R_gas) * v_z eqn8 = (Q_Sun + Q_Albedo + Q_IREarth + Q_IRFilm + Q_ConvExt - Q_ConvInt - Q_IRout) / (c_f * m_film) eqn9 = -(A_ducts * c_duct * np.sqrt(np.abs(2 * dP_duct * rho_gas))) - (A_valve * c2 * np.sqrt(np.abs(2 * dP_valve * rho_gas))) if eqn9 > 0: eqn9 = 0 eqn10 = c2dot if m_bal > 0: eqn11 = -mdot else: eqn11 = 0 return [eqn1, eqn2, eqn3, eqn4, eqn5, eqn6, eqn7, eqn8, eqn9, eqn10, eqn11] # DEFINITION OF EVENTS FOR SOLVER def at_ground(t, y, m_pl, m_film, c_virt): return y[2] def above_float(t, y, m_pl, m_film, c_virt): return 45000 - y[2] def below_float(t, y, m_pl, m_film, c_virt): return y[2] - 30050 hit_ground = lambda t, x: at_ground(t, x, m_pl, m_film, c_virt) hit_ground.terminal = True hit_ground.direction = -1 excess_ascent = lambda t, x: above_float(t, x, m_pl, m_film, c_virt) excess_ascent.terminal = True excess_ascent.direction = -1 instable = lambda t, x: below_float(t, x, m_pl, m_film, c_virt) instable.terminal = True instable.direction = -1 t0 = 0 tf = t_sim print("") print("BEGINNING SIMULATION") sol = solve_ivp(fun=lambda t, x: model(t, x, m_pl, m_film, c_virt, A_top0, t_start), t_span=[t0, tf], y0=y0, method='RK45', events=[hit_ground, excess_ascent, instable]) #, t_eval=comp_time tnew = np.linspace(0, sol.t[-1], len(V_b_list)) print(sol.message) """ lonsol = sol.y[0, :] latsol = sol.y[1, :] hsol = sol.y[2, :] x_sol, y_sol, z_sol = transform2(lonsol, latsol, hsol) x_test, y_test, z_test = transform2(comp_lon, comp_lat, comp_height) delta = ((x_sol - x_test)**2 + (y_sol - y_test)**2 + (z_sol - z_test)**2)**(0.5) val = 0 i = 0 for x in delta: print(latsol[i]) print(comp_lat[i]) print(latsol[i] - comp_lat[i]) print(x) val += x ** 2 i += 1 RMS = np.sqrt(val/i) print('RMS') print(RMS) """ print(datetime.now() - starttime) arr0 = np.linspace(0, sol.t[-1], len(V_b_list)) arr1 = np.asarray(utc_list) arr2 = np.asarray(h_list) arr3 = np.asarray(lat_list) arr4 = np.asarray(lon_list) arr5 = np.asarray(Tgas_list) arr6 = np.asarray(T_film_list) arr7 = np.asarray(rhog_list) arr8 = np.asarray(V_b_list) arr9 = np.asarray(Q_Albedo_list) arr10 = np.asarray(Q_IREarth_list) arr11 = np.asarray(Q_Sun_list) arr12 = np.asarray(Q_IRFilm_list) arr13 = np.asarray(Q_IRout_list) arr14 = np.asarray(Q_ConvExt_list) arr15 = np.asarray(Q_ConvInt_list) arr16 = np.asarray(ssr_list) arr17 = np.asarray(ssrd_list) arr18 = np.asarray(ttr_list) arr19 = np.asarray(strd_list) arr20 = np.asarray(strn_list) arr21 = np.asarray(tisr_list) arr22 = np.asarray(tsr_list) ind_list = [] for i in range(len(arr0)): if arr0[i - 1] == arr0[i]: ind_list.append(i) arr0 = np.delete(arr0, ind_list) arr1 = np.delete(arr1, ind_list) arr2 = np.delete(arr2, ind_list) arr3 = np.delete(arr3, ind_list) arr4 = np.delete(arr4, ind_list) arr5 = np.delete(arr5, ind_list) arr6 = np.delete(arr6, ind_list) arr7 = np.delete(arr7, ind_list) arr8 = np.delete(arr8, ind_list) arr9 = np.delete(arr9, ind_list) arr10 = np.delete(arr10, ind_list) arr11 = np.delete(arr11, ind_list) arr12 = np.delete(arr12, ind_list) arr13 = np.delete(arr13, ind_list) arr14 = np.delete(arr14, ind_list) arr15 = np.delete(arr15, ind_list) arr16 = np.delete(arr16, ind_list) arr17 = np.delete(arr17, ind_list) arr18 = np.delete(arr18, ind_list) arr19 = np.delete(arr19, ind_list) arr20 = np.delete(arr20, ind_list) arr21 = np.delete(arr21, ind_list) arr22 = np.delete(arr22, ind_list) df1 = pd.DataFrame(data={ 'time [s]': arr0, 'UTC': arr1, 'Altitude [m]': arr2, 'Latitude [deg]': arr3, 'Longitude [deg]': arr4, 'T_gas [K]': arr5, 'T_film [K]': arr6, 'rho_gas [kg/m^3]': arr7, 'V_balloon [m^3]': arr8, 'Q_Albedo [W/m^2]': arr9, 'Q_IR_Earth [W/m^2]': arr10, 'Q_Sun [W/m^2]': arr11, 'Q_IRFilm [W/m^2]': arr12, 'Q_IRout [W/m^2]': arr13, 'Q_ConvExt [W/m^2]': arr14, 'Q_ConvInt [W/m^2]': arr15, 'SSR [W/m^2]': arr16, 'SSRD [W/m^2]': arr17, 'TTR [W/m^2]': arr18, 'STRD [W/m^2]': arr19, 'STRN [W/m^2]': arr20, 'TISR [W/m^2]': arr21, 'TSR [W/m^2]': arr22 }) df1.to_excel("output.xlsx") plt.plot(sol.t, sol.y[2, :], 'k--', label='Simulation') plt.plot(comp_time, comp_height, 'r-', label='PoGo+ Flight Test') plt.legend() plt.title('high factor') plt.xlabel('time in s') plt.ylabel('Balloon Altitude in m') plt.show() plt.clf() ax = plt.axes(projection=ccrs.AzimuthalEquidistant(central_latitude=-90)) ax.coastlines() ax.gridlines(draw_labels=True, linewidth=0.25, color='black') ax.stock_img() ax.set_extent([-120, 30, 60, 80], crs=ccrs.PlateCarree()) plt.plot(start_lon, start_lat, 'rx', transform=ccrs.Geodetic()) plt.plot(sol.y[0, :], sol.y[1, :], 'k--', transform=ccrs.Geodetic()) plt.plot(comp_lon, comp_lat, 'r-', transform=ccrs.Geodetic()) # plt.savefig(os.path.join(rootdir, figname)) plt.show()