import astropy.units as unit import numpy as np from astropy.coordinates import EarthLocation, AltAz from astropy.coordinates import get_sun from astropy.time import TimeISO from input.natural_constants import * class TimeYearDayTimeCustom(TimeISO): """ day-of-year as "". The day-of-year (DOY) goes from 001 to 365 (366 in leap years). The allowed subformat is: - 'doy': day of year """ name = 'doy' # unique format name subfmts = (('doy', '%j', '{yday:03d}'), ('doy', '%j', '{yday:03d}'), ('doy', '%j', '{yday:03d}')) def sun_angles_astropy(lat, lon, h, utc): # get current sun elevation and azimuth through astropy loc = EarthLocation(lat=lat*unit.deg, lon=lon*unit.deg, height=h*unit.m) ref = AltAz(obstime=utc, location=loc) sun_pos = get_sun(utc).transform_to(ref) az = sun_pos.az.degree elv = sun_pos.alt.degree return az, elv def sun_angles_analytical(lat, lon, utc): # get current sun elevation and azimuth through several equations (see [xx]) if np.abs(lat) == 90: # handling collapse of longitudes at poles by lat = np.sign(lat) * 89.999999 # expanding one point to a very small circle else: pass jd = utc.jd jc = (jd - 2451545) / 36525 gml = (280.46646 + jc * (36000.76983 + jc * 0.0003032)) % 360 gma = 357.52911 + jc * (35999.05029 - 0.0001537 * jc) eeo = 0.016708634 - jc * (0.000042037 + 0.0000001267 * jc) sec = np.sin(np.deg2rad(gma)) * (1.914602 - jc * (0.004817 + 0.000014 * jc)) + np.sin(np.deg2rad(2 * gma)) * ( 0.019993 - 0.000101 * jc) + np.sin(np.deg2rad(3 * gma)) * 0.000289 stl = gml + sec sal = stl - 0.00569 - 0.00478 * np.sin(np.deg2rad(125.04 - 1934.136 * jc)) moe = 23 + (26 + (21.448 - jc * (46.815 + jc * (0.00059 - jc * 0.001813))) / 60) / 60 oc = moe + 0.00256 * np.cos(np.deg2rad(125.04 - 1934.136 * jc)) sd = np.rad2deg(np.arcsin(np.sin(np.deg2rad(oc)) * np.sin(np.deg2rad(sal)))) # radian var_y = np.tan(np.deg2rad(oc / 2)) ** 2 eot = 4 * np.rad2deg( var_y * np.sin(2 * np.deg2rad(gml)) - 2 * eeo * np.sin(np.deg2rad(gma)) + 4 * eeo * var_y * np.sin( np.deg2rad(gma)) * np.cos(2 * np.deg2rad(gml)) - 0.5 * var_y ** 2 * np.sin( 4 * np.deg2rad(gml)) - 1.25 * eeo ** 2 * np.sin(2 * np.deg2rad(gma))) tst = (((jd - 0.5) % 1) * 1440 + eot + 4 * lon) % 1440 if tst / 4 < 0: ha = tst / 4 + 180 else: ha = tst / 4 - 180 sza = np.rad2deg(np.arccos( np.sin(np.deg2rad(lat)) * np.sin(np.deg2rad(sd)) + np.cos(np.deg2rad(lat)) * np.cos(np.deg2rad(sd)) * np.cos( np.deg2rad(ha)))) sea = 90 - sza if ha > 0: saa = (np.rad2deg(np.arccos(((np.sin(np.deg2rad(lat)) * np.cos(np.deg2rad(sza))) - np.sin(np.deg2rad(sd))) / ( np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(sza))))) + 180) % 360 else: saa = (540 - np.rad2deg(np.arccos( ((np.sin(np.deg2rad(lat)) * np.cos(np.deg2rad(sza))) - np.sin(np.deg2rad(sd))) / ( np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(sza)))))) % 360 return saa, sea # Azimuth, Elevation def AirMass(p_air, p_0, ELV, h): # get atmospheric air mass over balloon ELV_rad = np.deg2rad(ELV) # convert ELV from degree to radian Dip = np.arccos(R_E / (R_E + h)) # geometric "dip" in radian if ELV_rad >= -Dip and ELV_rad < 0: res = p_air/p_0 * (1 + ELV_rad/Dip) - 70 * ELV_rad/Dip else: res = (p_air/p_0) * ((1229 + (614 * np.sin(ELV_rad)) ** 2) ** (1/2) - 614 * np.sin(ELV_rad)) return res def tau(ELV, h, p_air): # get atmospheric transmissivity as function of balloon altitude and sun elevation if ELV >= -(180 / np.pi * np.arccos(R_E / (R_E + h))): tau_atm = 0.5 * ( np.exp(-0.65 * AirMass(p_air, p_0, ELV, h)) + np.exp(-0.095 * AirMass(p_air, p_0, ELV, h))) tau_atmIR = 1.716 - 0.5 * (np.exp(-0.65 * p_air / p_0) + np.exp(-0.095 * p_air / p_0)) else: tau_atm = 0 tau_atmIR = 0 return tau_atm, tau_atmIR