import astropy.units as unit import numpy as np from astropy.coordinates import EarthLocation, AltAz from astropy.coordinates import get_sun def sun_angles_astropy(lat, lon, h, utc): loc = EarthLocation(lat=lat*unit.deg, lon=lon*unit.deg, height=h*unit.m) ref = AltAz(obstime=utc, location=loc) sun_pos = get_sun(utc).transform_to(ref) AZ = sun_pos.az.degree ELV = sun_pos.alt.degree return AZ, ELV def sun_angles_analytical(lat, lon, utc): JD = utc.jd JC = (JD - 2451545) / 36525 GML = (280.46646 + JC * (36000.76983 + JC * 0.0003032)) % 360 GMA = 357.52911 + JC * (35999.05029 - 0.0001537 * JC) EEO = 0.016708634 - JC * (0.000042037 + 0.0000001267 * JC) SEC = np.sin(np.deg2rad(GMA)) * (1.914602 - JC * (0.004817 + 0.000014 * JC)) + np.sin(np.deg2rad(2 * GMA)) * ( 0.019993 - 0.000101 * JC) + np.sin(np.deg2rad(3 * GMA)) * 0.000289 STL = GML + SEC # STA = GMA + SEC # SRV = (1.000001018 * (1 - EEO ** 2)) / (1 + EEO * np.cos(np.deg2rad(STA))) SAL = STL - 0.00569 - 0.00478 * np.sin(np.deg2rad(125.04 - 1934.136 * JC)) MOE = 23 + (26 + (21.448 - JC * (46.815 + JC * (0.00059 - JC * 0.001813))) / 60) / 60 OC = MOE + 0.00256 * np.cos(np.deg2rad(125.04 - 1934.136 * JC)) # SRA = np.rad2deg(np.arctan2(np.cos(np.deg2rad(OC)) * np.sin(np.deg2rad(SAL)), np.cos(np.deg2rad(SAL)))) # radian SD = np.rad2deg(np.arcsin(np.sin(np.deg2rad(OC)) * np.sin(np.deg2rad(SAL)))) # radian var_y = np.tan(np.deg2rad(OC / 2)) ** 2 EOT = 4 * np.rad2deg( var_y * np.sin(2 * np.deg2rad(GML)) - 2 * EEO * np.sin(np.deg2rad(GMA)) + 4 * EEO * var_y * np.sin( np.deg2rad(GMA)) * np.cos(2 * np.deg2rad(GML)) - 0.5 * var_y ** 2 * np.sin( 4 * np.deg2rad(GML)) - 1.25 * EEO ** 2 * np.sin(2 * np.deg2rad(GMA))) TST = (((JD - 0.5) % 1) * 1440 + EOT + 4 * lon) % 1440 if TST / 4 < 0: HA = TST / 4 + 180 else: HA = TST / 4 - 180 SZA = np.rad2deg(np.arccos( np.sin(np.deg2rad(lat)) * np.sin(np.deg2rad(SD)) + np.cos(np.deg2rad(lat)) * np.cos(np.deg2rad(SD)) * np.cos( np.deg2rad(HA)))) SEA = 90 - SZA if HA > 0: SAA = (np.rad2deg(np.arccos(((np.sin(np.deg2rad(lat)) * np.cos(np.deg2rad(SZA))) - np.sin(np.deg2rad(SD))) / ( np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(SZA))))) + 180) % 360 else: SAA = (540 - np.rad2deg(np.arccos( ((np.sin(np.deg2rad(lat)) * np.cos(np.deg2rad(SZA))) - np.sin(np.deg2rad(SD))) / ( np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(SZA)))))) % 360 return SAA, SEA