import cdsapi from input.user_input import * # start_lat = 78.22 Svalbard # start_lon = 15.65 # start_lat = 67.887382 Kiruna # start_lon = 21.081452 startdays = ['23', '24', '25', '26', '27', '28', '29', '30', '31'] days = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31'] endascent = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22'] endfloat = ['1'] def ERAsingle(year, month, days, north_lim, south_lim, east_lim, west_lim, name): single = cdsapi.Client().retrieve( 'reanalysis-era5-single-levels', { 'product_type': 'reanalysis', 'format': 'netcdf', 'variable': [ 'cloud_base_height', 'high_cloud_cover', 'low_cloud_cover', 'medium_cloud_cover', 'skin_temperature', 'surface_net_solar_radiation', 'surface_net_thermal_radiation', 'surface_pressure', 'surface_solar_radiation_downwards', 'surface_thermal_radiation_downward_clear_sky', 'surface_thermal_radiation_downwards', 'toa_incident_solar_radiation', 'top_net_solar_radiation', 'top_net_thermal_radiation', 'total_cloud_cover', 'total_sky_direct_solar_radiation_at_surface', ], 'time': [ '00:00', '01:00', '02:00', '03:00', '04:00', '05:00', '06:00', '07:00', '08:00', '09:00', '10:00', '11:00', '12:00', '13:00', '14:00', '15:00', '16:00', '17:00', '18:00', '19:00', '20:00', '21:00', '22:00', '23:00', ], 'year': str(year), 'month': str(month), 'day': days, 'area': [ north_lim, west_lim, south_lim, # north_lim, west_lim, south_lim, # North, West, South 72, -111, 67, east_lim, # east_lim, # East 22, ], }) single.download(name) def ERAlevelAscend(year, month, days, start_lat, start_lon, name): north_lim = start_lat + 10.0 south_lim = start_lat - 10.0 east_lim = start_lon - 10.0 west_lim = start_lon + 10.0 ascend = cdsapi.Client().retrieve( 'reanalysis-era5-pressure-levels', { 'product_type': 'reanalysis', 'format': 'netcdf', 'variable': [ 'geopotential', 'temperature', 'u_component_of_wind', 'v_component_of_wind', 'vertical_velocity', ], 'pressure_level': [ '1', '2', '3', '5', '7', '10', '20', '30', '50', '70', '100', '125', '150', '175', '200', '225', '250', '300', '350', '400', '450', '500', '550', '600', '650', '700', '750', '775', '800', '825', '850', '875', '900', '925', '950', '975', '1000', ], 'year': str(year), 'month': str(month), 'day': days, 'time': [ '00:00', '01:00', '02:00', '03:00', '04:00', '05:00', '06:00', '07:00', '08:00', '09:00', '10:00', '11:00', '12:00', '13:00', '14:00', '15:00', '16:00', '17:00', '18:00', '19:00', '20:00', '21:00', '22:00', '23:00', ], 'area': [ north_lim, west_lim, south_lim, east_lim, ], }) ascend.download(name) def ERAlevelFloat(year, month, days, north_lim, south_lim, east_lim, west_lim, name): floating = cdsapi.Client().retrieve( 'reanalysis-era5-pressure-levels', { 'product_type': 'reanalysis', 'format': 'netcdf', 'variable': [ 'geopotential', 'temperature', 'u_component_of_wind', 'v_component_of_wind', 'vertical_velocity', ], 'pressure_level': [ '1', '2', '3', '5', '7', '10', '20', ], 'year': str(year), 'month': str(month), 'day': days, 'time': [ '00:00', '01:00', '02:00', '03:00', '04:00', '05:00', '06:00', '07:00', '08:00', '09:00', '10:00', '11:00', '12:00', '13:00', '14:00', '15:00', '16:00', '17:00', '18:00', '19:00', '20:00', '21:00', '22:00', '23:00', ], 'area': [ north_lim, west_lim, south_lim, east_lim, ], }) floating.download(name) ##ERAsingle(2018, 5, startdays, 90, 45, 180, -180, "single_2018_1.nc") ##ERAsingle(2018, 6, days, 90, 45, 180, -180, "single_2018_2.nc") ##ERAsingle(2018, 7, days, 90, 45, 180, -180, "single_2018_3.nc") ##ERAsingle(2018, 8, endfloat, 90, 45, 180, -180, "single_2018_4.nc") ##ERAlevelAscend(2018, 5, startdays, start_lat, start_lon, "ascend_2018_kiruna_1.nc") # start_lat = 67.887382 Kiruna ERAlevelAscend(2018, 6, endascent, start_lat, start_lon, "ascend_2018_kiruna_2.nc") # start_lon = 21.081452 ERAlevelFloat(2018, 5, startdays, 90, 45, -180, 180, "float_2018_1.nc") ERAlevelFloat(2018, 6, days, 90, 45, -180, 180, "float_2018_2.nc") ERAlevelFloat(2018, 7, days, 90, 45, -180, 180, "float_2018_3.nc") ERAlevelFloat(2018, 8, endfloat, 90, 45, -180, 180, "float_2018_4.nc") #ERAlevelAscend(2016, 7, ['12', '13', '14'], start_lat, start_lon, "ascend_2016_kiruna_new.nc") #ERAsingle(2016, 7, ['12', '13', '14', '15', '16', '17', '18', '19'], 90, 45, 180, -180, "single_2016_new.nc") #ERAlevelFloat(2016, 7, ['12', '13', '14', '15', '16', '17', '18', '19'], 90, 45, -180, 180, "float_2016_new.nc")