1115 lines
44 KiB
Python
1115 lines
44 KiB
Python
import sys
|
|
import pickle
|
|
from pyfiglet import Figlet
|
|
import warnings
|
|
import numpy as np
|
|
import xarray as xr
|
|
import pandas as pd
|
|
import pickle as pkl
|
|
import cartopy.crs as ccrs
|
|
import astropy.units as unit
|
|
import matplotlib.pyplot as plt
|
|
from dask import delayed
|
|
from datetime import datetime
|
|
starttime = datetime.now()
|
|
print('----------------------------------------')
|
|
ascii_banner = Figlet(font="slant")
|
|
print(ascii_banner.renderText("BASTET"))
|
|
print("Ver. 1.0, 2021 by Marcel Frommelt")
|
|
print('----------------------------------------')
|
|
print("")
|
|
print("")
|
|
|
|
from netCDF4 import Dataset
|
|
from astropy.time import Time
|
|
from scipy import interpolate
|
|
from scipy.spatial import cKDTree
|
|
from scipy.integrate import solve_ivp
|
|
from input.user_input import *
|
|
from input.natural_constants import *
|
|
from models.gravity import grav
|
|
from models.valving import valving
|
|
from models.ballasting import ballasting
|
|
from dask.diagnostics import ProgressBar
|
|
from models.simple_atmosphere import T_air_simple, p_air_simple, rho_air_simple
|
|
from models.sun import sun_angles_analytical, tau
|
|
from models.drag import drag, cd_PalumboLow, cd_Palumbo, cd_PalumboHigh, cd_PalumboMC, cd_sphere
|
|
from models.transformation import visible_cells, transform, radii, transform2
|
|
from multiprocessing import Process
|
|
|
|
starttime = datetime.now()
|
|
|
|
if not sys.warnoptions:
|
|
warnings.simplefilter("ignore")
|
|
|
|
data = pd.read_excel(r'C:\Users\marcel\PycharmProjects\MasterThesis\Data_PoGo2016.xls', sheet_name='SuperTIGER2') # Tabelle3
|
|
|
|
comp_time = pd.DataFrame(data, columns=['Time']).to_numpy().squeeze()
|
|
comp_height = pd.DataFrame(data, columns=['Height']).to_numpy().squeeze()
|
|
comp_lat = pd.DataFrame(data, columns=['Latitude']).to_numpy().squeeze()
|
|
comp_lon = pd.DataFrame(data, columns=['Longitude']).to_numpy().squeeze()
|
|
|
|
print("")
|
|
print("INITIALISING SIMULATION...")
|
|
print("")
|
|
print("Launch location:")
|
|
print("longitude: %.4f deg" % (start_lon))
|
|
print("latitude: %.4f deg" % (start_lat))
|
|
print("Launch time: " + str(start_utc) + " (UTC)")
|
|
print("")
|
|
print("Reading ERA5-datasets, please wait.")
|
|
|
|
first_file = Dataset(ERA5_float[0])
|
|
last_file = Dataset(ERA5_float[-1])
|
|
|
|
tstart = int(first_file.variables['time'][0])
|
|
tend = int(last_file.variables['time'][-1])
|
|
|
|
first_file.close()
|
|
last_file.close()
|
|
|
|
df1 = xr.open_mfdataset(ERA5_float, combine='by_coords', engine='netcdf4', concat_dim="time", parallel=True)
|
|
float_data = df1.assign_coords(time=np.linspace(tstart, tend, (tend - tstart) + 1))
|
|
|
|
|
|
# ERA5 MULTI-LEVEL FLOAT (WIND + ATMOSPHERIC DATA DURING FLOAT)
|
|
|
|
ERAtime = float_data.variables['time'][:] # time
|
|
ERAlat1 = float_data.variables['latitude'][:].values # latitude [deg]
|
|
ERAlon1 = float_data.variables['longitude'][:].values # longitude [deg]
|
|
ERAz_float = float_data.variables['z'][:].values / g # geopotential [m^-2/s^-2] to geopotential height [m]
|
|
ERApress_float = float_data.variables['level'][:].values # pressure level [-]
|
|
ERAtemp_float = float_data.variables['t'][:].values # air temperature in [K]
|
|
vw_x_float = float_data.variables['u'][:].values # v_x in [m/s]
|
|
vw_y_float = float_data.variables['v'][:].values # v_y in [m/s]
|
|
vw_z_float = float_data.variables['w'][:].values # v_z in [m/s]
|
|
|
|
first_file = Dataset(ERA5_single[0])
|
|
last_file = Dataset(ERA5_single[-1])
|
|
|
|
tstart = int(first_file.variables['time'][0])
|
|
tend = int(last_file.variables['time'][-1])
|
|
|
|
first_file.close()
|
|
last_file.close()
|
|
|
|
df2 = xr.open_mfdataset(ERA5_single, combine='by_coords', engine='netcdf4', concat_dim="time", parallel=True)
|
|
single_data = df2.assign_coords(time=np.linspace(tstart, tend, (tend - tstart) + 1))
|
|
|
|
|
|
# ERA5 SINGLE-LEVEL (RADIATIVE ENVIRONMENT)
|
|
|
|
ERAlat2 = single_data.variables['latitude'][:].values # latitude [deg]
|
|
ERAlon2 = single_data.variables['longitude'][:].values # longitude [deg]
|
|
ERAtcc = single_data.variables['tcc'][:].values # total cloud cover [-]
|
|
ERAskt = single_data.variables['skt'][:].values # skin (ground) temperature in [K]
|
|
ERAcbh = single_data.variables['cbh'][:].values # cloud base height in [m]
|
|
ERAlcc = single_data.variables['lcc'][:].values # low cloud cover [-]
|
|
ERAmcc = single_data.variables['mcc'][:].values # medium cloud cover [-]
|
|
ERAhcc = single_data.variables['hcc'][:].values # high cloud cover [-]
|
|
ERAssr = single_data.variables['ssr'][:].values # hourly accumulated surface net solar radiation [J/m^2]
|
|
ERAstrn = single_data.variables['str'][:].values # hourly accumulated surface net thermal radiation [J/m^2]
|
|
ERAstrd = single_data.variables['strd'][:].values # hourly accumulated surface thermal radiation downwards [J/m^2]
|
|
ERAssrd = single_data.variables['ssrd'][:].values # hourly accumulated surface solar radiation downwards [J/m^2]
|
|
ERAtsr = single_data.variables['tsr'][:].values # hourly accumulated top net solar radiation [J/m^2]
|
|
ERAttr = single_data.variables['ttr'][:].values # hourly accumulated top net thermal radiation [J/m^2]
|
|
ERAtisr = single_data.variables['tisr'][:].values # hourly accumulated TOA incident solar radiation [J/m^2]
|
|
ERAstrdc = single_data.variables['strdc'][:].values # hourly accumulated surface thermal radiation downward clear-sky [J/m^2]
|
|
ERAsp = single_data.variables['sp'][:].values # surface pressure in [Pa]
|
|
|
|
first_file = Dataset(ERA5_ascent[0])
|
|
last_file = Dataset(ERA5_ascent[-1])
|
|
|
|
tstart = int(first_file.variables['time'][0])
|
|
tend = int(last_file.variables['time'][-1])
|
|
|
|
first_file.close()
|
|
last_file.close()
|
|
|
|
df3 = xr.open_mfdataset(ERA5_ascent, combine='by_coords', engine='netcdf4', concat_dim="time", parallel=True)
|
|
ascent_data = df3.assign_coords(time=np.linspace(tstart, tend, (tend - tstart) + 1))
|
|
|
|
|
|
# ERA5 MULTI-LEVEL ASCENT (WIND + ATMOSPHERIC DATA DURING ASCENT)
|
|
|
|
ERAlat0 = ascent_data.variables['latitude'][:].values # latitude [deg]
|
|
ERAlon0 = ascent_data.variables['longitude'][:].values # longitude [deg]
|
|
ERAz_ascent = ascent_data.variables['z'][:].values / g # geopotential [m^-2/s^-2] to geopotential height [m]
|
|
ERApress_ascent = ascent_data.variables['level'][:].values # pressure level [-]
|
|
ERAtemp_ascent = ascent_data.variables['t'][:].values # air temperature in K
|
|
vw_x_ascent = ascent_data.variables['u'][:].values # v_x in [m/s]
|
|
vw_y_ascent = ascent_data.variables['v'][:].values # v_y in [m/s]
|
|
vw_z_ascent = ascent_data.variables['w'][:].values # v_z in [m/s]
|
|
|
|
ascent_data.close()
|
|
|
|
print("Finished reading ERA5-datasets.")
|
|
|
|
lon_era2d0, lat_era2d0 = np.meshgrid(ERAlon0, ERAlat0)
|
|
lon_era2d1, lat_era2d1 = np.meshgrid(ERAlon1, ERAlat1)
|
|
lon_era2d2, lat_era2d2 = np.meshgrid(ERAlon2, ERAlat2)
|
|
|
|
xs0, ys0, zs0 = transform(lon_era2d0.flatten(), lat_era2d0.flatten())
|
|
xs1, ys1, zs1 = transform(lon_era2d1.flatten(), lat_era2d1.flatten())
|
|
xs2, ys2, zs2 = transform(lon_era2d2.flatten(), lat_era2d2.flatten())
|
|
|
|
print("")
|
|
tree0 = cKDTree(np.column_stack((xs0, ys0, zs0)))
|
|
tree1 = cKDTree(np.column_stack((xs1, ys1, zs1)))
|
|
tree2 = cKDTree(np.column_stack((xs2, ys2, zs2)))
|
|
print("Built kd-trees.")
|
|
print("")
|
|
|
|
wflag1, wflag2, wflag3, wflag4, wflag5, wflag6, wflag7, wflag8, wflag9, wflag10, wflag11, wflag12, wflag13, wflag14, wflag15, wflag16, wflag17, wflag18, wflag19 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
|
|
flag_arr = np.zeros(20)
|
|
|
|
def ERA5Data(lon, lat, h, t, deltaT_ERA, flag_arr):
|
|
t_epoch = deltaT_ERA + t / 3600
|
|
|
|
t_pre = int(t_epoch)
|
|
t_pre_ind = t_pre - int(ERAtime[0])
|
|
t_post_ind = t_pre_ind + 1
|
|
|
|
xt, yt, zt = transform(lon, lat) # current coordinates
|
|
|
|
d0, inds0 = tree0.query(np.column_stack((xt, yt, zt)), k=4)
|
|
d1, inds1 = tree1.query(np.column_stack((xt, yt, zt)), k=4) # longitude, latitude
|
|
d2, inds2 = tree2.query(np.column_stack((xt, yt, zt)), k=visible_cells(h)) # longitude, latitude visible_cells(h)
|
|
|
|
w0 = 1.0 / d0[0]
|
|
w1 = 1.0 / d1[0]
|
|
w2 = 1.0 / d2[0] ** 2
|
|
|
|
lat_ind0 = np.unravel_index(inds0[0], lon_era2d0.shape)[0]
|
|
lon_ind0 = np.unravel_index(inds0[0], lon_era2d0.shape)[1]
|
|
lat_ind1 = np.unravel_index(inds1[0], lon_era2d1.shape)[0]
|
|
lon_ind1 = np.unravel_index(inds1[0], lon_era2d1.shape)[1]
|
|
lat_ind2 = np.unravel_index(inds2[0], lon_era2d2.shape)[0]
|
|
lon_ind2 = np.unravel_index(inds2[0], lon_era2d2.shape)[1]
|
|
|
|
if h >= 30000:
|
|
try:
|
|
interp4d_temp_pre = np.ma.dot(w1, ERAtemp_float[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1)
|
|
interp4d_temp_post = np.ma.dot(w1, ERAtemp_float[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1)
|
|
interp4d_temp = (interp4d_temp_post - interp4d_temp_pre) * (t_epoch - t_pre) + interp4d_temp_pre
|
|
|
|
interp4d_height_pre = np.ma.dot(w1, ERAz_float[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1)
|
|
interp4d_height_post = np.ma.dot(w1, ERAz_float[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1)
|
|
interp4d_height = (interp4d_height_post - interp4d_height_pre) * (t_epoch - t_pre) + interp4d_height_pre
|
|
|
|
interp4d_vw_x_pre = np.ma.dot(w1, vw_x_float[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1)
|
|
interp4d_vw_x_post = np.ma.dot(w1, vw_x_float[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1)
|
|
interp4d_vw_x = (interp4d_vw_x_post - interp4d_vw_x_pre) * (t_epoch - t_pre) + interp4d_vw_x_pre
|
|
|
|
interp4d_vw_y_pre = np.ma.dot(w1, vw_y_float[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1)
|
|
interp4d_vw_y_post = np.ma.dot(w1, vw_y_float[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1)
|
|
interp4d_vw_y = (interp4d_vw_y_post - interp4d_vw_y_pre) * (t_epoch - t_pre) + interp4d_vw_y_pre
|
|
|
|
interp4d_vw_z_pre = np.ma.dot(w1, vw_z_float[t_pre_ind, :, lat_ind1, lon_ind1]) / np.sum(w1)
|
|
interp4d_vw_z_post = np.ma.dot(w1, vw_z_float[t_post_ind, :, lat_ind1, lon_ind1]) / np.sum(w1)
|
|
interp4d_vw_z = (interp4d_vw_z_post - interp4d_vw_z_pre) * (t_epoch - t_pre) + interp4d_vw_z_pre
|
|
|
|
pressure_hPa = np.array([1, 2, 3, 5, 7, 10, 20]) # !!!
|
|
|
|
pressure = 100 * pressure_hPa
|
|
|
|
temp_interp1d = interpolate.interp1d(interp4d_height, interp4d_temp)
|
|
press_interp1d = interpolate.interp1d(interp4d_height, pressure)
|
|
vw_x_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_x)
|
|
vw_y_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_y)
|
|
vw_z_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_z)
|
|
|
|
except IndexError:
|
|
if flag_arr[18] == 0:
|
|
print("Error: Please check time range of ERA5 data!")
|
|
flag_arr[18] = 1
|
|
else:
|
|
flag_arr[18] = 1
|
|
|
|
elif np.abs(lat - start_lat) <= 10.0 and np.abs(lon - start_lon) <= 10.0:
|
|
try:
|
|
interp4d_temp_pre = np.ma.dot(w0, ERAtemp_ascent[t_pre_ind, :, lat_ind0, lon_ind0]) / np.sum(w0)
|
|
interp4d_temp_post = np.ma.dot(w0, ERAtemp_ascent[t_post_ind, :, lat_ind0, lon_ind0]) / np.sum(w0)
|
|
interp4d_temp = (interp4d_temp_post - interp4d_temp_pre) * (t_epoch - t_pre) + interp4d_temp_pre
|
|
|
|
interp4d_height_pre = np.ma.dot(w0, ERAz_ascent[t_pre_ind, :, lat_ind0, lon_ind0]) / np.sum(w0)
|
|
interp4d_height_post = np.ma.dot(w0, ERAz_ascent[t_post_ind, :, lat_ind0, lon_ind0]) / np.sum(w0)
|
|
interp4d_height = (interp4d_height_post - interp4d_height_pre) * (t_epoch - t_pre) + interp4d_height_pre
|
|
|
|
interp4d_vw_x_pre = np.ma.dot(w0, vw_x_ascent[t_pre_ind, :, lat_ind0, lon_ind0]) / np.sum(w0)
|
|
interp4d_vw_x_post = np.ma.dot(w0, vw_x_ascent[t_post_ind, :, lat_ind0, lon_ind0]) / np.sum(w0)
|
|
interp4d_vw_x = (interp4d_vw_x_post - interp4d_vw_x_pre) * (t_epoch - t_pre) + interp4d_vw_x_pre
|
|
|
|
interp4d_vw_y_pre = np.ma.dot(w0, vw_y_ascent[t_pre_ind, :, lat_ind0, lon_ind0]) / np.sum(w0)
|
|
interp4d_vw_y_post = np.ma.dot(w0, vw_y_ascent[t_post_ind, :, lat_ind0, lon_ind0]) / np.sum(w0)
|
|
interp4d_vw_y = (interp4d_vw_y_post - interp4d_vw_y_pre) * (t_epoch - t_pre) + interp4d_vw_y_pre
|
|
|
|
interp4d_vw_z_pre = np.ma.dot(w0, vw_z_ascent[t_pre_ind, :, lat_ind0, lon_ind0]) / np.sum(w0)
|
|
interp4d_vw_z_post = np.ma.dot(w0, vw_z_ascent[t_post_ind, :, lat_ind0, lon_ind0]) / np.sum(w0)
|
|
interp4d_vw_z = (interp4d_vw_z_post - interp4d_vw_z_pre) * (t_epoch - t_pre) + interp4d_vw_z_pre
|
|
|
|
pressure_hPa = np.array(
|
|
[1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400,
|
|
450, 500, 550, 600, 650, 700, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000])
|
|
|
|
pressure = 100 * pressure_hPa
|
|
|
|
temp_interp1d = interpolate.interp1d(interp4d_height, interp4d_temp)
|
|
press_interp1d = interpolate.interp1d(interp4d_height, pressure)
|
|
vw_x_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_x)
|
|
vw_y_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_y)
|
|
vw_z_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_z)
|
|
|
|
except IndexError:
|
|
if flag_arr[19] == 0:
|
|
print("Error: Check time range of ERA5 data!")
|
|
flag_arr[19] = 1
|
|
else:
|
|
flag_arr[19] = 1
|
|
|
|
else:
|
|
pass
|
|
|
|
tcc_pre = np.ma.dot(w2, ERAtcc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
tcc_post = np.ma.dot(w2, ERAtcc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
tcc = (tcc_post - tcc_pre) * (t_epoch - t_pre) + tcc_pre
|
|
|
|
if isinstance(tcc, float) != True:
|
|
if flag_arr[1] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"tcc\"!")
|
|
print("Assuming simplified value for parameter \"tcc\".")
|
|
flag_arr[1] = 1
|
|
else:
|
|
flag_arr[1] = 1
|
|
|
|
tcc = cc
|
|
|
|
cbh_pre = np.ma.dot(w2, ERAcbh[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
cbh_post = np.ma.dot(w2, ERAcbh[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
cbh = (cbh_post - cbh_pre) * (t_epoch - t_pre) + cbh_pre
|
|
|
|
if isinstance(tcc, float) != True:
|
|
if flag_arr[2] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"cbh\"!")
|
|
print("Assuming simplified value for parameter \"cbh\".")
|
|
flag_arr[2] = 1
|
|
else:
|
|
flag_arr[2] = 1
|
|
|
|
cbh = 2000
|
|
|
|
lcc_pre = np.ma.dot(w2, ERAlcc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
lcc_post = np.ma.dot(w2, ERAlcc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
lcc = (lcc_post - lcc_pre) * (t_epoch - t_pre) + lcc_pre
|
|
|
|
if isinstance(lcc, float) != True:
|
|
if flag_arr[3] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"lcc\"!")
|
|
print("Assuming simplified value for parameter \"lcc\".")
|
|
flag_arr[3] = 1
|
|
else:
|
|
flag_arr[3] = 1
|
|
|
|
lcc = cc/3
|
|
|
|
mcc_pre = np.ma.dot(w2, ERAmcc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
mcc_post = np.ma.dot(w2, ERAmcc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
mcc = (mcc_post - mcc_pre) * (t_epoch - t_pre) + mcc_pre
|
|
|
|
if isinstance(mcc, float) != True:
|
|
if flag_arr[4] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"mcc\"!")
|
|
print("Assuming simplified value for parameter \"mcc\".")
|
|
flag_arr[4] = 1
|
|
else:
|
|
flag_arr[4] = 1
|
|
|
|
mcc = cc/3
|
|
|
|
hcc_pre = np.ma.dot(w2, ERAhcc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
hcc_post = np.ma.dot(w2, ERAhcc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
hcc = (hcc_post - hcc_pre) * (t_epoch - t_pre) + hcc_pre
|
|
|
|
if isinstance(hcc, float) != True:
|
|
if flag_arr[5] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"hcc\"!")
|
|
print("Assuming simplified value for parameter \"hcc\".")
|
|
flag_arr[5] = 1
|
|
else:
|
|
flag_arr[5] = 1
|
|
|
|
hcc = cc/3
|
|
|
|
ssr_pre = np.ma.dot(w2, ERAssr[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
ssr_post = np.ma.dot(w2, ERAssr[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
ssr = ((ssr_post - ssr_pre) * (t_epoch - t_pre) + ssr_pre) / 3600
|
|
|
|
strn_pre = np.ma.dot(w2, ERAstrn[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
strn_post = np.ma.dot(w2, ERAstrn[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
strn = ((strn_post - strn_pre) * (t_epoch - t_pre) + strn_pre) / 3600
|
|
|
|
if isinstance(strn, float) != True:
|
|
if flag_arr[6] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"strn\"!")
|
|
print("Assuming simplified value for parameter \"strn\".")
|
|
flag_arr[6] = 1
|
|
else:
|
|
flag_arr[6] = 1
|
|
|
|
strn = 0
|
|
|
|
skt_pre = np.ma.dot(w2, ERAskt[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
skt_post = np.ma.dot(w2, ERAskt[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
skt = ((skt_post - skt_pre) * (t_epoch - t_pre) + skt_pre)
|
|
|
|
if isinstance(skt, float) != True:
|
|
if flag_arr[7] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"skt\"!")
|
|
print("Assuming simplified value for parameter \"skt\".")
|
|
flag_arr[7] = 1
|
|
else:
|
|
flag_arr[7] = 1
|
|
|
|
skt = T_ground
|
|
|
|
strd_pre = np.ma.dot(w2, ERAstrd[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
strd_post = np.ma.dot(w2, ERAstrd[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
strd = ((strd_post - strd_pre) * (t_epoch - t_pre) + strd_pre) / 3600
|
|
|
|
if isinstance(strd, float) != True:
|
|
if flag_arr[8] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"strd\"!")
|
|
print("Assuming simplified value for parameter \"strd\".")
|
|
flag_arr[8] = 1
|
|
else:
|
|
flag_arr[8] = 1
|
|
|
|
strd = epsilon_ground * sigma * T_ground ** 4
|
|
|
|
strdc_pre = np.ma.dot(w2, ERAstrdc[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
strdc_post = np.ma.dot(w2, ERAstrdc[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
strdc = ((strdc_post - strdc_pre) * (t_epoch - t_pre) + strdc_pre) / 3600
|
|
|
|
if isinstance(strdc, float) != True:
|
|
if flag_arr[9] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"strdc\"!")
|
|
print("Assuming simplified value for parameter \"strdc\".")
|
|
flag_arr[9] = 1
|
|
else:
|
|
flag_arr[9] = 1
|
|
|
|
strdc = epsilon_ground * sigma * T_ground ** 4
|
|
|
|
ssrd_pre = np.ma.dot(w2, ERAssrd[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
ssrd_post = np.ma.dot(w2, ERAssrd[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
ssrd = ((ssrd_post - ssrd_pre) * (t_epoch - t_pre) + ssrd_pre) / 3600
|
|
|
|
if isinstance(ssrd, float) != True:
|
|
if flag_arr[10] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"ssrd\"!")
|
|
print("Assuming simplified value for parameter \"ssrd\".")
|
|
flag_arr[10] = 1
|
|
else:
|
|
flag_arr[10] = 1
|
|
|
|
ssrd = 1
|
|
ssr = 1 - Albedo
|
|
|
|
if isinstance(ssr, float) != True:
|
|
if flag_arr[11] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"ssr\"!")
|
|
print("Assuming simplified value for parameter \"ssr\".")
|
|
flag_arr[11] = 1
|
|
else:
|
|
flag_arr[11] = 1
|
|
|
|
ssrd = 1
|
|
ssr = 1 - Albedo
|
|
|
|
tsr_pre = np.ma.dot(w2, ERAtsr[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
tsr_post = np.ma.dot(w2, ERAtsr[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
tsr = ((tsr_post - tsr_pre) * (t_epoch - t_pre) + tsr_pre) / 3600
|
|
|
|
tisr_pre = np.ma.dot(w2, ERAtisr[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
tisr_post = np.ma.dot(w2, ERAtisr[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
tisr = ((tisr_post - tisr_pre) * (t_epoch - t_pre) + tisr_pre) / 3600
|
|
|
|
if isinstance(tisr, float) != True:
|
|
if flag_arr[12] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"tisr\"!")
|
|
print("Assuming simplified value for parameter \"tisr\".")
|
|
flag_arr[12] = 1
|
|
else:
|
|
flag_arr[12] = 1
|
|
|
|
utc = deltaT_ERA * unit.second * 3600 + Time('1900-01-01 00:00:00.0')
|
|
AZ, ELV = sun_angles_analytical(lat, lon, h, utc)
|
|
MA = (357.52911 + 0.98560028 * (utc.jd - 2451545)) % 360 # in degree, reference: see folder "literature"
|
|
TA = MA + 2 * e * np.sin(np.deg2rad(MA)) + 5 / 4 * e ** 2 * np.sin(np.deg2rad(2 * MA))
|
|
I_Sun = 1367.5 * ((1 + e * np.cos(np.deg2rad(TA))) / (1 - e ** 2)) ** 2
|
|
tisr = I_Sun * np.sin(np.deg2rad(ELV))
|
|
|
|
if isinstance(tsr, float) != True:
|
|
if flag_arr[13] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"tsr\"!")
|
|
print("Assuming simplified value for parameter \"tsr\".")
|
|
flag_arr[13] = 1
|
|
else:
|
|
flag_arr[13] = 1
|
|
|
|
tsr = (1 - Albedo) * tisr
|
|
|
|
ttr_pre = np.ma.dot(w2, ERAttr[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
ttr_post = np.ma.dot(w2, ERAttr[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
ttr = ((ttr_post - ttr_pre) * (t_epoch - t_pre) + ttr_pre) / 3600
|
|
|
|
p0_pre = np.ma.dot(w2, ERAsp[t_pre_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
p0_post = np.ma.dot(w2, ERAsp[t_post_ind, lat_ind2, lon_ind2]) / np.sum(w2)
|
|
p0 = (p0_post - p0_pre) * (t_epoch - t_pre) + p0_pre
|
|
|
|
if isinstance(p0, float) != True:
|
|
if flag_arr[14] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"sp\"!")
|
|
print("Assuming simplified value for parameter \"sp\".")
|
|
flag_arr[14] = 1
|
|
else:
|
|
flag_arr[14] = 1
|
|
p0 = 101325.0
|
|
|
|
if isinstance(ttr, float) != True:
|
|
if flag_arr[15] == 0:
|
|
print("WARNING: Corrupt or missing ERA5 Data for parameter \"ttr\"!")
|
|
print("Assuming simplified value for parameter \"ttr\".")
|
|
flag_arr[15] = 1
|
|
else:
|
|
flag_arr[15] = 1
|
|
|
|
utc = deltaT_ERA * unit.second * 3600 + Time('1900-01-01 00:00:00.0')
|
|
AZ, ELV = sun_angles_analytical(lat, lon, h, utc)
|
|
tau_atm, tau_atmIR = tau(ELV, h, p_air, p0)
|
|
HalfConeAngle = np.arcsin(R_E / (R_E + h))
|
|
ViewFactor = (1 - np.cos(HalfConeAngle)) / 2
|
|
ttr = epsilon_ground * sigma * T_ground ** 4 * tau_atmIR * ViewFactor * 2
|
|
|
|
if h > np.amax(interp4d_height):
|
|
if flag_arr[16] == 0:
|
|
print("WARNING: Balloon altitude above interpolation area!")
|
|
flag_arr[16] = 1
|
|
else:
|
|
flag_arr[16] = 1
|
|
|
|
p_air = press_interp1d(np.amax(interp4d_height))
|
|
T_air = temp_interp1d(np.amax(interp4d_height))
|
|
u = vw_x_interp1d(np.amax(interp4d_height))
|
|
v = vw_y_interp1d(np.amax(interp4d_height))
|
|
w = -1 / grav(lat, h) * vw_z_interp1d(np.amax(interp4d_height)) * R_air * T_air / p_air
|
|
|
|
elif h < np.amin(interp4d_height):
|
|
if flag_arr[17] == 0:
|
|
print("WARNING: Balloon altitude below interpolation area!")
|
|
flag_arr[17] = 1
|
|
else:
|
|
flag_arr[17] = 1
|
|
|
|
p_air = press_interp1d(np.amin(interp4d_height))
|
|
T_air = temp_interp1d(np.amin(interp4d_height))
|
|
u = vw_x_interp1d(np.amin(interp4d_height))
|
|
v = vw_y_interp1d(np.amin(interp4d_height))
|
|
w = -1 / grav(lat, h) * vw_z_interp1d(np.amin(interp4d_height)) * R_air * T_air / p_air
|
|
|
|
else:
|
|
p_air = press_interp1d(h)
|
|
T_air = temp_interp1d(h)
|
|
u = vw_x_interp1d(h)
|
|
v = vw_y_interp1d(h)
|
|
w = -1 / grav(lat, h) * vw_z_interp1d(h) * R_air * T_air / p_air
|
|
|
|
rho_air = p_air / (R_air * T_air)
|
|
|
|
return p_air, p0, T_air, rho_air, u, v, w, cbh, tcc, lcc, mcc, hcc, ssr, strn, strd, strdc, ssrd, tsr, ttr, tisr, skt
|
|
|
|
t_start = Time(start_utc)
|
|
|
|
m_gas_init = ((m_pl + m_film + m_bal_init) * (FreeLift / 100 + 1)) / (R_gas / R_air - 1)
|
|
|
|
deltaT_ERA = (t_start.jd - Time('1900-01-01 00:00:00.0').jd) * 24.000000
|
|
p_air0, p00, T_air0, rho_air0, u0, v0, w0, cbh0, tcc0, lcc0, mcc0, hcc0, ssr0, strn0, strd0, strdc0, ssrd0, tsr0, ttr0, tisr0, skt0 = ERA5Data(start_lon, start_lat, start_height, 0, deltaT_ERA, flag_arr)
|
|
|
|
|
|
A_top0 = np.pi/4 * 1.383 ** 2 * (m_gas_init * R_gas * T_air0 / p_air0) ** (2/3)
|
|
|
|
y0 = [
|
|
start_lon, # start longitude [deg]
|
|
start_lat, # start latitude [deg]
|
|
start_height, # start altitude [m]
|
|
0, # initial v_x [m/s]
|
|
0, # initial v_y [m/s]
|
|
0, # initial v_z [m/s]
|
|
T_air0, # initial gas temperature [K] = initial air temperature [K]
|
|
T_air0, # initial film temperature [K] = initial air temperature [K]
|
|
m_gas_init, # initial lifting gas mass [kg]
|
|
0, # initial factor c2 [-]
|
|
m_bal_init # initial ballast mass [kg]
|
|
]
|
|
|
|
|
|
t_list, h_list, v_list = [], [], []
|
|
lat_list, lon_list = [], []
|
|
p_list, rho_list = [], []
|
|
Temp_list, Tgas_list, T_film_list = [], [], []
|
|
rhog_list = []
|
|
V_b_list = []
|
|
Q_Albedo_list = []
|
|
Q_IREarth_list = []
|
|
Q_Sun_list = []
|
|
Q_IRFilm_list = []
|
|
Q_IRout_list = []
|
|
Q_ConvExt_list = []
|
|
Q_ConvInt_list = []
|
|
utc_list = []
|
|
ssr_list = []
|
|
ssrd_list = []
|
|
ttr_list = []
|
|
strd_list = []
|
|
strn_list = []
|
|
tisr_list = []
|
|
tsr_list = []
|
|
|
|
|
|
|
|
def model(t, y, m_pl, m_film, c_virt, A_top0, t_start):
|
|
utc = t_start + t * unit.second
|
|
lon = y[0] # 1
|
|
lat = y[1] # 2
|
|
h = y[2] # 3
|
|
v_x = y[3] # 4
|
|
v_y = y[4] # 5
|
|
v_z = y[5] # 6
|
|
T_gas = y[6] # 7
|
|
T_film = y[7] # 8
|
|
m_gas = y[8] # 9
|
|
c2 = y[9] # 10
|
|
m_bal = y[10] # 11
|
|
|
|
if (lon % 360) > 180: # convert longitude to value in standard interval [-180, 180]
|
|
lon = (lon % 360) - 360
|
|
else:
|
|
lon = (lon % 360)
|
|
|
|
if lat > 90: # set plausible limits for latitudes
|
|
lat = 90
|
|
elif lat < -90:
|
|
lat = -90
|
|
else:
|
|
lat = lat
|
|
|
|
if h > 53700:
|
|
h = 53700
|
|
elif h < 0:
|
|
h = 0
|
|
else:
|
|
h = h
|
|
|
|
h_list.append(h)
|
|
utc_list.append(utc)
|
|
lat_list.append(lat)
|
|
lon_list.append(lon)
|
|
Tgas_list.append(T_gas)
|
|
T_film_list.append(T_film)
|
|
|
|
|
|
r_lon, r_lat = radii(lat, h) # calculate radii for velocity conversion between cartesian and Earth reference frame
|
|
|
|
deltaT_ERA = (t_start.jd - Time('1900-01-01 00:00:00.0').jd) * 24.000000 # conversion to ERA5 time format
|
|
|
|
AZ, ELV = sun_angles_analytical(lat, lon, h, utc)
|
|
|
|
MA = (357.52911 + 0.98560028 * (utc.jd - 2451545)) % 360 # in degree, reference: see folder "literature"
|
|
TA = MA + 2 * e * np.sin(np.deg2rad(MA)) + 5 / 4 * e ** 2 * np.sin(np.deg2rad(2 * MA))
|
|
|
|
I_Sun = 1367.5 * ((1 + e * np.cos(np.deg2rad(TA))) / (1 - e ** 2)) ** 2
|
|
|
|
HalfConeAngle = np.arcsin(R_E / (R_E + h))
|
|
ViewFactor = (1 - np.cos(HalfConeAngle)) / 2
|
|
|
|
try:
|
|
p_air, p0, T_air, rho_air, u, v, w, cbh, tcc, lcc, mcc, hcc, ssr, strn, strd, strdc, ssrd, tsr, ttr, tisr, skt = ERA5Data(lon, lat, h, t, deltaT_ERA, flag_arr)
|
|
tau_atm, tau_atmIR = tau(ELV, h, p_air, p0)
|
|
tau_atm0, tau_atmIR0 = tau(ELV, 0, p0, p0)
|
|
I_SunZ = I_Sun * tau_atm
|
|
I_Sun0 = I_Sun * tau_atm0
|
|
except:
|
|
# in case of solver (temporarily) exceeding interpolation area (with subsequent correction by the solver itself)
|
|
# or permanent drift out of interpolation area
|
|
if h >= 30000 or (np.abs(lat - start_lat) <= 10.0 and np.abs(lon - start_lon) <= 10.0):
|
|
p0 = 101325
|
|
p_air = p_air_simple(h)
|
|
tau_atm, tau_atmIR = tau(ELV, h, p_air, p0)
|
|
tau_atm0, tau_atmIR0 = tau(ELV, 0, p0, p0)
|
|
I_SunZ = I_Sun * tau_atm
|
|
I_Sun0 = I_Sun * tau_atm0
|
|
|
|
p_air, p0, T_air, rho_air, u, v, w, cbh, tcc, lcc, mcc, hcc, ssr, strn, strd, strdc, ssrd, tsr, ttr, tisr, skt = p_air_simple(h), 101325, T_air_simple(h), rho_air_simple(h), 0, 0, 0, 2000, cc, cc/3, cc/3, cc/3, (1 - Albedo), 0, (epsilon_ground * sigma * T_ground ** 4), (epsilon_ground * sigma * T_ground ** 4), 1, (1 - Albedo) * (I_Sun * np.sin(np.deg2rad(ELV))), (epsilon_ground * sigma * T_ground ** 4 * tau_atmIR * ViewFactor * 2), (I_Sun * np.sin(np.deg2rad(ELV))), T_ground
|
|
else:
|
|
p0 = 101325
|
|
p_air = p_air_simple(h)
|
|
tau_atm, tau_atmIR = tau(ELV, h, p_air, p0)
|
|
tau_atm0, tau_atmIR0 = tau(ELV, 0, p0, p0)
|
|
I_SunZ = I_Sun * tau_atm
|
|
I_Sun0 = I_Sun * tau_atm0
|
|
p_air, p0, T_air, rho_air, u, v, w, cbh, tcc, lcc, mcc, hcc, ssr, strn, strd, strdc, ssrd, tsr, ttr, tisr, skt = p_air_simple(h), 101325, T_air_simple(h), rho_air_simple(h), 0, 0, 0, 2000, cc, cc/3, cc/3, cc/3, (1 - Albedo), 0, (epsilon_ground * sigma * T_ground ** 4), (epsilon_ground * sigma * T_ground ** 4), 1, (1 - Albedo) * (I_Sun * np.sin(np.deg2rad(ELV))), (epsilon_ground * sigma * T_ground ** 4 * tau_atmIR * ViewFactor * 2), (I_Sun * np.sin(np.deg2rad(ELV))), T_ground
|
|
|
|
p_gas = p_air
|
|
|
|
h_valve = 1.034 * V_design ** (1 / 3)
|
|
h_duct = 0.47 * h_valve
|
|
|
|
v_relx = u - v_x # relative wind velocity x-dir (balloon frame)
|
|
v_rely = v - v_y # relative wind velocity y-dir (balloon frame)
|
|
v_relz = w - v_z # relative wind velocity z-dir (balloon frame)
|
|
|
|
v_rel = np.sqrt(v_relx ** 2 + v_rely ** 2 + v_relz ** 2) # total relative wind velocity (balloon frame)
|
|
|
|
alpha = np.arcsin(v_relz / v_rel) # "angle of attack": angle between longitudinal axis and rel. wind (in [rad])
|
|
|
|
rho_gas = p_gas / (R_gas * T_gas) # calculate gas density through *ideal* gas equation
|
|
|
|
dP_valve = grav(lat, h) * (rho_air - rho_gas) * h_valve
|
|
dP_duct = grav(lat, h) * (rho_air - rho_gas) * h_duct
|
|
|
|
if m_gas < 0: # limit gas mass to plausible value
|
|
m_gas = 0
|
|
|
|
V_b = m_gas / rho_gas # calculate balloon volume from current gas mass and gas density
|
|
rhog_list.append(rho_gas)
|
|
|
|
if V_b > V_design:
|
|
c_duct = c_ducts
|
|
elif V_b < 0:
|
|
c_duct = 0
|
|
V_b = 1.0
|
|
else:
|
|
c_duct = 0
|
|
|
|
V_b_list.append(V_b)
|
|
|
|
if ballasting(utc) == True:
|
|
if m_bal >= 0:
|
|
mdot = m_baldot
|
|
else:
|
|
mdot = 0
|
|
else:
|
|
mdot = 0
|
|
|
|
if valving(utc) == True: # opening valve process
|
|
if c2 == 0:
|
|
c2 = 1.0
|
|
c2dot = 0
|
|
elif c_valve < c2 <= 1.0:
|
|
c2dot = (c_valve - 1.0) / t_open
|
|
else:
|
|
c2dot = 0
|
|
c2 = c_valve
|
|
|
|
if valving(utc) == False: # closing valve process
|
|
if c2 == 0:
|
|
c2dot = 0
|
|
elif c_valve <= c2 < 1.0:
|
|
c2dot = (1.0 - c_valve) / t_close
|
|
else:
|
|
c2dot = 0
|
|
c2 = 0
|
|
|
|
m_gross = m_pl + m_film + m_bal
|
|
m_tot = m_pl + m_film + m_gas
|
|
m_virt = m_tot + c_virt * rho_air * V_b
|
|
|
|
d_b = 1.383 * V_b ** (1 / 3) # calculate diameter of balloon from its volume
|
|
L_goreB = 1.914 * V_b ** (1 / 3)
|
|
A_surf = 4.94 * V_b ** (2 / 3)
|
|
A_surf1 = 4.94 * V_design ** (2 / 3) * (1 - np.cos(np.pi * L_goreB / L_goreDesign))
|
|
A_eff = 0.65 * A_surf + 0.35 * A_surf1
|
|
A_top = np.pi / 4 * d_b ** 2
|
|
A_top0 = A_top0
|
|
|
|
A_proj = A_top * (0.9125 + 0.0875 * np.cos(np.pi - 2 * np.deg2rad(ELV))) # projected area for sun radiation
|
|
A_drag = A_top * (0.9125 + 0.0875 * np.cos(np.pi - 2 * alpha)) # projected area for drag
|
|
|
|
# CALCULATIONS FOR THERMAL MODEL
|
|
|
|
if simple == True:
|
|
|
|
q_IREarth = epsilon_ground * sigma * T_ground ** 4 * tau_atmIR
|
|
|
|
if ELV <= 0:
|
|
q_Albedo = 0
|
|
else:
|
|
q_Albedo = Albedo * I_Sun * np.sin(np.deg2rad(ELV))
|
|
|
|
Q_Albedo = alpha_VIS * A_surf * q_Albedo * ViewFactor * (1 + tau_VIS / (1 - r_VIS))
|
|
Q_IREarth = alpha_IR * A_surf * q_IREarth * ViewFactor * (1 + tau_IR / (1 - r_IR))
|
|
|
|
q_sun = I_SunZ
|
|
|
|
else:
|
|
|
|
if tcc <= 0.01:
|
|
|
|
q_IREarth1 = alpha_IR * A_surf * (strd - strn) * tau_atmIR * ViewFactor * (1 + tau_VIS / (1 - r_VIS))
|
|
q_IREarth2 = alpha_IR * A_surf * np.abs(ttr) * 0.5 * (1 + tau_IR / (1 - r_IR))
|
|
# q_IREarth2 = alpha_IR * A_surf * (0.04321906 * np.abs(ttr) + 84.67820281) * (1 + tau_IR / (1 - r_IR))
|
|
|
|
if h > 40000:
|
|
Q_IREarth = q_IREarth2
|
|
else:
|
|
Q_IREarth = (q_IREarth2 - q_IREarth1) / 40000 * h + q_IREarth1
|
|
|
|
if ELV <= 0:
|
|
q_Albedo1 = 0
|
|
q_Albedo2 = 0
|
|
else:
|
|
if ssrd == 0:
|
|
q_Albedo1 = 0
|
|
else:
|
|
q_Albedo1 = alpha_VIS * A_surf * (1 - ssr / ssrd) * I_Sun0 * tau_atmIR * np.sin(
|
|
np.deg2rad(ELV)) * ViewFactor * (1 + tau_VIS / (1 - r_VIS)) # !
|
|
if tisr == 0:
|
|
q_Albedo2 = 0
|
|
else:
|
|
q_Albedo2 = alpha_VIS * A_surf * (1 - tsr / tisr) * I_Sun * np.sin(np.deg2rad(ELV)) * 0.5 * (
|
|
1 + tau_VIS / (1 - r_VIS)) # !
|
|
if h > 40000:
|
|
Q_Albedo = q_Albedo2
|
|
else:
|
|
Q_Albedo = (q_Albedo2 - q_Albedo1) / 40000 * h + q_Albedo1
|
|
|
|
q_sun = I_SunZ
|
|
|
|
else:
|
|
q_IRground_bc = (strd - strn) + (strd - strdc)
|
|
q_IREarth_bc = alpha_IR * A_surf * q_IRground_bc * tau_atmIR * ViewFactor * (1 + tau_VIS / (1 - r_VIS))
|
|
q_sun_bc = I_SunZ * (1 - tcc)
|
|
q_Albedo_bc = alpha_VIS * A_surf * (1 - ssr / ssrd) * I_Sun0 * tau_atmIR * np.sin(
|
|
np.deg2rad(ELV)) * ViewFactor * (1 + tau_VIS / (1 - r_VIS))
|
|
|
|
# q_IREarth_ac = alpha_IR * A_surf * (0.04321906 * np.abs(ttr) + 84.67820281) * (1 + tau_IR / (1 - r_IR))
|
|
q_IREarth_ac = alpha_IR * A_surf * np.abs(ttr) * 0.5 * (1 + tau_VIS / (1 - r_VIS))
|
|
q_sun_ac = I_SunZ
|
|
q_Albedo_ac = alpha_VIS * A_surf * (1 - tsr / tisr) * I_Sun * np.sin(np.deg2rad(ELV)) * ViewFactor * (
|
|
1 + tau_VIS / (1 - r_VIS))
|
|
|
|
if h <= cbh: # "below clouds"
|
|
Q_IREarth = q_IREarth_bc
|
|
q_sun = q_sun_bc
|
|
if ELV <= 0:
|
|
Q_Albedo = 0
|
|
else:
|
|
Q_Albedo = q_Albedo_bc
|
|
elif h >= 12000: # "above clouds"
|
|
Q_IREarth = q_IREarth_ac
|
|
q_sun = q_sun_ac
|
|
if ELV <= 0:
|
|
Q_Albedo = 0
|
|
else:
|
|
Q_Albedo = q_Albedo_ac
|
|
elif h >= 6000:
|
|
if hcc >= 0.01:
|
|
Q_IREarth = ((h - 6000) / 6000 * hcc + mcc + lcc) / (hcc + mcc + lcc) * (
|
|
q_IREarth_ac - q_IREarth_bc) + q_IREarth_bc
|
|
q_sun = ((h - 6000) / 6000 * hcc + mcc + lcc) / (hcc + mcc + lcc) * (q_sun_ac - q_sun_bc) + q_sun_bc
|
|
if ELV <= 0:
|
|
Q_Albedo = 0
|
|
else:
|
|
Q_Albedo = ((h - 6000) / 6000 * hcc + mcc + lcc) / (hcc + mcc + lcc) * (
|
|
q_Albedo_ac - q_Albedo_bc) + q_Albedo_bc
|
|
else:
|
|
Q_IREarth = q_IREarth_ac
|
|
q_sun = q_sun_ac
|
|
if ELV <= 0:
|
|
Q_Albedo = 0
|
|
else:
|
|
Q_Albedo = q_Albedo_ac
|
|
elif h >= 2000:
|
|
if mcc > 0.01 or hcc > 0.01:
|
|
Q_IREarth = ((h - 2000) / 4000 * mcc + lcc) / (hcc + mcc + lcc) * (
|
|
q_IREarth_ac - q_IREarth_bc) + q_IREarth_bc
|
|
q_sun = ((h - 2000) / 4000 * mcc + lcc) / (hcc + mcc + lcc) * (q_sun_ac - q_sun_bc) + q_sun_bc
|
|
if ELV <= 0:
|
|
Q_Albedo = 0
|
|
else:
|
|
Q_Albedo = ((h - 2000) / 4000 * mcc + lcc) / (hcc + mcc + lcc) * (
|
|
q_Albedo_ac - q_Albedo_bc) + q_Albedo_bc
|
|
else:
|
|
Q_IREarth = q_IREarth_ac
|
|
q_sun = q_sun_ac
|
|
if ELV <= 0:
|
|
Q_Albedo = 0
|
|
else:
|
|
Q_Albedo = q_Albedo_ac
|
|
else:
|
|
Q_IREarth = (h / 2000 * lcc) / (hcc + mcc + lcc) * (q_IREarth_ac - q_IREarth_bc) + q_IREarth_bc
|
|
q_sun = (h / 2000 * lcc) / (hcc + mcc + lcc) * (q_sun_ac - q_sun_bc) + q_sun_bc
|
|
|
|
if ELV <= 0:
|
|
Q_Albedo = 0
|
|
else:
|
|
Q_Albedo = (h / 2000 * lcc) / (hcc + mcc + lcc) * (q_Albedo_ac - q_Albedo_bc) + q_Albedo_bc
|
|
|
|
my_air = (1.458 * 10 ** -6 * T_air ** 1.5) / (T_air + 110.4)
|
|
k_air = 0.0241 * (T_air / 273.15) ** 0.9
|
|
k_gas = 0.144 * (T_gas / 273.15) ** 0.7
|
|
Pr_air = 0.804 - 3.25 * 10 ** (-4) * T_air
|
|
Pr_gas = 0.729 - 1.6 * 10 ** (-4) * T_gas
|
|
Gr_air = (rho_air ** 2 * grav(lat, h) * np.abs(T_film - T_air) * d_b ** 3) / (T_air * my_air ** 2)
|
|
Nu_air = 2 + 0.45 * (Gr_air * Pr_air) ** 0.25
|
|
HC_free = Nu_air * k_air / d_b
|
|
Re = np.abs(v_rel) * d_b * rho_air / my_air
|
|
Fr = np.abs(v_rel) / np.sqrt(grav(lat, h) * d_b)
|
|
|
|
HC_forced = k_air / d_b * (2 + 0.41 * Re ** 0.55)
|
|
HC_internal = 0.13 * k_gas * (
|
|
(rho_gas ** 2 * grav(lat, h) * np.abs(T_film - T_gas) * Pr_gas) / (T_gas * my_air ** 2)) ** (
|
|
1 / 3)
|
|
HC_external = np.maximum(HC_free, HC_forced)
|
|
|
|
Q_Sun = alpha_VIS * A_proj * q_sun * (1 + tau_VIS / (1 - r_VIS))
|
|
Q_IRFilm = sigma * epsilon * alpha_IR * A_surf * T_film ** 4 * 1 / (1 - r_IR)
|
|
Q_IRout = sigma * epsilon * A_surf * T_film ** 4 * (1 + tau_IR / (1 - r_IR))
|
|
Q_ConvExt = HC_external * A_eff * (T_air - T_film)
|
|
Q_ConvInt = HC_internal * A_eff * (T_film - T_gas)
|
|
|
|
Q_Albedo_list.append(Q_Albedo)
|
|
Q_IREarth_list.append(Q_IREarth)
|
|
Q_Sun_list.append(Q_Sun)
|
|
Q_IRFilm_list.append(Q_IRFilm)
|
|
Q_IRout_list.append(Q_IRout)
|
|
Q_ConvExt_list.append(Q_ConvExt)
|
|
Q_ConvInt_list.append(Q_ConvInt)
|
|
|
|
ssr_list.append(ssr)
|
|
ssrd_list.append(ssrd)
|
|
ttr_list.append(ttr)
|
|
strd_list.append(strd)
|
|
strn_list.append(strn)
|
|
tisr_list.append(tisr)
|
|
tsr_list.append(tsr)
|
|
|
|
if simple == True:
|
|
c_d = c_d
|
|
else:
|
|
if drag_model == 'PalumboHigh':
|
|
c_d = cd_PalumboHigh(Fr, Re, A_top, A_top0)
|
|
elif drag_model == 'Palumbo':
|
|
c_d = cd_Palumbo(Fr, Re, A_top, A_top0)
|
|
elif drag_model == 'PalumboLow':
|
|
c_d = cd_PalumboLow(Fr, Re, A_top, A_top0)
|
|
else:
|
|
c_d = cd_sphere(Re)
|
|
|
|
D = drag(c_d, rho_air, A_drag, v_rel) # calculate drag force
|
|
|
|
if v_rel == 0:
|
|
Drag_x, Drag_y, Drag_z = 0, 0, 0
|
|
else:
|
|
Drag_x, Drag_y, Drag_z = D * v_relx / v_rel, D * v_rely / v_rel, D * v_relz / v_rel
|
|
|
|
F = grav(lat, h) * V_b * (rho_air - rho_gas) - grav(lat, h) * m_gross + Drag_z # gross inflation - weight + drag
|
|
|
|
a_x, a_y, a_z = Drag_x / m_virt, Drag_y / m_virt, F / m_virt
|
|
|
|
eqn1 = np.rad2deg(y[3] / r_lon)
|
|
eqn2 = np.rad2deg(y[4] / r_lat)
|
|
eqn3 = v_z
|
|
eqn4 = a_x
|
|
eqn5 = a_y
|
|
eqn6 = a_z
|
|
eqn7 = Q_ConvInt / (gamma * c_v * m_gas) - (gamma - 1) / gamma * (rho_air * grav(lat, h)) / (rho_gas * R_gas) * v_z
|
|
eqn8 = (Q_Sun + Q_Albedo + Q_IREarth + Q_IRFilm + Q_ConvExt - Q_ConvInt - Q_IRout) / (c_f * m_film)
|
|
eqn9 = -(A_ducts * c_duct * np.sqrt(np.abs(2 * dP_duct * rho_gas))) - (A_valve * c2 * np.sqrt(np.abs(2 * dP_valve * rho_gas)))
|
|
|
|
if eqn9 > 0:
|
|
eqn9 = 0
|
|
|
|
eqn10 = c2dot
|
|
|
|
if m_bal > 0:
|
|
eqn11 = -mdot
|
|
else:
|
|
eqn11 = 0
|
|
|
|
return [eqn1, eqn2, eqn3, eqn4, eqn5, eqn6, eqn7, eqn8, eqn9, eqn10, eqn11]
|
|
|
|
|
|
# DEFINITION OF EVENTS FOR SOLVER
|
|
|
|
def at_ground(t, y, m_pl, m_film, c_virt):
|
|
return y[2]
|
|
|
|
|
|
def above_float(t, y, m_pl, m_film, c_virt):
|
|
return 45000 - y[2]
|
|
|
|
|
|
def below_float(t, y, m_pl, m_film, c_virt):
|
|
return y[2] - 30050
|
|
|
|
|
|
hit_ground = lambda t, x: at_ground(t, x, m_pl, m_film, c_virt)
|
|
hit_ground.terminal = True
|
|
hit_ground.direction = -1
|
|
excess_ascent = lambda t, x: above_float(t, x, m_pl, m_film, c_virt)
|
|
excess_ascent.terminal = True
|
|
excess_ascent.direction = -1
|
|
instable = lambda t, x: below_float(t, x, m_pl, m_film, c_virt)
|
|
instable.terminal = True
|
|
instable.direction = -1
|
|
|
|
|
|
t0 = 0
|
|
tf = t_sim
|
|
|
|
print("")
|
|
print("BEGINNING SIMULATION")
|
|
|
|
sol = solve_ivp(fun=lambda t, x: model(t, x, m_pl, m_film, c_virt, A_top0, t_start), t_span=[t0, tf], y0=y0, method='RK45', events=[hit_ground, excess_ascent, instable]) #, t_eval=comp_time
|
|
|
|
tnew = np.linspace(0, sol.t[-1], len(V_b_list))
|
|
|
|
print(sol.message)
|
|
|
|
|
|
"""
|
|
lonsol = sol.y[0, :]
|
|
latsol = sol.y[1, :]
|
|
hsol = sol.y[2, :]
|
|
|
|
x_sol, y_sol, z_sol = transform2(lonsol, latsol, hsol)
|
|
x_test, y_test, z_test = transform2(comp_lon, comp_lat, comp_height)
|
|
|
|
delta = ((x_sol - x_test)**2 + (y_sol - y_test)**2 + (z_sol - z_test)**2)**(0.5)
|
|
|
|
val = 0
|
|
i = 0
|
|
|
|
for x in delta:
|
|
print(latsol[i])
|
|
print(comp_lat[i])
|
|
print(latsol[i] - comp_lat[i])
|
|
print(x)
|
|
val += x ** 2
|
|
i += 1
|
|
|
|
RMS = np.sqrt(val/i)
|
|
|
|
print('RMS')
|
|
print(RMS)
|
|
"""
|
|
|
|
|
|
print(datetime.now() - starttime)
|
|
|
|
|
|
arr0 = np.linspace(0, sol.t[-1], len(V_b_list))
|
|
arr1 = np.asarray(utc_list)
|
|
arr2 = np.asarray(h_list)
|
|
arr3 = np.asarray(lat_list)
|
|
arr4 = np.asarray(lon_list)
|
|
arr5 = np.asarray(Tgas_list)
|
|
arr6 = np.asarray(T_film_list)
|
|
arr7 = np.asarray(rhog_list)
|
|
arr8 = np.asarray(V_b_list)
|
|
arr9 = np.asarray(Q_Albedo_list)
|
|
arr10 = np.asarray(Q_IREarth_list)
|
|
arr11 = np.asarray(Q_Sun_list)
|
|
arr12 = np.asarray(Q_IRFilm_list)
|
|
arr13 = np.asarray(Q_IRout_list)
|
|
arr14 = np.asarray(Q_ConvExt_list)
|
|
arr15 = np.asarray(Q_ConvInt_list)
|
|
arr16 = np.asarray(ssr_list)
|
|
arr17 = np.asarray(ssrd_list)
|
|
arr18 = np.asarray(ttr_list)
|
|
arr19 = np.asarray(strd_list)
|
|
arr20 = np.asarray(strn_list)
|
|
arr21 = np.asarray(tisr_list)
|
|
arr22 = np.asarray(tsr_list)
|
|
|
|
ind_list = []
|
|
for i in range(len(arr0)):
|
|
if arr0[i - 1] == arr0[i]:
|
|
ind_list.append(i)
|
|
|
|
arr0 = np.delete(arr0, ind_list)
|
|
arr1 = np.delete(arr1, ind_list)
|
|
arr2 = np.delete(arr2, ind_list)
|
|
arr3 = np.delete(arr3, ind_list)
|
|
arr4 = np.delete(arr4, ind_list)
|
|
arr5 = np.delete(arr5, ind_list)
|
|
arr6 = np.delete(arr6, ind_list)
|
|
arr7 = np.delete(arr7, ind_list)
|
|
arr8 = np.delete(arr8, ind_list)
|
|
arr9 = np.delete(arr9, ind_list)
|
|
arr10 = np.delete(arr10, ind_list)
|
|
arr11 = np.delete(arr11, ind_list)
|
|
arr12 = np.delete(arr12, ind_list)
|
|
arr13 = np.delete(arr13, ind_list)
|
|
arr14 = np.delete(arr14, ind_list)
|
|
arr15 = np.delete(arr15, ind_list)
|
|
arr16 = np.delete(arr16, ind_list)
|
|
arr17 = np.delete(arr17, ind_list)
|
|
arr18 = np.delete(arr18, ind_list)
|
|
arr19 = np.delete(arr19, ind_list)
|
|
arr20 = np.delete(arr20, ind_list)
|
|
arr21 = np.delete(arr21, ind_list)
|
|
arr22 = np.delete(arr22, ind_list)
|
|
|
|
|
|
|
|
df1 = pd.DataFrame(data={
|
|
'time [s]': arr0,
|
|
'UTC': arr1,
|
|
'Altitude [m]': arr2,
|
|
'Latitude [deg]': arr3,
|
|
'Longitude [deg]': arr4,
|
|
'T_gas [K]': arr5,
|
|
'T_film [K]': arr6,
|
|
'rho_gas [kg/m^3]': arr7,
|
|
'V_balloon [m^3]': arr8,
|
|
'Q_Albedo [W/m^2]': arr9,
|
|
'Q_IR_Earth [W/m^2]': arr10,
|
|
'Q_Sun [W/m^2]': arr11,
|
|
'Q_IRFilm [W/m^2]': arr12,
|
|
'Q_IRout [W/m^2]': arr13,
|
|
'Q_ConvExt [W/m^2]': arr14,
|
|
'Q_ConvInt [W/m^2]': arr15,
|
|
'SSR [W/m^2]': arr16,
|
|
'SSRD [W/m^2]': arr17,
|
|
'TTR [W/m^2]': arr18,
|
|
'STRD [W/m^2]': arr19,
|
|
'STRN [W/m^2]': arr20,
|
|
'TISR [W/m^2]': arr21,
|
|
'TSR [W/m^2]': arr22
|
|
})
|
|
|
|
df1.to_excel("output.xlsx")
|
|
|
|
plt.plot(sol.t, sol.y[2, :], 'k--', label='Simulation')
|
|
plt.plot(comp_time, comp_height, 'r-', label='PoGo+ Flight Test')
|
|
plt.legend()
|
|
plt.title('high factor')
|
|
plt.xlabel('time in s')
|
|
plt.ylabel('Balloon Altitude in m')
|
|
plt.show()
|
|
|
|
plt.clf()
|
|
ax = plt.axes(projection=ccrs.AzimuthalEquidistant(central_latitude=-90))
|
|
ax.coastlines()
|
|
ax.gridlines(draw_labels=True, linewidth=0.25, color='black')
|
|
ax.stock_img()
|
|
ax.set_extent([-120, 30, 60, 80], crs=ccrs.PlateCarree())
|
|
|
|
plt.plot(start_lon, start_lat, 'rx', transform=ccrs.Geodetic())
|
|
plt.plot(sol.y[0, :], sol.y[1, :], 'k--', transform=ccrs.Geodetic())
|
|
plt.plot(comp_lon, comp_lat, 'r-', transform=ccrs.Geodetic())
|
|
# plt.savefig(os.path.join(rootdir, figname))
|
|
plt.show() |