import logging import sys import traceback import numpy as np def error(msg: str, exit_: bool = True): """ Handle errors Parameters ---------- msg : str Error message to show exit_ : bool Exit program Returns ------- """ logging.error(msg) if exit_: traceback.print_stack() sys.exit(1) def isLambda(obj: object): """ Check if a object is of type lambda Parameters ---------- obj : object The object to check. Returns ------- res : bool Result of the check """ return isinstance(obj, type(lambda: None)) and obj.__name__ == (lambda: None).__name__ def rasterizeCircle(grid: np.ndarray, radius: float, xc: float, yc: float): """ Map a circle on a rectangular grid. Parameters ---------- grid : ndarray The grid to map the circle onto. radius : float Radius of the circle to be mapped. xc : float X-index of the circle's center point. The origin of the coordinate system is in the top left corner. yc : float Y-index of the circle's center point. The origin of the coordinate system is in the top left corner. Returns ------- grid: ndarray The grid with the circle mapped onto. Each point contained within the circle is marked as 1. """ xc_pix = int(round(xc)) # X center in pixel coordinates x_shift = xc_pix - xc # X shift of the circle center yc_pix = int(round(yc)) # Y center in pixel coordinates y_shift = yc_pix - yc # Y shift of the circle center radius_pix = int(np.ceil(radius)) + 1 # Length of the square containing the pixels to be checked r2 = radius ** 2 # square of the radius grid[yc_pix, xc_pix] = 1 # Set the center pixel by default # Create meshgrid for the x and y range of the circle dx, dy = np.meshgrid(range(- radius_pix if xc_pix - radius_pix >= 0 else - xc_pix, radius_pix + 1 if grid.shape[1] > (xc_pix + radius_pix + 1) else grid.shape[1] - xc_pix), range(- radius_pix if yc_pix - radius_pix >= 0 else - yc_pix, radius_pix + 1 if grid.shape[0] > (yc_pix + radius_pix + 1) else grid.shape[0] - yc_pix)) dx2 = (dx + x_shift) ** 2 # Square of the x-component of the current pixels radius dx_side2 = (dx + x_shift + ((dx < 0) - 0.5)) ** 2 # Square of the x-component of the neighbouring pixels radius dy2 = (dy + y_shift) ** 2 # Square of the y-component of the current pixels radius dy_side2 = (dy + y_shift + ((dy < 0) - 0.5)) ** 2 # Square of the y-component of the neighbouring pixels radius res = np.logical_or(dx_side2 + dy2 <= r2, dx2 + dy_side2 < r2) # Check if pixel is inside or outside grid[(dy.min() + yc_pix):(dy.max() + yc_pix + 1), (dx.min() + xc_pix):(dx.max() + xc_pix + 1)] = res # fig, ax = plt.subplots() # plt.imshow(grid) # circle = plt.Circle((xc, yc), radius, color='r', fill=False) # ax.add_artist(circle) # plt.show() return grid