from .AOpticalComponent import AOpticalComponent from ..IRadiant import IRadiant from ..SpectralQty import SpectralQty from ..Entry import Entry from ...lib.logger import logger import astropy.units as u from astropy.io import ascii from astropy.modeling.models import BlackBody from typing import Union import re import requests as req import numpy as np class Atmosphere(AOpticalComponent): """ A class to model the atmosphere including the atmosphere's spectral transmittance and emission. """ # defining the ATRAN-endpoint ATRAN = "https://atran.arc.nasa.gov" def __init__(self, **kwargs): """ Initialize a new atmosphere model Parameters ---------- parent : IRadiant The parent element of the atmosphere from which the electromagnetic radiation is received. transmittance : str Path to the file containing the spectral transmittance-coefficients of the atmosphere. The format of the file will be guessed by `astropy.io.ascii.read()`. atran : str Path to the ATRAN output file containing the spectral transmittance-coefficients of the atmosphere. altitude : u.Quantity The observatory altitude in feet. wl_min : u.Quantity The minimal wavelength to consider in micrometer. wl_max : u.Quantity The maximal wavelength to consider in micrometer. latitude : u.Quantity The observatory's latitude in degrees. water_vapor : u.Quantity The water vapor overburden in microns (0 if unknown). n_layers : int The number of considered atmopsheric layers. zenith_angle : u.Quantity The zenith angle of the observation in degrees (0 is towards the zenith). resolution : int The resolution for smoothing (0 for no smoothing). emission : str Path to the file containing the spectral radiance of the atmosphere. The format of the file will be guessed by `astropy.io.ascii.read()`. temp : u.Quantity The atmospheric temperature for the atmosphere's black body radiation. """ args = dict() if "atran" in kwargs: args = self._fromATRAN(**{x: kwargs[x] for x in kwargs.keys() if x not in ["emission", "temp"]}) elif "altitude" in kwargs: logger.info("Requesting ATRAN transmission profile.") data = self.__call_ATRAN(**{x: kwargs[x] for x in kwargs.keys() if x not in ["parent", "temp"]}) args = self._fromATRAN(parent=kwargs["parent"], atran=data) elif "transmittance" in kwargs: args = self._fromFiles(**{x: kwargs[x] for x in kwargs.keys() if x not in ["emission", "temp"]}) else: logger.error("Wrong parameters for class Atmosphere.") if "temp" in kwargs: # Create black body bb = self.__gb_factory(kwargs["temp"]) # Calculate emission args["emission"] = SpectralQty(args["transmittance"].wl, bb(args["transmittance"].wl)) * ( -1 * args["transmittance"] + 1) elif "emission" in kwargs: args["emission"] = SpectralQty.fromFile(kwargs["emission"], wl_unit_default=u.nm, qty_unit_default=u.W / (u.m ** 2 * u.nm * u.sr)) else: args["emission"] = 0 super().__init__(parent=args["parent"], transreflectivity=args["transmittance"], noise=args["emission"]) def _fromFiles(self, parent: IRadiant, transmittance: str): """ Initialize a new atmosphere model from two files Parameters ---------- parent : IRadiant The parent element of the atmosphere from which the electromagnetic radiation is received. transmittance : str Path to the file containing the spectral transmittance-coefficients of the atmosphere. The format of the file will be guessed by `astropy.io.ascii.read()`. Returns ------- args : dict The arguments for the class instantiation. """ # Read the transmittance transmittance = SpectralQty.fromFile(transmittance, wl_unit_default=u.nm, qty_unit_default=u.dimensionless_unscaled) return {"parent": parent, "transmittance": transmittance} def _fromATRAN(self, parent: IRadiant, atran: str): """ Initialize a new atmosphere model from an ATRAN output file Parameters ---------- parent : IRadiant The parent element of the atmosphere from which the electromagnetic radiation is received. atran : str Path to the ATRAN output file containing the spectral transmittance-coefficients of the atmosphere. Returns ------- args : dict The arguments for the class instantiation. """ # Read the file data = self.__parse_ATRAN(atran) # Create spectral quantity transmittance = SpectralQty(data["col2"].quantity, data["col3"].quantity) return {"parent": parent, "transmittance": transmittance} @u.quantity_input(altitude="length", latitude="angle", water_vapor="length", zenith_angle="angle", wl_min="length", wl_max="length") def __call_ATRAN(self, altitude: u.Quantity, wl_min: u.Quantity, wl_max: u.Quantity, latitude: u.Quantity = 39 * u.degree, water_vapor: u.Quantity = 0 * u.um, n_layers: int = 2, zenith_angle: u.Quantity = 0 * u.degree, resolution: int = 0): """ Call the online version of ATRAN provided by SOFIA Parameters ---------- altitude : u.Quantity The observatory altitude in feet. wl_min : u.Quantity The minimal wavelength to consider in micrometer. wl_max : u.Quantity The maximal wavelength to consider in micrometer. latitude : u.Quantity The observatory's latitude in degrees. water_vapor : u.Quantity The water vapor overburden in microns (0 if unknown). n_layers : int The number of considered atmopsheric layers. zenith_angle : u.Quantity The zenith angle of the observation in degrees (0 is towards the zenith). resolution : int The resolution for smoothing (0 for no smoothing). Returns ------- data : str The ATRAN computation results """ # Select closest latitude from ATRAN options latitude_ = min(np.array([9, 30, 39, 43, 59]) * u.degree, key=lambda x: abs(x - latitude.to(u.degree))) # Select closest number of layers from ATRAN options n_layers_ = min([2, 3, 4, 5], key=lambda x: abs(x - n_layers)) # Assemble the data payload data = {'Altitude': altitude.to(u.imperial.ft).value, 'Obslat': '%d deg' % latitude_.value, 'WVapor': water_vapor.to(u.um).value, 'NLayers': n_layers_, 'ZenithAngle': zenith_angle.to(u.degree).value, 'WaveMin': wl_min.to(u.um).value, 'WaveMax': wl_max.to(u.um).value, 'Resolution': resolution} # Send data to ATRAN via POST request res = req.post(url=self.ATRAN + "/cgi-bin/atran/atran.cgi", data=data) # Check if request was successful if not res.ok: logger.error("Error: Request returned status code " + str(res.status_code)) # Extract the content of the reply content = res.text # Check if any ATRAN error occured match = re.search('

ERROR!!

(.*)
', content) if match: logger.error("Error: " + match.group(1)) # Extract link to ATRAN result file match = re.search('href="(/atran_calc/atran.(?:plt|smo).\\d*.dat)"', content) # Check if link was found if not match: logger.error("Error: Link to data file not found.") # Request the ATRAN result via GET request res = req.get(self.ATRAN + match.group(1)) # Check if request was successful if not res.ok: logger.error("Error: Request returned status code " + str(res.status_code)) # Extract the content of the reply data = res.text # Check if result is empty if data == "": logger.error("Error: Request returned empty response.") return data @staticmethod def __parse_ATRAN(table: str): """ Parse an ATRAN result file and convert it to an astropy table Parameters ---------- table : str Path to the file or content of the file. Returns ------- data : astropy.Table The parsed table object. """ # Read the file data = ascii.read(table, format=None) # Set units data["col2"].unit = u.um data["col3"].unit = u.dimensionless_unscaled return data @staticmethod @u.quantity_input(temp=[u.Kelvin, u.Celsius]) def __gb_factory(temp: u.Quantity, em: Union[int, float] = 1): """ Factory for a grey body lambda-function. Parameters ---------- temp : Quantity in Kelvin / Celsius The temperature fo the grey body. em : Union[int, float] Emissivity of the the grey body Returns ------- bb : Callable The lambda function for the grey body. """ bb = BlackBody(temperature=temp, scale=em * u.W / (u.m ** 2 * u.nm * u.sr)) return lambda wl: bb(wl) @staticmethod def check_config(conf: Entry) -> Union[None, str]: """ Check the configuration for this class Parameters ---------- conf : Entry The configuration entry to be checked. Returns ------- mes : Union[None, str] The error message of the check. This will be None if the check was successful. """ if hasattr(conf, "transmittance"): mes = conf.check_file("transmittance") if mes is not None: return mes elif hasattr(conf, "atran"): mes = conf.check_file("atran") if mes is not None: return mes else: mes = conf.check_quantity("altitude", u.imperial.ft) if mes is not None: return mes mes = conf.check_quantity("wl_min", u.um) if mes is not None: return mes mes = conf.check_quantity("wl_max", u.um) if mes is not None: return mes if hasattr(conf, "latitude"): mes = conf.check_quantity("latitude", u.degree) if mes is not None: return mes if hasattr(conf, "water_vapor"): mes = conf.check_quantity("water_vapor", u.um) if mes is not None: return mes if hasattr(conf, "n_layers"): mes = conf.check_float("n_layers") if mes is not None: return mes if hasattr(conf, "zenith_angle"): mes = conf.check_quantity("zenith_angle", u.degree) if mes is not None: return mes if hasattr(conf, "resolution"): mes = conf.check_float("resolution") if mes is not None: return mes if hasattr(conf, "emission"): mes = conf.check_file("emission") if mes is not None: return mes elif hasattr(conf, "temp"): mes = conf.check_quantity("temp", u.K) if mes is not None: return mes