from ..target.ATarget import ATarget from ..SpectralQty import SpectralQty import astropy.units as u from astropy.modeling.models import BlackBody from astropy.constants import c, k_B from ...lib.logger import logger from ..Entry import Entry from typing import Union import numpy as np class BlackBodyTarget(ATarget): """ This class models the spectral flux density of a star of given magnitude using as black body radiator """ # Bands from Handbook of Space Astronomy and Astrophysics p. 139 _band = dict(U=dict(wl=365 * u.nm, sfd=4.27e-11 * u.W / (u.m ** 2 * u.nm)), B=dict(wl=440 * u.nm, sfd=6.61e-11 * u.W / (u.m ** 2 * u.nm)), V=dict(wl=550 * u.nm, sfd=3.64e-11 * u.W / (u.m ** 2 * u.nm)), R=dict(wl=700 * u.nm, sfd=1.74e-11 * u.W / (u.m ** 2 * u.nm)), I=dict(wl=900 * u.nm, sfd=8.32e-12 * u.W / (u.m ** 2 * u.nm)), J=dict(wl=1250 * u.nm, sfd=3.18e-12 * u.W / (u.m ** 2 * u.nm)), H=dict(wl=1650 * u.nm, sfd=1.18e-12 * u.W / (u.m ** 2 * u.nm)), K=dict(wl=2200 * u.nm, sfd=4.17e-13 * u.W / (u.m ** 2 * u.nm)), L=dict(wl=3600 * u.nm, sfd=6.23e-14 * u.W / (u.m ** 2 * u.nm)), M=dict(wl=4800 * u.nm, sfd=2.07e-14 * u.W / (u.m ** 2 * u.nm)), N=dict(wl=10200 * u.nm, sfd=1.23e-15 * u.W / (u.m ** 2 * u.nm))) @u.quantity_input(wl_bins='length', temp=[u.Kelvin, u.Celsius], mag=[u.mag, u.mag / u.sr]) def __init__(self, wl_bins: u.Quantity, temp: u.Quantity = 5778 * u.K, mag: u.Quantity = None, band: str = "V", law: str = "Planck"): """ Initialize a new black body point source Parameters ---------- wl_bins : length-Quantity Wavelengths used for binning temp : Quantity in Kelvin / Celsius Temperature of the black body mag : Quantity in mag or mag / sr Desired apparent magnitude of the black body source. If the magnitude is given in mag / sr or an equivalent unit, an extended source will be assumed. band : str Band used for fitting the planck curve to a star of 0th magnitude. Can be one of [U, B, V, R, I, J, H, K]. law : str Which law to use for the calculation of the flux values. Can be either 'Planck' for using Planck's law or 'RJ' to use the Rayleigh-Jeans approximation. Returns ------- """ if band.upper() not in self._band.keys(): logger.error("Band has to be one of '[" + ", ".join(list(self._band.keys())) + "]'") # Create blackbody model with given temperature bb = None if law.lower() == "planck": bb = BlackBody(temperature=temp, scale=1 * u.W / (u.m ** 2 * u.nm * u.sr)) elif law.upper() == "RJ": bb = self.__rayleigh_jeans_factory(temp) else: logger.error("Unknown law '" + law + "' for target type BlackBody.") if mag is not None: # Calculate the correction factor for a star of 0th magnitude using the spectral flux density # for the central wavelength of the given band if mag.unit.is_equivalent(u.mag / u.sr): solid_angle_unit = (u.mag / mag.unit) mag = mag * solid_angle_unit factor = self._band[band.upper()]["sfd"] / (bb(self._band[band.upper()]["wl"]) * ( solid_angle_unit.to(u.sr) * u.sr)) else: factor = self._band[band.upper()]["sfd"] / (bb(self._band[band.upper()]["wl"]) * u.sr) * u.sr # Calculate spectral flux density for the given wavelengths and scale it for a star of the given magnitude sfd = bb(wl_bins) * factor * 10 ** (- 2 / 5 * mag / u.mag) # / 1.195 * 1.16 # scaling for AETC validation wl_bins_2 = np.arange(15.71, 23.71, 0.01) << u.um sfd_2 = bb(wl_bins_2) * factor * 10 ** (- 2 / 5 * mag / u.mag) sqty_2 = SpectralQty(wl_bins_2, sfd_2).integrate() print((sqty_2 / (8 * u.um)).to(u.W / (u.m ** 2 * u.um))) else: sfd = bb(wl_bins) # Initialize super class super().__init__(SpectralQty(wl_bins, sfd), wl_bins) @staticmethod @u.quantity_input(temp=[u.Kelvin, u.Celsius]) def __rayleigh_jeans_factory(temp: u.Quantity): """ Create a lambda function for the Rayleigh-Jeans law Parameters ---------- temp : u.Quantity The temperature in Kelvins Returns ------- res : lambda A lambda function for the Rayleigh-Jeans law with the variable lambda wavelength """ return lambda wl: (2 * c * k_B * temp / wl ** 4 / u.sr).to(u.W / (u.m ** 2 * u.nm * u.sr)) @staticmethod def check_config(conf: Entry) -> Union[None, str]: """ Check the configuration for this class Parameters ---------- conf : Entry The configuration entry to be checked. Returns ------- mes : Union[None, str] The error message of the check. This will be None if the check was successful. """ mes = conf.check_quantity("temp", u.K) if mes is not None: return mes if hasattr(conf, "mag"): mes = conf.check_quantity("mag", u.mag) if mes is not None: mes = conf.check_quantity("mag", u.mag / u.sr) if mes is not None: return mes mes = conf.check_selection("band", ["U", "B", "V", "R", "I", "J", "H", "K", "L", "M", "N"]) if mes is not None: return mes if hasattr(conf, "law"): mes = conf.check_selection("law", ["Planck", "RJ"]) if mes is not None: return mes