fsfw/container/IndexedRingMemoryArray.h

701 lines
20 KiB
C
Raw Normal View History

#ifndef FRAMEWORK_CONTAINER_INDEXEDRINGMEMORY_H_
#define FRAMEWORK_CONTAINER_INDEXEDRINGMEMORY_H_
#include <framework/container/ArrayList.h>
#include <framework/globalfunctions/CRC.h>
#include <framework/serviceinterface/ServiceInterfaceStream.h>
#include <framework/returnvalues/HasReturnvaluesIF.h>
#include <framework/serialize/SerialArrayListAdapter.h>
#include <cmath>
template<typename T>
class Index: public SerializeIF{
/**
* Index is the Type used for the list of indices. The template parameter is the type which describes the index, it needs to be a child of SerializeIF to be able to make it persistent
*/
static_assert(std::is_base_of<SerializeIF,T>::value,"Wrong Type for Index, Type must implement SerializeIF");
public:
Index():blockStartAddress(0),size(0),storedPackets(0){}
Index(uint32_t startAddress):blockStartAddress(startAddress),size(0),storedPackets(0){
}
void setBlockStartAddress(uint32_t newAddress){
this->blockStartAddress = newAddress;
}
uint32_t getBlockStartAddress() const {
return blockStartAddress;
}
const T* getIndexType() const {
return &indexType;
}
T* modifyIndexType(){
return &indexType;
}
/**
* Updates the index Type. Uses = operator
* @param indexType Type to copy from
*/
void setIndexType(T* indexType) {
this->indexType = *indexType;
}
uint32_t getSize() const {
return size;
}
void setSize(uint32_t size) {
this->size = size;
}
void addSize(uint32_t size){
this->size += size;
}
void setStoredPackets(uint32_t newStoredPackets){
this->storedPackets = newStoredPackets;
}
void addStoredPackets(uint32_t packets){
this->storedPackets += packets;
}
uint32_t getStoredPackets() const{
return this->storedPackets;
}
ReturnValue_t serialize(uint8_t** buffer, uint32_t* size,
const uint32_t max_size, bool bigEndian) const {
ReturnValue_t result = SerializeAdapter::serialize(&blockStartAddress,buffer,size,max_size,bigEndian);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
result = indexType.serialize(buffer,size,max_size,bigEndian);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
result = SerializeAdapter::serialize(&this->size,buffer,size,max_size,bigEndian);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
result = SerializeAdapter::serialize(&this->storedPackets,buffer,size,max_size,bigEndian);
return result;
}
ReturnValue_t deSerialize(const uint8_t** buffer, int32_t* size,
bool bigEndian){
ReturnValue_t result = SerializeAdapter::deSerialize(&blockStartAddress,buffer,size,bigEndian);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
result = indexType.deSerialize(buffer,size,bigEndian);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
result = SerializeAdapter::deSerialize(&this->size,buffer,size,bigEndian);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
result = SerializeAdapter::deSerialize(&this->storedPackets,buffer,size,bigEndian);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
return result;
}
uint32_t getSerializedSize() const {
uint32_t size = SerializeAdapter::getSerializedSize(&blockStartAddress);
size += indexType.getSerializedSize();
size += SerializeAdapter::getSerializedSize(&this->size);
size += SerializeAdapter::getSerializedSize(&this->storedPackets);
return size;
}
bool operator==(const Index<T>& other){
return ((blockStartAddress == other.getBlockStartAddress()) && (size==other.getSize())) && (indexType == *(other.getIndexType()));
}
private:
uint32_t blockStartAddress;
uint32_t size;
uint32_t storedPackets;
T indexType;
};
template<typename T>
class IndexedRingMemoryArray: public SerializeIF, public ArrayList<Index<T>, uint32_t>{
/**
* Indexed Ring Memory Array is a class for a ring memory with indices. It assumes that the newest data comes in last
* It uses the currentWriteBlock as pointer to the current writing position
* The currentReadBlock must be set manually
*/
public:
IndexedRingMemoryArray(uint32_t startAddress, uint32_t size, uint32_t bytesPerBlock, SerializeIF* additionalInfo,
bool overwriteOld) :ArrayList<Index<T>,uint32_t>(NULL,(uint32_t)10,(uint32_t)0),totalSize(size),indexAddress(startAddress),currentReadSize(0),currentReadBlockSizeCached(0),lastBlockToReadSize(0), additionalInfo(additionalInfo),overwriteOld(overwriteOld){
//Calculate the maximum number of indices needed for this blocksize
uint32_t maxNrOfIndices = floor(static_cast<double>(size)/static_cast<double>(bytesPerBlock));
//Calculate the Size needeed for the index itself
uint32_t serializedSize = 0;
if(additionalInfo!=NULL){
serializedSize += additionalInfo->getSerializedSize();
}
//Size of current iterator type
Index<T> tempIndex;
serializedSize += tempIndex.getSerializedSize();
//Add Size of Array
serializedSize += sizeof(uint32_t); //size of array
serializedSize += (tempIndex.getSerializedSize() * maxNrOfIndices); //size of elements
serializedSize += sizeof(uint16_t); //size of crc
//Calculate new size after index
if(serializedSize > totalSize){
error << "IndexedRingMemory: Store is too small for index" << std::endl;
}
uint32_t useableSize = totalSize - serializedSize;
//Update the totalSize for calculations
totalSize = useableSize;
//True StartAddress
uint32_t trueStartAddress = indexAddress + serializedSize;
//Calculate True number of Blocks and reset size of true Number of Blocks
uint32_t trueNumberOfBlocks = floor(static_cast<double>(totalSize) / static_cast<double>(bytesPerBlock));
//allocate memory now
this->entries = new Index<T>[trueNumberOfBlocks];
this->size = trueNumberOfBlocks;
this->maxSize_ = trueNumberOfBlocks;
this->allocated = true;
//Check trueNumberOfBlocks
if(trueNumberOfBlocks<1){
error << "IndexedRingMemory: Invalid Number of Blocks: " << trueNumberOfBlocks;
}
//Fill address into index
uint32_t address = trueStartAddress;
for (typename IndexedRingMemoryArray<T>::Iterator it = this->begin();it!=this->end();++it) {
it->setBlockStartAddress(address);
it->setSize(0);
it->setStoredPackets(0);
address += bytesPerBlock;
}
//Initialize iterators
currentWriteBlock = this->begin();
currentReadBlock = this->begin();
lastBlockToRead = this->begin();
//Check last blockSize
uint32_t lastBlockSize = (trueStartAddress + useableSize) - (this->back()->getBlockStartAddress());
if((lastBlockSize<bytesPerBlock) && (this->size > 1)){
//remove the last Block so the second last block has more size
this->size -= 1;
debug << "IndexedRingMemory: Last Block is smaller than bytesPerBlock, removed last block" << std::endl;
}
}
/**
* Resets the whole index, the iterators and executes the given reset function on every index type
* @param typeResetFnc static reset function which accepts a pointer to the index Type
*/
void reset(void (*typeResetFnc)(T*)){
currentReadBlock = this->begin();
currentWriteBlock = this->begin();
lastBlockToRead = this->begin();
currentReadSize = 0;
currentReadBlockSizeCached = 0;
lastBlockToReadSize = 0;
for(typename IndexedRingMemoryArray<T>::Iterator it = this->begin();it!=this->end();++it){
it->setSize(0);
it->setStoredPackets(0);
(*typeResetFnc)(it->modifyIndexType());
}
}
void resetBlock(typename IndexedRingMemoryArray<T>::Iterator it,void (*typeResetFnc)(T*)){
it->setSize(0);
it->setStoredPackets(0);
(*typeResetFnc)(it->modifyIndexType());
}
/*
* Reading
*/
void setCurrentReadBlock(typename IndexedRingMemoryArray<T>::Iterator it){
currentReadBlock = it;
currentReadBlockSizeCached = it->getSize();
}
void resetRead(){
currentReadBlock = this->begin();
currentReadSize = 0;
currentReadBlockSizeCached = this->begin()->getSize();
lastBlockToRead = currentWriteBlock;
lastBlockToReadSize = currentWriteBlock->getSize();
}
/**
* Sets the last block to read to this iterator.
* Can be used to dump until block x
* @param it The iterator for the last read block
*/
void setLastBlockToRead(typename IndexedRingMemoryArray<T>::Iterator it){
lastBlockToRead = it;
lastBlockToReadSize = it->getSize();
}
/**
* Set the read pointer to the first written Block, which is the first non empty block in front of the write block
* Can be the currentWriteBlock as well
*/
void readOldest(){
resetRead();
currentReadBlock = getNextNonEmptyBlock();
currentReadBlockSizeCached = currentReadBlock->getSize();
}
/**
* Sets the current read iterator to the next Block and resets the current read size
* The current size of the block will be cached to avoid race condition between write and read
* If the end of the ring is reached the read pointer will be set to the begin
*/
void readNext(){
currentReadSize = 0;
if((this->size != 0) && (currentReadBlock.value ==this->back())){
currentReadBlock = this->begin();
}else{
currentReadBlock++;
}
currentReadBlockSizeCached = currentReadBlock->getSize();
}
/**
* Returns the address which is currently read from
* @return Address to read from
*/
uint32_t getCurrentReadAddress() const {
return getAddressOfCurrentReadBlock() + currentReadSize;
}
/**
* Adds readSize to the current size and checks if the read has no more data left and advances the read block
* @param readSize The size that was read
* @return Returns true if the read can go on
*/
bool addReadSize(uint32_t readSize) {
if(currentReadBlock == lastBlockToRead){
//The current read block is the last to read
if((currentReadSize+readSize)<lastBlockToReadSize){
//the block has more data -> return true
currentReadSize += readSize;
return true;
}else{
//Reached end of read -> return false
currentReadSize = lastBlockToReadSize;
return false;
}
}else{
//We are not in the last Block
if((currentReadSize + readSize)<currentReadBlockSizeCached){
//The current Block has more data
currentReadSize += readSize;
return true;
}else{
//The current block is written completely
readNext();
if(currentReadBlockSizeCached==0){
//Next block is empty
typename IndexedRingMemoryArray<T>::Iterator it(currentReadBlock);
//Search if any block between this and the last block is not empty
for(;it!=lastBlockToRead;++it){
if(it == this->end()){
//This is the end, next block is the begin
it = this->begin();
if(it == lastBlockToRead){
//Break if the begin is the lastBlockToRead
break;
}
}
if(it->getSize()!=0){
//This is a non empty block. Go on reading with this block
currentReadBlock = it;
currentReadBlockSizeCached = it->getSize();
return true;
}
}
//reached lastBlockToRead and every block was empty, check if the last block is also empty
if(lastBlockToReadSize!=0){
//go on with last Block
currentReadBlock = lastBlockToRead;
currentReadBlockSizeCached = lastBlockToReadSize;
return true;
}
//There is no non empty block left
return false;
}
//Size is larger than 0
return true;
}
}
}
uint32_t getRemainigSizeOfCurrentReadBlock() const{
if(currentReadBlock == lastBlockToRead){
return (lastBlockToReadSize - currentReadSize);
}else{
return (currentReadBlockSizeCached - currentReadSize);
}
}
uint32_t getAddressOfCurrentReadBlock() const {
return currentReadBlock->getBlockStartAddress();
}
/**
* Gets the next non empty Block after the current write block,
* @return Returns the iterator to the block. If there is non, the current write block is returned
*/
typename IndexedRingMemoryArray<T>::Iterator getNextNonEmptyBlock() const {
for(typename IndexedRingMemoryArray<T>::Iterator it = getNextWrite();it!=currentWriteBlock;++it){
if(it == this->end()){
it = this->begin();
if(it == currentWriteBlock){
break;
}
}
if(it->getSize()!=0){
return it;
}
}
return currentWriteBlock;
}
/**
* Returns a copy of the oldest Index type
* @return Type of Index
*/
T* getOldest(){
return (getNextNonEmptyBlock()->modifyIndexType());
}
/*
* Writing
*/
uint32_t getAddressOfCurrentWriteBlock() const{
return currentWriteBlock->getBlockStartAddress();
}
uint32_t getSizeOfCurrentWriteBlock() const{
return currentWriteBlock->getSize();
}
uint32_t getCurrentWriteAddress() const{
return getAddressOfCurrentWriteBlock() + getSizeOfCurrentWriteBlock();
}
void clearCurrentWriteBlock(){
currentWriteBlock->setSize(0);
currentWriteBlock->setStoredPackets(0);
}
void addCurrentWriteBlock(uint32_t size, uint32_t storedPackets){
currentWriteBlock->addSize(size);
currentWriteBlock->addStoredPackets(storedPackets);
}
T* modifyCurrentWriteBlockIndexType(){
return currentWriteBlock->modifyIndexType();
}
void updatePreviousWriteSize(uint32_t size, uint32_t storedPackets){
typename IndexedRingMemoryArray<T>::Iterator it = getPreviousBlock(currentWriteBlock);
it->addSize(size);
it->addStoredPackets(storedPackets);
}
/**
* Checks if the block has enough space for sizeToWrite
* @param sizeToWrite The data to be written in the Block
* @return Returns true if size to write is smaller the remaining size of the block
*/
bool hasCurrentWriteBlockEnoughSpace(uint32_t sizeToWrite){
typename IndexedRingMemoryArray<T>::Iterator next = getNextWrite();
uint32_t addressOfNextBlock = next->getBlockStartAddress();
uint32_t availableSize = ((addressOfNextBlock+totalSize) - (getAddressOfCurrentWriteBlock()+getSizeOfCurrentWriteBlock()))%totalSize;
return (sizeToWrite < availableSize);
}
/**
* Checks if the store is full if overwrite old is false
* @return Returns true if it is writeable and false if not
*/
bool isNextBlockWritable(){
//First check if this is the end of the list
typename IndexedRingMemoryArray<T>::Iterator next;
next = getNextWrite();
if((next->getSize()!=0) && (!overwriteOld)){
return false;
}
return true;
}
/**
* Updates current write Block Index Type
* @param infoOfNewBlock
*/
void updateCurrentBlock(T* infoOfNewBlock){
currentWriteBlock->setIndexType(infoOfNewBlock);
}
/**
* Succeed to next block, returns FAILED if overwrite is false and the store is full
* @return
*/
ReturnValue_t writeNext(){
//Check Next Block
if(!isNextBlockWritable()){
//The Index is full and does not overwrite old
return HasReturnvaluesIF::RETURN_FAILED;
}
//Next block can be written, update Metadata
currentWriteBlock = getNextWrite();
currentWriteBlock->setSize(0);
currentWriteBlock->setStoredPackets(0);
return HasReturnvaluesIF::RETURN_OK;
}
/**
* Serializes the Index and calculates the CRC.
* Parameters according to HasSerializeIF
* @param buffer
* @param size
* @param max_size
* @param bigEndian
* @return
*/
ReturnValue_t serialize(uint8_t** buffer, uint32_t* size,
const uint32_t max_size, bool bigEndian) const{
uint8_t* crcBuffer = *buffer;
uint32_t oldSize = *size;
if(additionalInfo!=NULL){
additionalInfo->serialize(buffer,size,max_size,bigEndian);
}
ReturnValue_t result = currentWriteBlock->serialize(buffer,size,max_size,bigEndian);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
result = SerializeAdapter::serialize(&this->size,buffer,size,max_size,bigEndian);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
uint32_t i = 0;
while ((result == HasReturnvaluesIF::RETURN_OK) && (i < this->size)) {
result = SerializeAdapter::serialize(&this->entries[i], buffer, size,
max_size, bigEndian);
++i;
}
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
uint16_t crc = Calculate_CRC(crcBuffer,(*size-oldSize));
result = SerializeAdapter::serialize(&crc,buffer,size,max_size,bigEndian);
return result;
}
/**
* Get the serialized Size of the index
* @return The serialized size of the index
*/
uint32_t getSerializedSize() const {
uint32_t size = 0;
if(additionalInfo!=NULL){
size += additionalInfo->getSerializedSize();
}
size += currentWriteBlock->getSerializedSize();
size += SerializeAdapter::getSerializedSize(&this->size);
size += (this->entries[0].getSerializedSize()) * this->size;
uint16_t crc = 0;
size += SerializeAdapter::getSerializedSize(&crc);
return size;
}
/**
* DeSerialize the Indexed Ring from a buffer, deSerializes the current write iterator
* CRC Has to be checked before!
* @param buffer
* @param size
* @param bigEndian
* @return
*/
ReturnValue_t deSerialize(const uint8_t** buffer, int32_t* size,
bool bigEndian){
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
if(additionalInfo!=NULL){
result = additionalInfo->deSerialize(buffer,size,bigEndian);
}
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
Index<T> tempIndex;
result = tempIndex.deSerialize(buffer,size,bigEndian);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
uint32_t tempSize = 0;
result = SerializeAdapter::deSerialize(&tempSize,buffer,size,bigEndian);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
if(this->size != tempSize){
return HasReturnvaluesIF::RETURN_FAILED;
}
uint32_t i = 0;
while ((result == HasReturnvaluesIF::RETURN_OK) && (i < this->size)) {
result = SerializeAdapter::deSerialize(
&this->entries[i], buffer, size,
bigEndian);
++i;
}
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
typename IndexedRingMemoryArray<T>::Iterator cmp(&tempIndex);
for(typename IndexedRingMemoryArray<T>::Iterator it= this->begin();it!=this->end();++it){
if(*(cmp.value) == *(it.value)){
currentWriteBlock = it;
return HasReturnvaluesIF::RETURN_OK;
}
}
//Reached if current write block iterator is not found
return HasReturnvaluesIF::RETURN_FAILED;
}
uint32_t getIndexAddress() const {
return indexAddress;
}
/*
* Statistics
*/
uint32_t getStoredPackets() const {
uint32_t size = 0;
for(typename IndexedRingMemoryArray<T>::Iterator it= this->begin();it!=this->end();++it){
size += it->getStoredPackets();
}
return size;
}
uint32_t getTotalSize() const {
return totalSize;
}
uint32_t getCurrentSize() const{
uint32_t size = 0;
for(typename IndexedRingMemoryArray<T>::Iterator it= this->begin();it!=this->end();++it){
size += it->getSize();
}
return size;
}
bool isEmpty() const{
return getCurrentSize()==0;
}
double getPercentageFilled() const{
uint32_t filledSize = 0;
for(typename IndexedRingMemoryArray<T>::Iterator it= this->begin();it!=this->end();++it){
filledSize += it->getSize();
}
return (double)filledSize/(double)this->totalSize;
}
typename IndexedRingMemoryArray<T>::Iterator getCurrentWriteBlock() const{
return currentWriteBlock;
}
/**
* Get the next block of the currentWriteBlock.
* Returns the first one if currentWriteBlock is the last one
* @return Iterator pointing to the next block after currentWriteBlock
*/
typename IndexedRingMemoryArray<T>::Iterator getNextWrite() const{
typename IndexedRingMemoryArray<T>::Iterator next(currentWriteBlock);
if((this->size != 0) && (currentWriteBlock.value == this->back())){
next = this->begin();
}else{
++next;
}
return next;
}
/**
* Get the block in front of the Iterator
* Returns the last block if it is the first block
* @param it iterator which you want the previous block from
* @return pointing to the block before it
*/
typename IndexedRingMemoryArray<T>::Iterator getPreviousBlock(typename IndexedRingMemoryArray<T>::Iterator it) {
if(this->begin() == it){
typename IndexedRingMemoryArray<T>::Iterator next((this->back()));
return next;
}
typename IndexedRingMemoryArray<T>::Iterator next(it);
--next;
return next;
}
private:
//The total size used by the blocks (without index)
uint32_t totalSize;
//The address of the index
const uint32_t indexAddress;
//The iterators for writing and reading
typename IndexedRingMemoryArray<T>::Iterator currentWriteBlock;
typename IndexedRingMemoryArray<T>::Iterator currentReadBlock;
//How much of the current read block is read already
uint32_t currentReadSize;
//Cached Size of current read block
uint32_t currentReadBlockSizeCached;
//Last block of current write (should be write block)
typename IndexedRingMemoryArray<T>::Iterator lastBlockToRead;
//current size of last Block to read
uint32_t lastBlockToReadSize;
//Additional Info to be serialized with the index
SerializeIF* additionalInfo;
//Does it overwrite old blocks?
const bool overwriteOld;
};
#endif /* FRAMEWORK_CONTAINER_INDEXEDRINGMEMORY_H_ */