Merge branch 'master' into mueller_ringBufferStatic

This commit is contained in:
Steffen Gaisser 2020-09-01 12:54:08 +02:00
commit 5308cb6237
80 changed files with 2556 additions and 825 deletions

View File

@ -10,7 +10,7 @@ class ActionMessage {
private: private:
ActionMessage(); ActionMessage();
public: public:
static const uint8_t MESSAGE_ID = MESSAGE_TYPE::ACTION; static const uint8_t MESSAGE_ID = messagetypes::ACTION;
static const Command_t EXECUTE_ACTION = MAKE_COMMAND_ID(1); static const Command_t EXECUTE_ACTION = MAKE_COMMAND_ID(1);
static const Command_t STEP_SUCCESS = MAKE_COMMAND_ID(2); static const Command_t STEP_SUCCESS = MAKE_COMMAND_ID(2);
static const Command_t STEP_FAILED = MAKE_COMMAND_ID(3); static const Command_t STEP_FAILED = MAKE_COMMAND_ID(3);

View File

@ -1,10 +1,13 @@
#ifndef SINGLYLINKEDLIST_H_ #ifndef FRAMEWORK_CONTAINER_SINGLYLINKEDLIST_H_
#define SINGLYLINKEDLIST_H_ #define FRAMEWORK_CONTAINER_SINGLYLINKEDLIST_H_
#include <cstddef>
#include <cstdint>
#include <stddef.h>
#include <stdint.h>
/** /**
* \ingroup container * @brief Linked list data structure,
* each entry has a pointer to the next entry (singly)
* @ingroup container
*/ */
template<typename T> template<typename T>
class LinkedElement { class LinkedElement {
@ -12,11 +15,8 @@ public:
T *value; T *value;
class Iterator { class Iterator {
public: public:
LinkedElement<T> *value; LinkedElement<T> *value = nullptr;
Iterator() : Iterator() {}
value(NULL) {
}
Iterator(LinkedElement<T> *element) : Iterator(LinkedElement<T> *element) :
value(element) { value(element) {
@ -45,12 +45,11 @@ public:
} }
}; };
LinkedElement(T* setElement, LinkedElement<T>* setNext = NULL) : value(setElement), LinkedElement(T* setElement, LinkedElement<T>* setNext = nullptr):
next(setNext) { value(setElement), next(setNext) {}
}
virtual ~LinkedElement(){ virtual ~LinkedElement(){}
}
virtual LinkedElement* getNext() const { virtual LinkedElement* getNext() const {
return next; return next;
} }
@ -58,11 +57,16 @@ public:
virtual void setNext(LinkedElement* next) { virtual void setNext(LinkedElement* next) {
this->next = next; this->next = next;
} }
virtual void setEnd() {
this->next = nullptr;
}
LinkedElement* begin() { LinkedElement* begin() {
return this; return this;
} }
LinkedElement* end() { LinkedElement* end() {
return NULL; return nullptr;
} }
private: private:
LinkedElement *next; LinkedElement *next;
@ -71,37 +75,80 @@ private:
template<typename T> template<typename T>
class SinglyLinkedList { class SinglyLinkedList {
public: public:
SinglyLinkedList() : using ElementIterator = typename LinkedElement<T>::Iterator;
start(NULL) {
} SinglyLinkedList() {}
SinglyLinkedList(ElementIterator start) :
start(start.value) {}
SinglyLinkedList(typename LinkedElement<T>::Iterator start) :
start(start.value) {
}
SinglyLinkedList(LinkedElement<T>* startElement) : SinglyLinkedList(LinkedElement<T>* startElement) :
start(startElement) { start(startElement) {}
}
typename LinkedElement<T>::Iterator begin() const { ElementIterator begin() const {
return LinkedElement<T>::Iterator::Iterator(start); return ElementIterator::Iterator(start);
}
typename LinkedElement<T>::Iterator::Iterator end() const {
return LinkedElement<T>::Iterator::Iterator();
} }
uint32_t getSize() const { /** Returns iterator to nulltr */
uint32_t size = 0; ElementIterator end() const {
return ElementIterator::Iterator();
}
/**
* Returns last element in singly linked list.
* @return
*/
ElementIterator back() const {
LinkedElement<T> *element = start; LinkedElement<T> *element = start;
while (element != NULL) { while (element->getNext() != nullptr) {
element = element->getNext();
}
return ElementIterator::Iterator(element);
}
size_t getSize() const {
size_t size = 0;
LinkedElement<T> *element = start;
while (element != nullptr) {
size++; size++;
element = element->getNext(); element = element->getNext();
} }
return size; return size;
} }
void setStart(LinkedElement<T>* setStart) { void setStart(LinkedElement<T>* firstElement) {
start = setStart; start = firstElement;
} }
void setNext(LinkedElement<T>* currentElement,
LinkedElement<T>* nextElement) {
currentElement->setNext(nextElement);
}
void setLast(LinkedElement<T>* lastElement) {
lastElement->setEnd();
}
void insertElement(LinkedElement<T>* element, size_t position) {
LinkedElement<T> *currentElement = start;
for(size_t count = 0; count < position; count++) {
if(currentElement == nullptr) {
return;
}
currentElement = currentElement->getNext();
}
LinkedElement<T>* elementAfterCurrent = currentElement->next;
currentElement->setNext(element);
if(elementAfterCurrent != nullptr) {
element->setNext(elementAfterCurrent);
}
}
void insertBack(LinkedElement<T>* lastElement) {
back().value->setNext(lastElement);
}
protected: protected:
LinkedElement<T> *start; LinkedElement<T> *start = nullptr;
}; };
#endif /* SINGLYLINKEDLIST_H_ */ #endif /* SINGLYLINKEDLIST_H_ */

View File

@ -61,7 +61,7 @@ ReturnValue_t DataPool::freeDataPoolLock() {
} }
ReturnValue_t DataPool::lockDataPool() { ReturnValue_t DataPool::lockDataPool() {
ReturnValue_t status = mutex->lockMutex(MutexIF::NO_TIMEOUT); ReturnValue_t status = mutex->lockMutex(MutexIF::BLOCKING);
if ( status != RETURN_OK ) { if ( status != RETURN_OK ) {
sif::error << "DataPool::DataPool: lock of mutex failed with error code: " << status << std::endl; sif::error << "DataPool::DataPool: lock of mutex failed with error code: " << status << std::endl;
} }

View File

@ -1,17 +1,19 @@
#include "../subsystem/SubsystemBase.h" #include "../subsystem/SubsystemBase.h"
#include "ChildHandlerBase.h" #include "../devicehandlers/ChildHandlerBase.h"
#include "../subsystem/SubsystemBase.h" #include "../subsystem/SubsystemBase.h"
ChildHandlerBase::ChildHandlerBase(object_id_t setObjectId, ChildHandlerBase::ChildHandlerBase(object_id_t setObjectId,
object_id_t deviceCommunication, CookieIF * comCookie, object_id_t deviceCommunication, CookieIF * cookie,
uint8_t setDeviceSwitch, uint32_t thermalStatePoolId, uint32_t thermalStatePoolId, uint32_t thermalRequestPoolId,
uint32_t thermalRequestPoolId, uint32_t parent, object_id_t parent, FailureIsolationBase* customFdir,
FailureIsolationBase* customFdir, size_t cmdQueueSize) : size_t cmdQueueSize) :
DeviceHandlerBase(setObjectId, deviceCommunication, comCookie, DeviceHandlerBase(setObjectId, deviceCommunication, cookie,
setDeviceSwitch, thermalStatePoolId,thermalRequestPoolId,
(customFdir == nullptr? &childHandlerFdir : customFdir), (customFdir == nullptr? &childHandlerFdir : customFdir),
cmdQueueSize), cmdQueueSize),
parentId(parent), childHandlerFdir(setObjectId) { parentId(parent), childHandlerFdir(setObjectId) {
this->setThermalStateRequestPoolIds(thermalStatePoolId,
thermalRequestPoolId);
} }
ChildHandlerBase::~ChildHandlerBase() { ChildHandlerBase::~ChildHandlerBase() {
@ -25,7 +27,7 @@ ReturnValue_t ChildHandlerBase::initialize() {
MessageQueueId_t parentQueue = 0; MessageQueueId_t parentQueue = 0;
if (parentId != 0) { if (parentId != objects::NO_OBJECT) {
SubsystemBase *parent = objectManager->get<SubsystemBase>(parentId); SubsystemBase *parent = objectManager->get<SubsystemBase>(parentId);
if (parent == NULL) { if (parent == NULL) {
return RETURN_FAILED; return RETURN_FAILED;

View File

@ -1,15 +1,15 @@
#ifndef PAYLOADHANDLERBASE_H_ #ifndef FSFW_DEVICES_CHILDHANDLERBASE_H_
#define PAYLOADHANDLERBASE_H_ #define FSFW_DEVICES_CHILDHANDLERBASE_H_
#include "ChildHandlerFDIR.h" #include "ChildHandlerFDIR.h"
#include "DeviceHandlerBase.h" #include "DeviceHandlerBase.h"
class ChildHandlerBase: public DeviceHandlerBase { class ChildHandlerBase: public DeviceHandlerBase {
public: public:
ChildHandlerBase(object_id_t setObjectId, ChildHandlerBase(object_id_t setObjectId, object_id_t deviceCommunication,
object_id_t deviceCommunication, CookieIF * comCookie, CookieIF * cookie, uint32_t thermalStatePoolId,
uint8_t setDeviceSwitch, uint32_t thermalStatePoolId, uint32_t thermalRequestPoolId,
uint32_t thermalRequestPoolId, uint32_t parent, object_id_t parent = objects::NO_OBJECT,
FailureIsolationBase* customFdir = nullptr, FailureIsolationBase* customFdir = nullptr,
size_t cmdQueueSize = 20); size_t cmdQueueSize = 20);
virtual ~ChildHandlerBase(); virtual ~ChildHandlerBase();
@ -22,4 +22,5 @@ protected:
}; };
#endif /* PAYLOADHANDLERBASE_H_ */ #endif /* FSFW_DEVICES_CHILDHANDLERBASE_H_ */

View File

@ -1,12 +1,12 @@
#include "DeviceHandlerBase.h" #include "DeviceHandlerBase.h"
#include "AcceptsDeviceResponsesIF.h"
#include "DeviceTmReportingWrapper.h"
#include "../objectmanager/ObjectManager.h" #include "../objectmanager/ObjectManager.h"
#include "../storagemanager/StorageManagerIF.h" #include "../storagemanager/StorageManagerIF.h"
#include "../thermal/ThermalComponentIF.h" #include "../thermal/ThermalComponentIF.h"
#include "AcceptsDeviceResponsesIF.h"
#include "../datapool/DataSet.h" #include "../datapool/DataSet.h"
#include "../datapool/PoolVariable.h" #include "../datapool/PoolVariable.h"
#include "DeviceTmReportingWrapper.h"
#include "../globalfunctions/CRC.h" #include "../globalfunctions/CRC.h"
#include "../subsystem/SubsystemBase.h" #include "../subsystem/SubsystemBase.h"
#include "../ipc/QueueFactory.h" #include "../ipc/QueueFactory.h"
@ -14,45 +14,47 @@
#include <iomanip> #include <iomanip>
object_id_t DeviceHandlerBase::powerSwitcherId = 0; object_id_t DeviceHandlerBase::powerSwitcherId = objects::NO_OBJECT;
object_id_t DeviceHandlerBase::rawDataReceiverId = 0; object_id_t DeviceHandlerBase::rawDataReceiverId = objects::NO_OBJECT;
object_id_t DeviceHandlerBase::defaultFDIRParentId = 0; object_id_t DeviceHandlerBase::defaultFdirParentId = objects::NO_OBJECT;
DeviceHandlerBase::DeviceHandlerBase(object_id_t setObjectId, DeviceHandlerBase::DeviceHandlerBase(object_id_t setObjectId,
object_id_t deviceCommunication, CookieIF * comCookie, object_id_t deviceCommunication, CookieIF * comCookie,
uint8_t setDeviceSwitch, uint32_t thermalStatePoolId, FailureIsolationBase* fdirInstance, size_t cmdQueueSize) :
uint32_t thermalRequestPoolId, FailureIsolationBase* fdirInstance,
size_t cmdQueueSize) :
SystemObject(setObjectId), mode(MODE_OFF), submode(SUBMODE_NONE), SystemObject(setObjectId), mode(MODE_OFF), submode(SUBMODE_NONE),
wiretappingMode(OFF), storedRawData(StorageManagerIF::INVALID_ADDRESS), wiretappingMode(OFF), storedRawData(StorageManagerIF::INVALID_ADDRESS),
deviceCommunicationId(deviceCommunication), comCookie(comCookie), deviceCommunicationId(deviceCommunication), comCookie(comCookie),
deviceThermalStatePoolId(thermalStatePoolId),
deviceThermalRequestPoolId(thermalRequestPoolId),
healthHelper(this,setObjectId), modeHelper(this), parameterHelper(this), healthHelper(this,setObjectId), modeHelper(this), parameterHelper(this),
childTransitionFailure(RETURN_OK), fdirInstance(fdirInstance), actionHelper(this, nullptr), childTransitionFailure(RETURN_OK),
hkSwitcher(this), defaultFDIRUsed(fdirInstance == nullptr), fdirInstance(fdirInstance), hkSwitcher(this),
switchOffWasReported(false), actionHelper(this, nullptr), defaultFDIRUsed(fdirInstance == nullptr), switchOffWasReported(false),
childTransitionDelay(5000), childTransitionDelay(5000), transitionSourceMode(_MODE_POWER_DOWN),
transitionSourceMode(_MODE_POWER_DOWN), transitionSourceSubMode( transitionSourceSubMode(SUBMODE_NONE) {
SUBMODE_NONE), deviceSwitch(setDeviceSwitch) {
commandQueue = QueueFactory::instance()->createMessageQueue(cmdQueueSize, commandQueue = QueueFactory::instance()->createMessageQueue(cmdQueueSize,
CommandMessage::MAX_MESSAGE_SIZE); MessageQueueMessage::MAX_MESSAGE_SIZE);
insertInCommandMap(RAW_COMMAND_ID); insertInCommandMap(RAW_COMMAND_ID);
cookieInfo.state = COOKIE_UNUSED; cookieInfo.state = COOKIE_UNUSED;
cookieInfo.pendingCommand = deviceCommandMap.end(); cookieInfo.pendingCommand = deviceCommandMap.end();
if (comCookie == nullptr) { if (comCookie == nullptr) {
sif::error << "DeviceHandlerBase: ObjectID 0x" << std::hex << sif::error << "DeviceHandlerBase: ObjectID 0x" << std::hex
std::setw(8) << std::setfill('0') << this->getObjectId() << << std::setw(8) << std::setfill('0') << this->getObjectId()
std::dec << ": Do not pass nullptr as a cookie, consider " << std::dec << ": Do not pass nullptr as a cookie, consider "
<< std::setfill(' ') << "passing a dummy cookie instead!" << << std::setfill(' ') << "passing a dummy cookie instead!"
std::endl; << std::endl;
} }
if (this->fdirInstance == nullptr) { if (this->fdirInstance == nullptr) {
this->fdirInstance = new DeviceHandlerFailureIsolation(setObjectId, this->fdirInstance = new DeviceHandlerFailureIsolation(setObjectId,
defaultFDIRParentId); defaultFdirParentId);
} }
} }
void DeviceHandlerBase::setThermalStateRequestPoolIds(
uint32_t thermalStatePoolId, uint32_t thermalRequestPoolId) {
this->deviceThermalRequestPoolId = thermalStatePoolId;
this->deviceThermalRequestPoolId = thermalRequestPoolId;
}
DeviceHandlerBase::~DeviceHandlerBase() { DeviceHandlerBase::~DeviceHandlerBase() {
delete comCookie; delete comCookie;
if (defaultFDIRUsed) { if (defaultFDIRUsed) {
@ -108,8 +110,12 @@ ReturnValue_t DeviceHandlerBase::initialize() {
communicationInterface = objectManager->get<DeviceCommunicationIF>( communicationInterface = objectManager->get<DeviceCommunicationIF>(
deviceCommunicationId); deviceCommunicationId);
if (communicationInterface == NULL) { if (communicationInterface == nullptr) {
return RETURN_FAILED; sif::error << "DeviceHandlerBase::initialize: Communication interface "
"invalid." << std::endl;
sif::error << "Make sure it is set up properly and implements"
" DeviceCommunicationIF" << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
} }
result = communicationInterface->initializeInterface(comCookie); result = communicationInterface->initializeInterface(comCookie);
@ -118,22 +124,35 @@ ReturnValue_t DeviceHandlerBase::initialize() {
} }
IPCStore = objectManager->get<StorageManagerIF>(objects::IPC_STORE); IPCStore = objectManager->get<StorageManagerIF>(objects::IPC_STORE);
if (IPCStore == NULL) { if (IPCStore == nullptr) {
return RETURN_FAILED; sif::error << "DeviceHandlerBase::initialize: IPC store not set up in "
"factory." << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
} }
if(rawDataReceiverId != objects::NO_OBJECT) {
AcceptsDeviceResponsesIF *rawReceiver = objectManager->get< AcceptsDeviceResponsesIF *rawReceiver = objectManager->get<
AcceptsDeviceResponsesIF>(rawDataReceiverId); AcceptsDeviceResponsesIF>(rawDataReceiverId);
if (rawReceiver == NULL) { if (rawReceiver == nullptr) {
return RETURN_FAILED; sif::error << "DeviceHandlerBase::initialize: Raw receiver object "
"ID set but no valid object found." << std::endl;
sif::error << "Make sure the raw receiver object is set up properly"
" and implements AcceptsDeviceResponsesIF" << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
defaultRawReceiver = rawReceiver->getDeviceQueue();
} }
defaultRawReceiver = rawReceiver->getDeviceQueue(); if(powerSwitcherId != objects::NO_OBJECT) {
powerSwitcher = objectManager->get<PowerSwitchIF>(powerSwitcherId); powerSwitcher = objectManager->get<PowerSwitchIF>(powerSwitcherId);
if (powerSwitcher == NULL) { if (powerSwitcher == nullptr) {
return RETURN_FAILED; sif::error << "DeviceHandlerBase::initialize: Power switcher "
<< "object ID set but no valid object found." << std::endl;
sif::error << "Make sure the raw receiver object is set up properly"
<< " and implements PowerSwitchIF" << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
} }
result = healthHelper.initialize(); result = healthHelper.initialize();
@ -168,7 +187,7 @@ ReturnValue_t DeviceHandlerBase::initialize() {
//Set temperature target state to NON_OP. //Set temperature target state to NON_OP.
DataSet mySet; DataSet mySet;
PoolVariable<int8_t> thermalRequest(deviceThermalRequestPoolId, &mySet, db_int8_t thermalRequest(deviceThermalRequestPoolId, &mySet,
PoolVariableIF::VAR_WRITE); PoolVariableIF::VAR_WRITE);
mySet.read(); mySet.read();
thermalRequest = ThermalComponentIF::STATE_REQUEST_NON_OPERATIONAL; thermalRequest = ThermalComponentIF::STATE_REQUEST_NON_OPERATIONAL;
@ -200,38 +219,43 @@ void DeviceHandlerBase::readCommandQueue() {
return; return;
} }
CommandMessage message; CommandMessage command;
ReturnValue_t result = commandQueue->receiveMessage(&message); ReturnValue_t result = commandQueue->receiveMessage(&command);
if (result != RETURN_OK) { if (result != RETURN_OK) {
return; return;
} }
result = healthHelper.handleHealthCommand(&message); result = healthHelper.handleHealthCommand(&command);
if (result == RETURN_OK) { if (result == RETURN_OK) {
return; return;
} }
result = modeHelper.handleModeCommand(&message); result = modeHelper.handleModeCommand(&command);
if (result == RETURN_OK) { if (result == RETURN_OK) {
return; return;
} }
result = actionHelper.handleActionMessage(&message); result = actionHelper.handleActionMessage(&command);
if (result == RETURN_OK) { if (result == RETURN_OK) {
return; return;
} }
result = parameterHelper.handleParameterMessage(&message); result = parameterHelper.handleParameterMessage(&command);
if (result == RETURN_OK) { if (result == RETURN_OK) {
return; return;
} }
result = handleDeviceHandlerMessage(&message); // result = hkManager.handleHousekeepingMessage(&command);
// if (result == RETURN_OK) {
// return;
// }
result = handleDeviceHandlerMessage(&command);
if (result == RETURN_OK) { if (result == RETURN_OK) {
return; return;
} }
result = letChildHandleMessage(&message); result = letChildHandleMessage(&command);
if (result == RETURN_OK) { if (result == RETURN_OK) {
return; return;
} }
@ -273,7 +297,8 @@ void DeviceHandlerBase::doStateMachine() {
case _MODE_WAIT_ON: { case _MODE_WAIT_ON: {
uint32_t currentUptime; uint32_t currentUptime;
Clock::getUptime(&currentUptime); Clock::getUptime(&currentUptime);
if (currentUptime - timeoutStart >= powerSwitcher->getSwitchDelayMs()) { if (powerSwitcher != nullptr and currentUptime - timeoutStart >=
powerSwitcher->getSwitchDelayMs()) {
triggerEvent(MODE_TRANSITION_FAILED, PowerSwitchIF::SWITCH_TIMEOUT, triggerEvent(MODE_TRANSITION_FAILED, PowerSwitchIF::SWITCH_TIMEOUT,
0); 0);
setMode(_MODE_POWER_DOWN); setMode(_MODE_POWER_DOWN);
@ -293,6 +318,12 @@ void DeviceHandlerBase::doStateMachine() {
case _MODE_WAIT_OFF: { case _MODE_WAIT_OFF: {
uint32_t currentUptime; uint32_t currentUptime;
Clock::getUptime(&currentUptime); Clock::getUptime(&currentUptime);
if(powerSwitcher == nullptr) {
setMode(MODE_OFF);
break;
}
if (currentUptime - timeoutStart >= powerSwitcher->getSwitchDelayMs()) { if (currentUptime - timeoutStart >= powerSwitcher->getSwitchDelayMs()) {
triggerEvent(MODE_TRANSITION_FAILED, PowerSwitchIF::SWITCH_TIMEOUT, triggerEvent(MODE_TRANSITION_FAILED, PowerSwitchIF::SWITCH_TIMEOUT,
0); 0);
@ -343,9 +374,10 @@ ReturnValue_t DeviceHandlerBase::isModeCombinationValid(Mode_t mode,
} }
} }
ReturnValue_t DeviceHandlerBase::insertInCommandAndReplyMap(DeviceCommandId_t deviceCommand, ReturnValue_t DeviceHandlerBase::insertInCommandAndReplyMap(
uint16_t maxDelayCycles, size_t replyLen, bool periodic, DeviceCommandId_t deviceCommand, uint16_t maxDelayCycles,
bool hasDifferentReplyId, DeviceCommandId_t replyId) { size_t replyLen, bool periodic, bool hasDifferentReplyId,
DeviceCommandId_t replyId) {
//No need to check, as we may try to insert multiple times. //No need to check, as we may try to insert multiple times.
insertInCommandMap(deviceCommand); insertInCommandMap(deviceCommand);
if (hasDifferentReplyId) { if (hasDifferentReplyId) {
@ -371,7 +403,8 @@ ReturnValue_t DeviceHandlerBase::insertInReplyMap(DeviceCommandId_t replyId,
} }
} }
ReturnValue_t DeviceHandlerBase::insertInCommandMap(DeviceCommandId_t deviceCommand) { ReturnValue_t DeviceHandlerBase::insertInCommandMap(
DeviceCommandId_t deviceCommand) {
DeviceCommandInfo info; DeviceCommandInfo info;
info.expectedReplies = 0; info.expectedReplies = 0;
info.isExecuting = false; info.isExecuting = false;
@ -437,7 +470,7 @@ void DeviceHandlerBase::setMode(Mode_t newMode, uint8_t newSubmode) {
if (mode == MODE_OFF) { if (mode == MODE_OFF) {
DataSet mySet; DataSet mySet;
PoolVariable<int8_t> thermalRequest(deviceThermalRequestPoolId, &mySet, db_int8_t thermalRequest(deviceThermalRequestPoolId, &mySet,
PoolVariableIF::VAR_READ_WRITE); PoolVariableIF::VAR_READ_WRITE);
mySet.read(); mySet.read();
if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) { if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) {
@ -578,11 +611,8 @@ void DeviceHandlerBase::doSendRead() {
} }
void DeviceHandlerBase::doGetRead() { void DeviceHandlerBase::doGetRead() {
size_t receivedDataLen; size_t receivedDataLen = 0;
uint8_t *receivedData; uint8_t *receivedData = nullptr;
DeviceCommandId_t foundId = 0xFFFFFFFF;
size_t foundLen = 0;
ReturnValue_t result;
if (cookieInfo.state != COOKIE_READ_SENT) { if (cookieInfo.state != COOKIE_READ_SENT) {
cookieInfo.state = COOKIE_UNUSED; cookieInfo.state = COOKIE_UNUSED;
@ -591,8 +621,8 @@ void DeviceHandlerBase::doGetRead() {
cookieInfo.state = COOKIE_UNUSED; cookieInfo.state = COOKIE_UNUSED;
result = communicationInterface->readReceivedMessage(comCookie, ReturnValue_t result = communicationInterface->readReceivedMessage(
&receivedData, &receivedDataLen); comCookie, &receivedData, &receivedDataLen);
if (result != RETURN_OK) { if (result != RETURN_OK) {
triggerEvent(DEVICE_REQUESTING_REPLY_FAILED, result); triggerEvent(DEVICE_REQUESTING_REPLY_FAILED, result);
@ -608,11 +638,22 @@ void DeviceHandlerBase::doGetRead() {
replyRawData(receivedData, receivedDataLen, requestedRawTraffic); replyRawData(receivedData, receivedDataLen, requestedRawTraffic);
} }
if (mode == MODE_RAW) { if (mode == MODE_RAW and defaultRawReceiver != MessageQueueIF::NO_QUEUE) {
replyRawReplyIfnotWiretapped(receivedData, receivedDataLen); replyRawReplyIfnotWiretapped(receivedData, receivedDataLen);
} else { }
//The loop may not execute more often than the number of received bytes (worst case). else {
//This approach avoids infinite loops due to buggy scanForReply routines (seen in bug 1077). parseReply(receivedData, receivedDataLen);
}
}
void DeviceHandlerBase::parseReply(const uint8_t* receivedData,
size_t receivedDataLen) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_FAILED;
DeviceCommandId_t foundId = 0xFFFFFFFF;
size_t foundLen = 0;
// The loop may not execute more often than the number of received bytes
// (worst case). This approach avoids infinite loops due to buggy
// scanForReply routines.
uint32_t remainingLength = receivedDataLen; uint32_t remainingLength = receivedDataLen;
for (uint32_t count = 0; count < receivedDataLen; count++) { for (uint32_t count = 0; count < receivedDataLen; count++) {
result = scanForReply(receivedData, remainingLength, &foundId, result = scanForReply(receivedData, remainingLength, &foundId,
@ -647,7 +688,46 @@ void DeviceHandlerBase::doGetRead() {
return; return;
} }
} }
}
void DeviceHandlerBase::handleReply(const uint8_t* receivedData,
DeviceCommandId_t foundId, uint32_t foundLen) {
ReturnValue_t result;
DeviceReplyMap::iterator iter = deviceReplyMap.find(foundId);
if (iter == deviceReplyMap.end()) {
replyRawReplyIfnotWiretapped(receivedData, foundLen);
triggerEvent(DEVICE_UNKNOWN_REPLY, foundId);
return;
}
DeviceReplyInfo *info = &(iter->second);
if (info->delayCycles != 0) {
if (info->periodic != false) {
info->delayCycles = info->maxDelayCycles;
}
else {
info->delayCycles = 0;
}
result = interpretDeviceReply(foundId, receivedData);
if (result != RETURN_OK) {
// Report failed interpretation to FDIR.
replyRawReplyIfnotWiretapped(receivedData, foundLen);
triggerEvent(DEVICE_INTERPRETING_REPLY_FAILED, result, foundId);
}
replyToReply(iter, result);
}
else {
// Other completion failure messages are created by timeout.
// Powering down the device might take some time during which periodic
// replies may still come in.
if (mode != _MODE_WAIT_OFF) {
triggerEvent(DEVICE_UNREQUESTED_REPLY, foundId);
}
} }
} }
@ -675,7 +755,7 @@ ReturnValue_t DeviceHandlerBase::getStorageData(store_address_t storageAddress,
void DeviceHandlerBase::replyRawData(const uint8_t *data, size_t len, void DeviceHandlerBase::replyRawData(const uint8_t *data, size_t len,
MessageQueueId_t sendTo, bool isCommand) { MessageQueueId_t sendTo, bool isCommand) {
if (IPCStore == NULL || len == 0) { if (IPCStore == nullptr or len == 0 or sendTo == MessageQueueIF::NO_QUEUE) {
return; return;
} }
store_address_t address; store_address_t address;
@ -686,18 +766,17 @@ void DeviceHandlerBase::replyRawData(const uint8_t *data, size_t len,
return; return;
} }
CommandMessage message; CommandMessage command;
DeviceHandlerMessage::setDeviceHandlerRawReplyMessage(&message, DeviceHandlerMessage::setDeviceHandlerRawReplyMessage(&command,
getObjectId(), address, isCommand); getObjectId(), address, isCommand);
// this->DeviceHandlerCommand = CommandMessage::CMD_NONE; result = commandQueue->sendMessage(sendTo, &command);
result = commandQueue->sendMessage(sendTo, &message);
if (result != RETURN_OK) { if (result != RETURN_OK) {
IPCStore->deleteData(address); IPCStore->deleteData(address);
//Silently discard data, this indicates heavy TM traffic which should not be increased by additional events. // Silently discard data, this indicates heavy TM traffic which
// should not be increased by additional events.
} }
} }
@ -726,57 +805,6 @@ MessageQueueId_t DeviceHandlerBase::getCommandQueue() const {
return commandQueue->getId(); return commandQueue->getId();
} }
void DeviceHandlerBase::handleReply(const uint8_t* receivedData,
DeviceCommandId_t foundId, uint32_t foundLen) {
ReturnValue_t result;
DeviceReplyMap::iterator iter = deviceReplyMap.find(foundId);
if (iter == deviceReplyMap.end()) {
replyRawReplyIfnotWiretapped(receivedData, foundLen);
triggerEvent(DEVICE_UNKNOWN_REPLY, foundId);
return;
}
DeviceReplyInfo *info = &(iter->second);
if (info->delayCycles != 0) {
if (info->periodic) {
info->delayCycles = info->maxDelayCycles;
} else {
info->delayCycles = 0;
}
result = interpretDeviceReply(foundId, receivedData);
if (result != RETURN_OK) {
//Report failed interpretation to FDIR.
replyRawReplyIfnotWiretapped(receivedData, foundLen);
triggerEvent(DEVICE_INTERPRETING_REPLY_FAILED, result, foundId);
}
replyToReply(iter, result);
} else {
//Other completion failure messages are created by timeout.
//Powering down the device might take some time during which periodic replies may still come in.
if (mode != _MODE_WAIT_OFF) {
triggerEvent(DEVICE_UNREQUESTED_REPLY, foundId);
}
}
}
//ReturnValue_t DeviceHandlerBase::switchCookieChannel(object_id_t newChannelId) {
// DeviceCommunicationIF *newCommunication = objectManager->get<
// DeviceCommunicationIF>(newChannelId);
//
// if (newCommunication != NULL) {
// ReturnValue_t result = newCommunication->reOpen(cookie, ioBoardAddress,
// maxDeviceReplyLen);
// if (result != RETURN_OK) {
// return result;
// }
// return RETURN_OK;
// }
// return RETURN_FAILED;
//}
void DeviceHandlerBase::buildRawDeviceCommand(CommandMessage* commandMessage) { void DeviceHandlerBase::buildRawDeviceCommand(CommandMessage* commandMessage) {
storedRawData = DeviceHandlerMessage::getStoreAddress(commandMessage); storedRawData = DeviceHandlerMessage::getStoreAddress(commandMessage);
ReturnValue_t result = getStorageData(storedRawData, &rawPacket, ReturnValue_t result = getStorageData(storedRawData, &rawPacket,
@ -793,6 +821,9 @@ void DeviceHandlerBase::buildRawDeviceCommand(CommandMessage* commandMessage) {
} }
void DeviceHandlerBase::commandSwitch(ReturnValue_t onOff) { void DeviceHandlerBase::commandSwitch(ReturnValue_t onOff) {
if(powerSwitcher == nullptr) {
return;
}
const uint8_t *switches; const uint8_t *switches;
uint8_t numberOfSwitches = 0; uint8_t numberOfSwitches = 0;
ReturnValue_t result = getSwitches(&switches, &numberOfSwitches); ReturnValue_t result = getSwitches(&switches, &numberOfSwitches);
@ -807,9 +838,7 @@ void DeviceHandlerBase::commandSwitch(ReturnValue_t onOff) {
ReturnValue_t DeviceHandlerBase::getSwitches(const uint8_t **switches, ReturnValue_t DeviceHandlerBase::getSwitches(const uint8_t **switches,
uint8_t *numberOfSwitches) { uint8_t *numberOfSwitches) {
*switches = &deviceSwitch; return DeviceHandlerBase::NO_SWITCH;
*numberOfSwitches = 1;
return RETURN_OK;
} }
void DeviceHandlerBase::modeChanged(void) { void DeviceHandlerBase::modeChanged(void) {
@ -845,6 +874,9 @@ uint32_t DeviceHandlerBase::getTransitionDelayMs(Mode_t modeFrom,
} }
ReturnValue_t DeviceHandlerBase::getStateOfSwitches(void) { ReturnValue_t DeviceHandlerBase::getStateOfSwitches(void) {
if(powerSwitcher == nullptr) {
return NO_SWITCH;
}
uint8_t numberOfSwitches = 0; uint8_t numberOfSwitches = 0;
const uint8_t *switches; const uint8_t *switches;
@ -895,9 +927,9 @@ ReturnValue_t DeviceHandlerBase::checkModeCommand(Mode_t commandedMode,
if ((commandedMode == MODE_ON) && (mode == MODE_OFF) if ((commandedMode == MODE_ON) && (mode == MODE_OFF)
&& (deviceThermalStatePoolId != PoolVariableIF::NO_PARAMETER)) { && (deviceThermalStatePoolId != PoolVariableIF::NO_PARAMETER)) {
DataSet mySet; DataSet mySet;
PoolVariable<int8_t> thermalState(deviceThermalStatePoolId, &mySet, db_int8_t thermalState(deviceThermalStatePoolId, &mySet,
PoolVariableIF::VAR_READ); PoolVariableIF::VAR_READ);
PoolVariable<int8_t> thermalRequest(deviceThermalRequestPoolId, &mySet, db_int8_t thermalRequest(deviceThermalRequestPoolId, &mySet,
PoolVariableIF::VAR_READ); PoolVariableIF::VAR_READ);
mySet.read(); mySet.read();
if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) { if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) {
@ -925,7 +957,7 @@ void DeviceHandlerBase::startTransition(Mode_t commandedMode,
MODE_ON); MODE_ON);
triggerEvent(CHANGING_MODE, commandedMode, commandedSubmode); triggerEvent(CHANGING_MODE, commandedMode, commandedSubmode);
DataSet mySet; DataSet mySet;
PoolVariable<int8_t> thermalRequest(deviceThermalRequestPoolId, db_int8_t thermalRequest(deviceThermalRequestPoolId,
&mySet, PoolVariableIF::VAR_READ_WRITE); &mySet, PoolVariableIF::VAR_READ_WRITE);
mySet.read(); mySet.read();
if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) { if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) {
@ -1111,35 +1143,47 @@ void DeviceHandlerBase::handleDeviceTM(SerializeIF* data,
return; return;
} }
DeviceTmReportingWrapper wrapper(getObjectId(), replyId, data); DeviceTmReportingWrapper wrapper(getObjectId(), replyId, data);
if (iter->second.command != deviceCommandMap.end()) {//replies to a command //replies to a command
if (iter->second.command != deviceCommandMap.end())
{
MessageQueueId_t queueId = iter->second.command->second.sendReplyTo; MessageQueueId_t queueId = iter->second.command->second.sendReplyTo;
if (queueId != NO_COMMANDER) { if (queueId != NO_COMMANDER) {
//This may fail, but we'll ignore the fault. //This may fail, but we'll ignore the fault.
actionHelper.reportData(queueId, replyId, data); actionHelper.reportData(queueId, replyId, data);
} }
//This check should make sure we get any TM but don't get anything doubled. //This check should make sure we get any TM but don't get anything doubled.
if (wiretappingMode == TM && (requestedRawTraffic != queueId)) { if (wiretappingMode == TM && (requestedRawTraffic != queueId)) {
actionHelper.reportData(requestedRawTraffic, replyId, &wrapper); actionHelper.reportData(requestedRawTraffic, replyId, &wrapper);
} else if (forceDirectTm && (defaultRawReceiver != queueId)) { }
else if (forceDirectTm and (defaultRawReceiver != queueId) and
// hiding of sender needed so the service will handle it as unexpected Data, no matter what state (defaultRawReceiver != MessageQueueIF::NO_QUEUE))
//(progress or completed) it is in {
// hiding of sender needed so the service will handle it as
// unexpected Data, no matter what state (progress or completed)
// it is in
actionHelper.reportData(defaultRawReceiver, replyId, &wrapper, actionHelper.reportData(defaultRawReceiver, replyId, &wrapper,
true); true);
} }
} else { //unrequested/aperiodic replies }
//unrequested/aperiodic replies
else
{
if (wiretappingMode == TM) { if (wiretappingMode == TM) {
actionHelper.reportData(requestedRawTraffic, replyId, &wrapper); actionHelper.reportData(requestedRawTraffic, replyId, &wrapper);
} else if (forceDirectTm) { }
// hiding of sender needed so the service will handle it as unexpected Data, no matter what state else if (forceDirectTm and defaultRawReceiver !=
//(progress or completed) it is in MessageQueueIF::NO_QUEUE)
{
// hiding of sender needed so the service will handle it as
// unexpected Data, no matter what state (progress or completed)
// it is in
actionHelper.reportData(defaultRawReceiver, replyId, &wrapper, actionHelper.reportData(defaultRawReceiver, replyId, &wrapper,
true); true);
} }
} }
//Try to cast to DataSet and commit data. //Try to cast to GlobDataSet and commit data.
if (!neverInDataPool) { if (!neverInDataPool) {
DataSet* dataSet = dynamic_cast<DataSet*>(data); DataSet* dataSet = dynamic_cast<DataSet*>(data);
if (dataSet != NULL) { if (dataSet != NULL) {
@ -1178,18 +1222,23 @@ void DeviceHandlerBase::buildInternalCommand(void) {
if (mode == MODE_NORMAL) { if (mode == MODE_NORMAL) {
result = buildNormalDeviceCommand(&deviceCommandId); result = buildNormalDeviceCommand(&deviceCommandId);
if (result == BUSY) { if (result == BUSY) {
//so we can track misconfigurations
sif::debug << std::hex << getObjectId() sif::debug << std::hex << getObjectId()
<< ": DHB::buildInternalCommand busy" << std::endl; //so we can track misconfigurations << ": DHB::buildInternalCommand: Busy" << std::endl;
result = NOTHING_TO_SEND; //no need to report this result = NOTHING_TO_SEND; //no need to report this
} }
} else if (mode == MODE_RAW) { }
else if (mode == MODE_RAW) {
result = buildChildRawCommand(); result = buildChildRawCommand();
deviceCommandId = RAW_COMMAND_ID; deviceCommandId = RAW_COMMAND_ID;
} else if (mode & TRANSITION_MODE_CHILD_ACTION_MASK) { }
else if (mode & TRANSITION_MODE_CHILD_ACTION_MASK) {
result = buildTransitionDeviceCommand(&deviceCommandId); result = buildTransitionDeviceCommand(&deviceCommandId);
} else { }
else {
return; return;
} }
if (result == NOTHING_TO_SEND) { if (result == NOTHING_TO_SEND) {
return; return;
} }
@ -1288,4 +1337,15 @@ void DeviceHandlerBase::setTaskIF(PeriodicTaskIF* task_){
void DeviceHandlerBase::debugInterface(uint8_t positionTracker, void DeviceHandlerBase::debugInterface(uint8_t positionTracker,
object_id_t objectId, uint32_t parameter) {} object_id_t objectId, uint32_t parameter) {}
void DeviceHandlerBase::performOperationHook() {} void DeviceHandlerBase::performOperationHook() {
}
ReturnValue_t DeviceHandlerBase::initializeAfterTaskCreation() {
// In this function, the task handle should be valid if the task
// was implemented correctly. We still check to be 1000 % sure :-)
if(executingTask != nullptr) {
pstIntervalMs = executingTask->getPeriodMs();
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -1,22 +1,23 @@
#ifndef DEVICEHANDLERBASE_H_ #ifndef FRAMEWORK_DEVICEHANDLERS_DEVICEHANDLERBASE_H_
#define DEVICEHANDLERBASE_H_ #define FRAMEWORK_DEVICEHANDLERS_DEVICEHANDLERBASE_H_
#include "DeviceHandlerIF.h"
#include "DeviceCommunicationIF.h"
#include "DeviceHandlerFailureIsolation.h"
#include "../objectmanager/SystemObject.h" #include "../objectmanager/SystemObject.h"
#include "../tasks/PeriodicTaskIF.h"
#include "../tasks/ExecutableObjectIF.h" #include "../tasks/ExecutableObjectIF.h"
#include "DeviceHandlerIF.h"
#include "../returnvalues/HasReturnvaluesIF.h" #include "../returnvalues/HasReturnvaluesIF.h"
#include "../action/HasActionsIF.h" #include "../action/HasActionsIF.h"
#include "../datapool/PoolVariableIF.h" #include "../datapool/PoolVariableIF.h"
#include "DeviceCommunicationIF.h"
#include "../modes/HasModesIF.h" #include "../modes/HasModesIF.h"
#include "../power/PowerSwitchIF.h" #include "../power/PowerSwitchIF.h"
#include "../ipc/MessageQueueIF.h" #include "../ipc/MessageQueueIF.h"
#include "../action/ActionHelper.h" #include "../action/ActionHelper.h"
#include "../health/HealthHelper.h" #include "../health/HealthHelper.h"
#include "../parameters/ParameterHelper.h" #include "../parameters/ParameterHelper.h"
#include "../datapool/HkSwitchHelper.h" #include "../datapool/HkSwitchHelper.h"
#include "DeviceHandlerFailureIsolation.h"
#include <map> #include <map>
@ -46,14 +47,16 @@ class StorageManagerIF;
* If data has been received (GET_READ), the data will be interpreted. * If data has been received (GET_READ), the data will be interpreted.
* The action for each step can be defined by the child class but as most * The action for each step can be defined by the child class but as most
* device handlers share a 4-call (sendRead-getRead-sendWrite-getWrite) structure, * device handlers share a 4-call (sendRead-getRead-sendWrite-getWrite) structure,
* a default implementation is provided. NOTE: RMAP is a standard which is used for FLP. * a default implementation is provided.
* NOTE: RMAP is a standard which is used for FLP.
* RMAP communication is not mandatory for projects implementing the FSFW. * RMAP communication is not mandatory for projects implementing the FSFW.
* However, the communication principles are similar to RMAP as there are * However, the communication principles are similar to RMAP as there are
* two write and two send calls involved. * two write and two send calls involved.
* *
* Device handler instances should extend this class and implement the abstract functions. * Device handler instances should extend this class and implement the abstract
* Components and drivers can send so called cookies which are used for communication * functions. Components and drivers can send so called cookies which are used
* and contain information about the communcation (e.g. slave address for I2C or RMAP structs). * for communication and contain information about the communcation (e.g. slave
* address for I2C or RMAP structs).
* The following abstract methods must be implemented by a device handler: * The following abstract methods must be implemented by a device handler:
* 1. doStartUp() * 1. doStartUp()
* 2. doShutDown() * 2. doShutDown()
@ -100,12 +103,12 @@ public:
* @param cmdQueueSize * @param cmdQueueSize
*/ */
DeviceHandlerBase(object_id_t setObjectId, object_id_t deviceCommunication, DeviceHandlerBase(object_id_t setObjectId, object_id_t deviceCommunication,
CookieIF * comCookie, uint8_t setDeviceSwitch, CookieIF * comCookie, FailureIsolationBase* fdirInstance = nullptr,
uint32_t thermalStatePoolId = PoolVariableIF::NO_PARAMETER,
uint32_t thermalRequestPoolId = PoolVariableIF::NO_PARAMETER,
FailureIsolationBase* fdirInstance = nullptr,
size_t cmdQueueSize = 20); size_t cmdQueueSize = 20);
void setThermalStateRequestPoolIds(uint32_t thermalStatePoolId,
uint32_t thermalRequestPoolId);
/** /**
* @brief This function is the device handler base core component and is * @brief This function is the device handler base core component and is
* called periodically. * called periodically.
@ -150,11 +153,9 @@ public:
* @return * @return
*/ */
virtual ReturnValue_t initialize(); virtual ReturnValue_t initialize();
/** Destructor. */
/**
* Destructor.
*/
virtual ~DeviceHandlerBase(); virtual ~DeviceHandlerBase();
protected: protected:
/** /**
* @brief This is used to let the child class handle the transition from * @brief This is used to let the child class handle the transition from
@ -232,8 +233,9 @@ protected:
* Build the device command to send for a transitional mode. * Build the device command to send for a transitional mode.
* *
* This is only called in @c _MODE_TO_NORMAL, @c _MODE_TO_ON, @c _MODE_TO_RAW, * This is only called in @c _MODE_TO_NORMAL, @c _MODE_TO_ON, @c _MODE_TO_RAW,
* @c _MODE_START_UP and @c _MODE_TO_POWER_DOWN. So it is used by doStartUp() * @c _MODE_START_UP and @c _MODE_SHUT_DOWN. So it is used by doStartUp()
* and doShutDown() as well as doTransition() * and doShutDown() as well as doTransition(), by setting those
* modes in the respective functions.
* *
* A good idea is to implement a flag indicating a command has to be built * A good idea is to implement a flag indicating a command has to be built
* and a variable containing the command number to be built * and a variable containing the command number to be built
@ -321,12 +323,11 @@ protected:
* - @c RETURN_FAILED when the reply could not be interpreted, * - @c RETURN_FAILED when the reply could not be interpreted,
* e.g. logical errors or range violations occurred * e.g. logical errors or range violations occurred
*/ */
virtual ReturnValue_t interpretDeviceReply(DeviceCommandId_t id, virtual ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) = 0; const uint8_t *packet) = 0;
/** /**
* @brief fill the #deviceCommandMap * @brief fill the #DeviceCommandMap and #DeviceReplyMap
* called by the initialize() of the base class * called by the initialize() of the base class
* @details * @details
* This is used to let the base class know which replies are expected. * This is used to let the base class know which replies are expected.
@ -470,6 +471,18 @@ protected:
virtual ReturnValue_t getSwitches(const uint8_t **switches, virtual ReturnValue_t getSwitches(const uint8_t **switches,
uint8_t *numberOfSwitches); uint8_t *numberOfSwitches);
/**
* This function is used to initialize the local housekeeping pool
* entries. The default implementation leaves the pool empty.
* @param localDataPoolMap
* @return
*/
//virtual ReturnValue_t initializePoolEntries(
// LocalDataPool& localDataPoolMap) override;
/** Get the HK manager object handle */
//virtual LocalDataPoolManager* getHkManagerHandle() override;
/** /**
* @brief Hook function for child handlers which is called once per * @brief Hook function for child handlers which is called once per
* performOperation(). Default implementation is empty. * performOperation(). Default implementation is empty.
@ -493,7 +506,7 @@ public:
ReturnValue_t setHealth(HealthState health); ReturnValue_t setHealth(HealthState health);
virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId, virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId,
ParameterWrapper *parameterWrapper, ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex); const ParameterWrapper *newValues, uint16_t startAtIndex) override;
/** /**
* Implementation of ExecutableObjectIF function * Implementation of ExecutableObjectIF function
* *
@ -505,7 +518,7 @@ public:
protected: protected:
/** /**
* The Returnvalues ID of this class, required by HasReturnvaluesIF * The Returnvalues id of this class, required by HasReturnvaluesIF
*/ */
static const uint8_t INTERFACE_ID = CLASS_ID::DEVICE_HANDLER_BASE; static const uint8_t INTERFACE_ID = CLASS_ID::DEVICE_HANDLER_BASE;
@ -527,114 +540,138 @@ protected:
static const DeviceCommandId_t NO_COMMAND_ID = -2; static const DeviceCommandId_t NO_COMMAND_ID = -2;
static const MessageQueueId_t NO_COMMANDER = 0; static const MessageQueueId_t NO_COMMANDER = 0;
/** /** Pointer to the raw packet that will be sent.*/
* Pointer to the raw packet that will be sent.
*/
uint8_t *rawPacket = nullptr; uint8_t *rawPacket = nullptr;
/** /** Size of the #rawPacket. */
* Size of the #rawPacket.
*/
uint32_t rawPacketLen = 0; uint32_t rawPacketLen = 0;
/** /**
* The mode the device handler is currently in. * The mode the device handler is currently in.
*
* This should never be changed directly but only with setMode() * This should never be changed directly but only with setMode()
*/ */
Mode_t mode; Mode_t mode;
/** /**
* The submode the device handler is currently in. * The submode the device handler is currently in.
*
* This should never be changed directly but only with setMode() * This should never be changed directly but only with setMode()
*/ */
Submode_t submode; Submode_t submode;
/** /** This is the counter value from performOperation(). */
* This is the counter value from performOperation().
*/
uint8_t pstStep = 0; uint8_t pstStep = 0;
uint32_t pstIntervalMs = 0;
/** /**
* wiretapping flag: * Wiretapping flag:
* *
* indicates either that all raw messages to and from the device should be sent to #theOneWhoWantsToReadRawTraffic * indicates either that all raw messages to and from the device should be
* or that all device TM should be downlinked to #theOneWhoWantsToReadRawTraffic * sent to #defaultRawReceiver
* or that all device TM should be downlinked to #defaultRawReceiver.
*/ */
enum WiretappingMode { enum WiretappingMode {
OFF = 0, RAW = 1, TM = 2 OFF = 0, RAW = 1, TM = 2
} wiretappingMode; } wiretappingMode;
/** /**
* A message queue that accepts raw replies * @brief A message queue that accepts raw replies
* *
* Statically initialized in initialize() to a configurable object. Used when there is no method * Statically initialized in initialize() to a configurable object.
* of finding a recipient, ie raw mode and reporting erreonous replies * Used when there is no method of finding a recipient, ie raw mode and
* reporting erroneous replies
*/ */
MessageQueueId_t defaultRawReceiver = 0; MessageQueueId_t defaultRawReceiver = MessageQueueIF::NO_QUEUE;
store_address_t storedRawData; store_address_t storedRawData;
/** /**
* the message queue which wants to read all raw traffic * @brief The message queue which wants to read all raw traffic
* * If #isWiretappingActive all raw communication from and to the device
* if #isWiretappingActive all raw communication from and to the device will be sent to this queue * will be sent to this queue
*/ */
MessageQueueId_t requestedRawTraffic = 0; MessageQueueId_t requestedRawTraffic = 0;
/**
* the object used to set power switches
*/
PowerSwitchIF *powerSwitcher = nullptr;
/** /**
* Pointer to the IPCStore. * Pointer to the IPCStore.
*
* This caches the pointer received from the objectManager in the constructor. * This caches the pointer received from the objectManager in the constructor.
*/ */
StorageManagerIF *IPCStore = nullptr; StorageManagerIF *IPCStore = nullptr;
/** The comIF object ID is cached for the intialize() function */
/**
* cached for init
*/
object_id_t deviceCommunicationId; object_id_t deviceCommunicationId;
/** Communication object used for device communication */
/**
* Communication object used for device communication
*/
DeviceCommunicationIF * communicationInterface = nullptr; DeviceCommunicationIF * communicationInterface = nullptr;
/** Cookie used for communication */
/**
* Cookie used for communication
*/
CookieIF * comCookie; CookieIF * comCookie;
/** Health helper for HasHealthIF */
HealthHelper healthHelper;
/** Mode helper for HasModesIF */
ModeHelper modeHelper;
/** Parameter helper for ReceivesParameterMessagesIF */
ParameterHelper parameterHelper;
/** Action helper for HasActionsIF */
ActionHelper actionHelper;
/** Housekeeping Manager */
//LocalDataPoolManager hkManager;
/**
* @brief Information about commands
*/
struct DeviceCommandInfo { struct DeviceCommandInfo {
bool isExecuting; //!< Indicates if the command is already executing. //! Indicates if the command is already executing.
uint8_t expectedReplies; //!< Dynamic value to indicate how many replies are expected. Inititated with 0. bool isExecuting;
MessageQueueId_t sendReplyTo; //!< if this is != NO_COMMANDER, DHB was commanded externally and shall report everything to commander. //! Dynamic value to indicate how many replies are expected.
//! Inititated with 0.
uint8_t expectedReplies;
//! if this is != NO_COMMANDER, DHB was commanded externally and shall
//! report everything to commander.
MessageQueueId_t sendReplyTo;
}; };
using DeviceCommandMap = std::map<DeviceCommandId_t, DeviceCommandInfo> ; using DeviceCommandMap = std::map<DeviceCommandId_t, DeviceCommandInfo> ;
/**
* Information about commands
*/
DeviceCommandMap deviceCommandMap;
/** /**
* @brief Information about expected replies * @brief Information about expected replies
* * This is used to keep track of pending replies.
* This is used to keep track of pending replies
*/ */
struct DeviceReplyInfo { struct DeviceReplyInfo {
uint16_t maxDelayCycles; //!< The maximum number of cycles the handler should wait for a reply to this command. //! The maximum number of cycles the handler should wait for a reply
uint16_t delayCycles; //!< The currently remaining cycles the handler should wait for a reply, 0 means there is no reply expected //! to this command.
uint16_t maxDelayCycles;
//! The currently remaining cycles the handler should wait for a reply,
//! 0 means there is no reply expected
uint16_t delayCycles;
size_t replyLen = 0; //!< Expected size of the reply. size_t replyLen = 0; //!< Expected size of the reply.
bool periodic; //!< if this is !=0, the delayCycles will not be reset to 0 but to maxDelayCycles //! if this is !=0, the delayCycles will not be reset to 0 but to
DeviceCommandMap::iterator command; //!< The command that expects this reply. //! maxDelayCycles
bool periodic = false;
//! The dataset used to access housekeeping data related to the
//! respective device reply. Will point to a dataset held by
//! the child handler (if one is specified)
// DataSetIF* dataSet = nullptr;
//! The command that expects this reply.
DeviceCommandMap::iterator command;
}; };
using DeviceReplyMap = std::map<DeviceCommandId_t, DeviceReplyInfo> ; using DeviceReplyMap = std::map<DeviceCommandId_t, DeviceReplyInfo> ;
using DeviceReplyIter = DeviceReplyMap::iterator; using DeviceReplyIter = DeviceReplyMap::iterator;
/** /**
* The MessageQueue used to receive device handler commands and to send replies. * This map is used to check and track correct reception of all replies.
*
* It has multiple use:
* - It stores the information on pending replies. If a command is sent,
* the DeviceCommandInfo.count is incremented.
* - It is used to time-out missing replies. If a command is sent, the
* DeviceCommandInfo.DelayCycles is set to MaxDelayCycles.
* - It is queried to check if a reply from the device can be interpreted.
* scanForReply() returns the id of the command a reply was found for.
* The reply is ignored in the following cases:
* - No entry for the returned id was found
* - The deviceReplyInfo.delayCycles is == 0
*/ */
DeviceReplyMap deviceReplyMap;
//! The MessageQueue used to receive device handler commands
//! and to send replies.
MessageQueueIF* commandQueue = nullptr; MessageQueueIF* commandQueue = nullptr;
/** /**
@ -642,23 +679,14 @@ protected:
* *
* can be set to PoolVariableIF::NO_PARAMETER to deactivate thermal checking * can be set to PoolVariableIF::NO_PARAMETER to deactivate thermal checking
*/ */
uint32_t deviceThermalStatePoolId; uint32_t deviceThermalStatePoolId = PoolVariableIF::NO_PARAMETER;
/** /**
* this is the datapool variable with the thermal request of the device * this is the datapool variable with the thermal request of the device
* *
* can be set to PoolVariableIF::NO_PARAMETER to deactivate thermal checking * can be set to PoolVariableIF::NO_PARAMETER to deactivate thermal checking
*/ */
uint32_t deviceThermalRequestPoolId; uint32_t deviceThermalRequestPoolId = PoolVariableIF::NO_PARAMETER;
/**
* Taking care of the health
*/
HealthHelper healthHelper;
ModeHelper modeHelper;
ParameterHelper parameterHelper;
/** /**
* Optional Error code * Optional Error code
@ -676,13 +704,15 @@ protected:
bool switchOffWasReported; //!< Indicates if SWITCH_WENT_OFF was already thrown. bool switchOffWasReported; //!< Indicates if SWITCH_WENT_OFF was already thrown.
PeriodicTaskIF* executingTask = nullptr;//!< Pointer to the task which executes this component, is invalid before setTaskIF was called. //! Pointer to the task which executes this component, is invalid
//! before setTaskIF was called.
PeriodicTaskIF* executingTask = nullptr;
static object_id_t powerSwitcherId; //!< Object which switches power on and off. static object_id_t powerSwitcherId; //!< Object which switches power on and off.
static object_id_t rawDataReceiverId; //!< Object which receives RAW data by default. static object_id_t rawDataReceiverId; //!< Object which receives RAW data by default.
static object_id_t defaultFDIRParentId; //!< Object which may be the root cause of an identified fault. static object_id_t defaultFdirParentId; //!< Object which may be the root cause of an identified fault.
/** /**
* Helper function to report a missed reply * Helper function to report a missed reply
* *
@ -730,28 +760,40 @@ protected:
/** /**
* Do the transition to the main modes (MODE_ON, MODE_NORMAL and MODE_RAW). * Do the transition to the main modes (MODE_ON, MODE_NORMAL and MODE_RAW).
* *
* If the transition is complete, the mode should be set to the target mode, which can be deduced from the current mode which is * If the transition is complete, the mode should be set to the target mode,
* which can be deduced from the current mode which is
* [_MODE_TO_ON, _MODE_TO_NORMAL, _MODE_TO_RAW] * [_MODE_TO_ON, _MODE_TO_NORMAL, _MODE_TO_RAW]
* *
* The intended target submode is already set. The origin submode can be read in subModeFrom. * The intended target submode is already set.
* The origin submode can be read in subModeFrom.
* *
* If the transition can not be completed, the child class can try to reach an working mode by setting the mode either directly * If the transition can not be completed, the child class can try to reach
* or setting the mode to an transitional mode (TO_ON, TO_NORMAL, TO_RAW) if the device needs to be reconfigured. * an working mode by setting the mode either directly
* or setting the mode to an transitional mode (TO_ON, TO_NORMAL, TO_RAW)
* if the device needs to be reconfigured.
* *
* If nothing works, the child class can wait for the timeout and the base class will reset the mode to the mode where the transition * If nothing works, the child class can wait for the timeout and the base
* class will reset the mode to the mode where the transition
* originated from (the child should report the reason for the failed transition). * originated from (the child should report the reason for the failed transition).
* *
* The intended way to send commands is to set a flag (enum) indicating which command is to be sent here * The intended way to send commands is to set a flag (enum) indicating
* and then to check in buildTransitionCommand() for the flag. This flag can also be used by doStartUp() and * which command is to be sent here and then to check in
* doShutDown() to get a nice and clean implementation of buildTransitionCommand() without switching through modes. * buildTransitionCommand() for the flag. This flag can also be used by
* doStartUp() and doShutDown() to get a nice and clean implementation of
* buildTransitionCommand() without switching through modes.
* *
* When the the condition for the completion of the transition is met, the mode can be set, for example in the parseReply() function. * When the the condition for the completion of the transition is met, the
* mode can be set, for example in the scanForReply() function.
* *
* The default implementation goes into the target mode; * The default implementation goes into the target mode directly.
* *
* #transitionFailure can be set to a failure code indicating the reason for a failed transition * #transitionFailure can be set to a failure code indicating the reason
* for a failed transition
* *
* @param modeFrom the mode the transition originated from: [MODE_ON, MODE_NORMAL, MODE_RAW and _MODE_POWER_DOWN (if the mode changed from _MODE_START_UP to _MODE_TO_ON)] * @param modeFrom
* The mode the transition originated from:
* [MODE_ON, MODE_NORMAL, MODE_RAW and _MODE_POWER_DOWN (if the mode changed
* from _MODE_START_UP to _MODE_TO_ON)]
* @param subModeFrom the subMode of modeFrom * @param subModeFrom the subMode of modeFrom
*/ */
virtual void doTransition(Mode_t modeFrom, Submode_t subModeFrom); virtual void doTransition(Mode_t modeFrom, Submode_t subModeFrom);
@ -953,24 +995,11 @@ protected:
bool commandIsExecuting(DeviceCommandId_t commandId); bool commandIsExecuting(DeviceCommandId_t commandId);
/** /**
* This map is used to check and track correct reception of all replies. * set all switches returned by getSwitches()
* *
* It has multiple use: * @param onOff on == @c SWITCH_ON; off != @c SWITCH_ON
* - it stores the information on pending replies. If a command is sent, the DeviceCommandInfo.count is incremented.
* - it is used to time-out missing replies. If a command is sent, the DeviceCommandInfo.DelayCycles is set to MaxDelayCycles.
* - it is queried to check if a reply from the device can be interpreted. scanForReply() returns the id of the command a reply was found for.
* The reply is ignored in the following cases:
* - No entry for the returned id was found
* - The deviceReplyInfo.delayCycles is == 0
*/ */
DeviceReplyMap deviceReplyMap; void commandSwitch(ReturnValue_t onOff);
/**
* Information about commands
*/
DeviceCommandMap deviceCommandMap;
ActionHelper actionHelper;
private: private:
/** /**
@ -997,15 +1026,16 @@ private:
}; };
/** /**
* Info about the #cookie * @brief Info about the #cookie
*
* Used to track the state of the communication * Used to track the state of the communication
*/ */
CookieInfo cookieInfo; CookieInfo cookieInfo;
/** the object used to set power switches */
PowerSwitchIF *powerSwitcher = nullptr;
/** /**
* Used for timing out mode transitions. * @brief Used for timing out mode transitions.
*
* Set when setMode() is called. * Set when setMode() is called.
*/ */
uint32_t timeoutStart = 0; uint32_t timeoutStart = 0;
@ -1016,11 +1046,12 @@ private:
uint32_t childTransitionDelay; uint32_t childTransitionDelay;
/** /**
* The mode the current transition originated from * @brief The mode the current transition originated from
* *
* This is private so the child can not change it and fuck up the timeouts * This is private so the child can not change it and fuck up the timeouts
* *
* IMPORTANT: This is not valid during _MODE_SHUT_DOWN and _MODE_START_UP!! (it is _MODE_POWER_DOWN during this modes) * IMPORTANT: This is not valid during _MODE_SHUT_DOWN and _MODE_START_UP!!
* (it is _MODE_POWER_DOWN during this modes)
* *
* is element of [MODE_ON, MODE_NORMAL, MODE_RAW] * is element of [MODE_ON, MODE_NORMAL, MODE_RAW]
*/ */
@ -1031,13 +1062,6 @@ private:
*/ */
Submode_t transitionSourceSubMode; Submode_t transitionSourceSubMode;
/**
* the switch of the device
*
* for devices using two switches override getSwitches()
*/
const uint8_t deviceSwitch;
/** /**
* read the command queue * read the command queue
*/ */
@ -1135,12 +1159,6 @@ private:
ReturnValue_t getStorageData(store_address_t storageAddress, uint8_t **data, ReturnValue_t getStorageData(store_address_t storageAddress, uint8_t **data,
uint32_t *len); uint32_t *len);
/**
* set all switches returned by getSwitches()
*
* @param onOff on == @c SWITCH_ON; off != @c SWITCH_ON
*/
void commandSwitch(ReturnValue_t onOff);
/** /**
* @param modeTo either @c MODE_ON, MODE_NORMAL or MODE_RAW NOTHING ELSE!!! * @param modeTo either @c MODE_ON, MODE_NORMAL or MODE_RAW NOTHING ELSE!!!
@ -1165,7 +1183,12 @@ private:
ReturnValue_t switchCookieChannel(object_id_t newChannelId); ReturnValue_t switchCookieChannel(object_id_t newChannelId);
ReturnValue_t handleDeviceHandlerMessage(CommandMessage *message); ReturnValue_t handleDeviceHandlerMessage(CommandMessage *message);
virtual ReturnValue_t initializeAfterTaskCreation() override;
void parseReply(const uint8_t* receivedData,
size_t receivedDataLen);
}; };
#endif /* DEVICEHANDLERBASE_H_ */ #endif /* FRAMEWORK_DEVICEHANDLERS_DEVICEHANDLERBASE_H_ */

View File

@ -1,19 +1,27 @@
#include "DeviceHandlerBase.h"
#include "DeviceHandlerFailureIsolation.h" #include "DeviceHandlerFailureIsolation.h"
#include "../devicehandlers/DeviceHandlerIF.h"
#include "../modes/HasModesIF.h"
#include "../health/HealthTableIF.h" #include "../health/HealthTableIF.h"
#include "../power/Fuse.h" #include "../power/Fuse.h"
#include "../serviceinterface/ServiceInterfaceStream.h" #include "../serviceinterface/ServiceInterfaceStream.h"
#include "../thermal/ThermalComponentIF.h" #include "../thermal/ThermalComponentIF.h"
object_id_t DeviceHandlerFailureIsolation::powerConfirmationId = 0; object_id_t DeviceHandlerFailureIsolation::powerConfirmationId =
objects::NO_OBJECT;
DeviceHandlerFailureIsolation::DeviceHandlerFailureIsolation(object_id_t owner, object_id_t parent) : DeviceHandlerFailureIsolation::DeviceHandlerFailureIsolation(object_id_t owner,
FailureIsolationBase(owner, parent), strangeReplyCount(MAX_STRANGE_REPLIES, object_id_t parent) :
STRANGE_REPLIES_TIME_MS, parameterDomainBase++), missedReplyCount( FailureIsolationBase(owner, parent),
MAX_MISSED_REPLY_COUNT, MISSED_REPLY_TIME_MS, strangeReplyCount(DEFAULT_MAX_STRANGE_REPLIES,
parameterDomainBase++), recoveryCounter(MAX_REBOOT, DEFAULT_STRANGE_REPLIES_TIME_MS,
REBOOT_TIME_MS, parameterDomainBase++), fdirState(NONE), powerConfirmation( parameterDomainBase++),
0) { missedReplyCount( DEFAULT_MAX_MISSED_REPLY_COUNT,
DEFAULT_MISSED_REPLY_TIME_MS,
parameterDomainBase++),
recoveryCounter(DEFAULT_MAX_REBOOT, DEFAULT_REBOOT_TIME_MS,
parameterDomainBase++),
fdirState(NONE) {
} }
DeviceHandlerFailureIsolation::~DeviceHandlerFailureIsolation() { DeviceHandlerFailureIsolation::~DeviceHandlerFailureIsolation() {
@ -68,10 +76,12 @@ ReturnValue_t DeviceHandlerFailureIsolation::eventReceived(EventMessage* event)
break; break;
//****Power***** //****Power*****
case PowerSwitchIF::SWITCH_WENT_OFF: case PowerSwitchIF::SWITCH_WENT_OFF:
if(powerConfirmation != MessageQueueIF::NO_QUEUE) {
result = sendConfirmationRequest(event, powerConfirmation); result = sendConfirmationRequest(event, powerConfirmation);
if (result == RETURN_OK) { if (result == RETURN_OK) {
setFdirState(DEVICE_MIGHT_BE_OFF); setFdirState(DEVICE_MIGHT_BE_OFF);
} }
}
break; break;
case Fuse::FUSE_WENT_OFF: case Fuse::FUSE_WENT_OFF:
//Not so good, because PCDU reacted. //Not so good, because PCDU reacted.
@ -133,7 +143,7 @@ void DeviceHandlerFailureIsolation::decrementFaultCounters() {
void DeviceHandlerFailureIsolation::handleRecovery(Event reason) { void DeviceHandlerFailureIsolation::handleRecovery(Event reason) {
clearFaultCounters(); clearFaultCounters();
if (!recoveryCounter.incrementAndCheck()) { if (not recoveryCounter.incrementAndCheck()) {
startRecovery(reason); startRecovery(reason);
} else { } else {
setFaulty(reason); setFaulty(reason);
@ -142,7 +152,8 @@ void DeviceHandlerFailureIsolation::handleRecovery(Event reason) {
void DeviceHandlerFailureIsolation::wasParentsFault(EventMessage* event) { void DeviceHandlerFailureIsolation::wasParentsFault(EventMessage* event) {
//We'll better ignore the SWITCH_WENT_OFF event and await a system-wide reset. //We'll better ignore the SWITCH_WENT_OFF event and await a system-wide reset.
//This means, no fault message will come through until a MODE_ or HEALTH_INFO message comes through -> Is that ok? //This means, no fault message will come through until a MODE_ or
//HEALTH_INFO message comes through -> Is that ok?
//Same issue in TxFailureIsolation! //Same issue in TxFailureIsolation!
// if ((event->getEvent() == PowerSwitchIF::SWITCH_WENT_OFF) // if ((event->getEvent() == PowerSwitchIF::SWITCH_WENT_OFF)
// && (fdirState != RECOVERY_ONGOING)) { // && (fdirState != RECOVERY_ONGOING)) {
@ -158,14 +169,16 @@ void DeviceHandlerFailureIsolation::clearFaultCounters() {
ReturnValue_t DeviceHandlerFailureIsolation::initialize() { ReturnValue_t DeviceHandlerFailureIsolation::initialize() {
ReturnValue_t result = FailureIsolationBase::initialize(); ReturnValue_t result = FailureIsolationBase::initialize();
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
sif::error << "DeviceHandlerFailureIsolation::initialize: Could not"
" initialize FailureIsolationBase." << std::endl;
return result; return result;
} }
ConfirmsFailuresIF* power = objectManager->get<ConfirmsFailuresIF>( ConfirmsFailuresIF* power = objectManager->get<ConfirmsFailuresIF>(
powerConfirmationId); powerConfirmationId);
if (power == NULL) { if (power != nullptr) {
return RETURN_FAILED;
}
powerConfirmation = power->getEventReceptionQueue(); powerConfirmation = power->getEventReceptionQueue();
}
return RETURN_OK; return RETURN_OK;
} }

View File

@ -1,13 +1,13 @@
#ifndef FRAMEWORK_DEVICEHANDLERS_DEVICEHANDLERFAILUREISOLATION_H_ #ifndef FSFW_DEVICEHANDLERS_DEVICEHANDLERFAILUREISOLATION_H_
#define FRAMEWORK_DEVICEHANDLERS_DEVICEHANDLERFAILUREISOLATION_H_ #define FSFW_DEVICEHANDLERS_DEVICEHANDLERFAILUREISOLATION_H_
#include "../fdir/FaultCounter.h" #include "../fdir/FaultCounter.h"
#include "../fdir/FailureIsolationBase.h" #include "../fdir/FailureIsolationBase.h"
namespace Factory{ namespace Factory{
void setStaticFrameworkObjectIds(); void setStaticFrameworkObjectIds();
} }
class DeviceHandlerFailureIsolation: public FailureIsolationBase { class DeviceHandlerFailureIsolation: public FailureIsolationBase {
friend void (Factory::setStaticFrameworkObjectIds)(); friend void (Factory::setStaticFrameworkObjectIds)();
friend class Heater; friend class Heater;
@ -20,22 +20,27 @@ public:
virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId, virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId,
ParameterWrapper *parameterWrapper, ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex); const ParameterWrapper *newValues, uint16_t startAtIndex);
protected: protected:
FaultCounter strangeReplyCount; FaultCounter strangeReplyCount;
FaultCounter missedReplyCount; FaultCounter missedReplyCount;
FaultCounter recoveryCounter; FaultCounter recoveryCounter;
enum FDIRState { enum FDIRState {
NONE, RECOVERY_ONGOING, DEVICE_MIGHT_BE_OFF, AWAIT_SHUTDOWN NONE, RECOVERY_ONGOING, DEVICE_MIGHT_BE_OFF, AWAIT_SHUTDOWN
}; };
FDIRState fdirState; FDIRState fdirState;
MessageQueueId_t powerConfirmation;
MessageQueueId_t powerConfirmation = MessageQueueIF::NO_QUEUE;
static object_id_t powerConfirmationId; static object_id_t powerConfirmationId;
static const uint32_t MAX_REBOOT = 1;
static const uint32_t REBOOT_TIME_MS = 180000; static const uint32_t DEFAULT_MAX_REBOOT = 1;
static const uint32_t MAX_STRANGE_REPLIES = 10; static const uint32_t DEFAULT_REBOOT_TIME_MS = 180000;
static const uint32_t STRANGE_REPLIES_TIME_MS = 10000; static const uint32_t DEFAULT_MAX_STRANGE_REPLIES = 10;
static const uint32_t MAX_MISSED_REPLY_COUNT = 5; static const uint32_t DEFAULT_STRANGE_REPLIES_TIME_MS = 10000;
static const uint32_t MISSED_REPLY_TIME_MS = 10000; static const uint32_t DEFAULT_MAX_MISSED_REPLY_COUNT = 5;
static const uint32_t DEFAULT_MISSED_REPLY_TIME_MS = 10000;
virtual ReturnValue_t eventReceived(EventMessage* event); virtual ReturnValue_t eventReceived(EventMessage* event);
virtual void eventConfirmed(EventMessage* event); virtual void eventConfirmed(EventMessage* event);
void wasParentsFault(EventMessage* event); void wasParentsFault(EventMessage* event);
@ -49,4 +54,4 @@ protected:
bool isFdirInActionOrAreWeFaulty(EventMessage* event); bool isFdirInActionOrAreWeFaulty(EventMessage* event);
}; };
#endif /* FRAMEWORK_DEVICEHANDLERS_DEVICEHANDLERFAILUREISOLATION_H_ */ #endif /* FSFW_DEVICEHANDLERS_DEVICEHANDLERFAILUREISOLATION_H_ */

View File

@ -25,7 +25,7 @@ public:
/** /**
* These are the commands that can be sent to a DeviceHandlerBase * These are the commands that can be sent to a DeviceHandlerBase
*/ */
static const uint8_t MESSAGE_ID = MESSAGE_TYPE::DEVICE_HANDLER_COMMAND; static const uint8_t MESSAGE_ID = messagetypes::DEVICE_HANDLER_COMMAND;
static const Command_t CMD_RAW = MAKE_COMMAND_ID( 1 ); //!< Sends a raw command, setParameter is a ::store_id_t containing the raw packet to send static const Command_t CMD_RAW = MAKE_COMMAND_ID( 1 ); //!< Sends a raw command, setParameter is a ::store_id_t containing the raw packet to send
// static const Command_t CMD_DIRECT = MAKE_COMMAND_ID( 2 ); //!< Sends a direct command, setParameter is a ::DeviceCommandId_t, setParameter2 is a ::store_id_t containing the data needed for the command // static const Command_t CMD_DIRECT = MAKE_COMMAND_ID( 2 ); //!< Sends a direct command, setParameter is a ::DeviceCommandId_t, setParameter2 is a ::store_id_t containing the data needed for the command
static const Command_t CMD_SWITCH_IOBOARD = MAKE_COMMAND_ID( 3 ); //!< Requests a IO-Board switch, setParameter() is the IO-Board identifier static const Command_t CMD_SWITCH_IOBOARD = MAKE_COMMAND_ID( 3 ); //!< Requests a IO-Board switch, setParameter() is the IO-Board identifier

View File

@ -8,13 +8,16 @@
const uint16_t EventManager::POOL_SIZES[N_POOLS] = { const uint16_t EventManager::POOL_SIZES[N_POOLS] = {
sizeof(EventMatchTree::Node), sizeof(EventIdRangeMatcher), sizeof(EventMatchTree::Node), sizeof(EventIdRangeMatcher),
sizeof(ReporterRangeMatcher) }; sizeof(ReporterRangeMatcher) };
//If one checks registerListener calls, there are around 40 (to max 50) objects registering for certain events. // If one checks registerListener calls, there are around 40 (to max 50)
//Each listener requires 1 or 2 EventIdMatcher and 1 or 2 ReportRangeMatcher. So a good guess is 75 to a max of 100 pools required for each, which fits well. // objects registering for certain events.
// Each listener requires 1 or 2 EventIdMatcher and 1 or 2 ReportRangeMatcher.
// So a good guess is 75 to a max of 100 pools required for each, which fits well.
// SHOULDDO: Shouldn't this be in the config folder and passed via ctor?
const uint16_t EventManager::N_ELEMENTS[N_POOLS] = { 240, 120, 120 }; const uint16_t EventManager::N_ELEMENTS[N_POOLS] = { 240, 120, 120 };
EventManager::EventManager(object_id_t setObjectId) : EventManager::EventManager(object_id_t setObjectId) :
SystemObject(setObjectId), eventReportQueue(NULL), mutex(NULL), factoryBackend( SystemObject(setObjectId),
0, POOL_SIZES, N_ELEMENTS, false, true) { factoryBackend(0, POOL_SIZES, N_ELEMENTS, false, true) {
mutex = MutexFactory::instance()->createMutex(); mutex = MutexFactory::instance()->createMutex();
eventReportQueue = QueueFactory::instance()->createMessageQueue( eventReportQueue = QueueFactory::instance()->createMessageQueue(
MAX_EVENTS_PER_CYCLE, EventMessage::EVENT_MESSAGE_SIZE); MAX_EVENTS_PER_CYCLE, EventMessage::EVENT_MESSAGE_SIZE);
@ -108,46 +111,50 @@ ReturnValue_t EventManager::unsubscribeFromEventRange(MessageQueueId_t listener,
#ifdef DEBUG #ifdef DEBUG
//forward declaration, should be implemented by mission
const char* translateObject(object_id_t object);
const char * translateEvents(Event event);
void EventManager::printEvent(EventMessage* message) { void EventManager::printEvent(EventMessage* message) {
const char *string = 0; const char *string = 0;
switch (message->getSeverity()) { switch (message->getSeverity()) {
case SEVERITY::INFO: case SEVERITY::INFO:
// string = translateObject(message->getReporter()); #ifdef DEBUG_INFO_EVENT
// sif::info << "EVENT: ";
// if (string != 0) {
// sif::info << string;
// } else {
// sif::info << "0x" << std::hex << message->getReporter() << std::dec;
// }
// sif::info << " reported " << translateEvents(message->getEvent()) << " ("
// << std::dec << message->getEventId() << std::hex << ") P1: 0x"
// << message->getParameter1() << " P2: 0x"
// << message->getParameter2() << std::dec << std::endl;
break;
default:
string = translateObject(message->getReporter()); string = translateObject(message->getReporter());
sif::error << "EVENT: "; sif::info << "EVENT: ";
if (string != 0) { if (string != 0) {
sif::error << string; sif::info << string;
} else { } else {
sif::error << "0x" << std::hex << message->getReporter() << std::dec; sif::info << "0x" << std::hex << message->getReporter() << std::dec;
} }
sif::error << " reported " << translateEvents(message->getEvent()) << " (" sif::info << " reported " << translateEvents(message->getEvent()) << " ("
<< std::dec << message->getEventId() << std::hex << ") P1: 0x" << std::dec << message->getEventId() << std::hex << ") P1: 0x"
<< message->getParameter1() << " P2: 0x" << message->getParameter1() << " P2: 0x"
<< message->getParameter2() << std::dec << std::endl; << message->getParameter2() << std::dec << std::endl;
#endif
break;
default:
string = translateObject(message->getReporter());
sif::debug << "EventManager: ";
if (string != 0) {
sif::debug << string;
}
else {
sif::debug << "0x" << std::hex << message->getReporter() << std::dec;
}
sif::debug << " reported " << translateEvents(message->getEvent())
<< " (" << std::dec << message->getEventId() << ") "
<< std::endl;
sif::debug << std::hex << "P1 Hex: 0x" << message->getParameter1()
<< ", P1 Dec: " << std::dec << message->getParameter1()
<< std::endl;
sif::debug << std::hex << "P2 Hex: 0x" << message->getParameter2()
<< ", P2 Dec: " << std::dec << message->getParameter2()
<< std::endl;
break; break;
} }
} }
#endif #endif
void EventManager::lockMutex() { void EventManager::lockMutex() {
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
} }
void EventManager::unlockMutex() { void EventManager::unlockMutex() {

View File

@ -10,6 +10,12 @@
#include "../ipc/MutexIF.h" #include "../ipc/MutexIF.h"
#include <map> #include <map>
#ifdef DEBUG
// forward declaration, should be implemented by mission
extern const char* translateObject(object_id_t object);
extern const char* translateEvents(Event event);
#endif
class EventManager: public EventManagerIF, class EventManager: public EventManagerIF,
public ExecutableObjectIF, public ExecutableObjectIF,
public SystemObject { public SystemObject {
@ -36,11 +42,11 @@ public:
ReturnValue_t performOperation(uint8_t opCode); ReturnValue_t performOperation(uint8_t opCode);
protected: protected:
MessageQueueIF* eventReportQueue; MessageQueueIF* eventReportQueue = nullptr;
std::map<MessageQueueId_t, EventMatchTree> listenerList; std::map<MessageQueueId_t, EventMatchTree> listenerList;
MutexIF* mutex; MutexIF* mutex = nullptr;
static const uint8_t N_POOLS = 3; static const uint8_t N_POOLS = 3;
LocalPool<N_POOLS> factoryBackend; LocalPool<N_POOLS> factoryBackend;

View File

@ -5,10 +5,12 @@
#include "../ipc/QueueFactory.h" #include "../ipc/QueueFactory.h"
#include "../objectmanager/ObjectManagerIF.h" #include "../objectmanager/ObjectManagerIF.h"
FailureIsolationBase::FailureIsolationBase(object_id_t owner, object_id_t parent, uint8_t messageDepth, uint8_t parameterDomainBase) : FailureIsolationBase::FailureIsolationBase(object_id_t owner,
eventQueue(NULL), ownerId( object_id_t parent, uint8_t messageDepth, uint8_t parameterDomainBase) :
owner), owner(NULL), faultTreeParent(parent), parameterDomainBase(parameterDomainBase) { ownerId(owner), faultTreeParent(parent),
eventQueue = QueueFactory::instance()->createMessageQueue(messageDepth, EventMessage::EVENT_MESSAGE_SIZE); parameterDomainBase(parameterDomainBase) {
eventQueue = QueueFactory::instance()->createMessageQueue(messageDepth,
EventMessage::EVENT_MESSAGE_SIZE);
} }
FailureIsolationBase::~FailureIsolationBase() { FailureIsolationBase::~FailureIsolationBase() {
@ -18,27 +20,36 @@ FailureIsolationBase::~FailureIsolationBase() {
ReturnValue_t FailureIsolationBase::initialize() { ReturnValue_t FailureIsolationBase::initialize() {
EventManagerIF* manager = objectManager->get<EventManagerIF>( EventManagerIF* manager = objectManager->get<EventManagerIF>(
objects::EVENT_MANAGER); objects::EVENT_MANAGER);
if (manager == NULL) { if (manager == nullptr) {
sif::error << "FailureIsolationBase::initialize: Event Manager has not"
" been initialized!" << std::endl;
return RETURN_FAILED; return RETURN_FAILED;
} }
ReturnValue_t result = manager->registerListener(eventQueue->getId()); ReturnValue_t result = manager->registerListener(eventQueue->getId());
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
return result; return result;
} }
if (ownerId != 0) { if (ownerId != objects::NO_OBJECT) {
result = manager->subscribeToAllEventsFrom(eventQueue->getId(), ownerId); result = manager->subscribeToAllEventsFrom(eventQueue->getId(), ownerId);
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
return result; return result;
} }
owner = objectManager->get<HasHealthIF>(ownerId); owner = objectManager->get<HasHealthIF>(ownerId);
if (owner == NULL) { if (owner == nullptr) {
return RETURN_FAILED; sif::error << "FailureIsolationBase::intialize: Owner object "
"invalid. Make sure it implements HasHealthIF" << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
} }
} }
if (faultTreeParent != 0) { if (faultTreeParent != objects::NO_OBJECT) {
ConfirmsFailuresIF* parentIF = objectManager->get<ConfirmsFailuresIF>( ConfirmsFailuresIF* parentIF = objectManager->get<ConfirmsFailuresIF>(
faultTreeParent); faultTreeParent);
if (parentIF == NULL) { if (parentIF == nullptr) {
sif::error << "FailureIsolationBase::intialize: Parent object"
<< "invalid." << std::endl;
sif::error << "Make sure it implements ConfirmsFailuresIF."
<< std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
return RETURN_FAILED; return RETURN_FAILED;
} }
eventQueue->setDefaultDestination(parentIF->getEventReceptionQueue()); eventQueue->setDefaultDestination(parentIF->getEventReceptionQueue());
@ -93,9 +104,9 @@ MessageQueueId_t FailureIsolationBase::getEventReceptionQueue() {
ReturnValue_t FailureIsolationBase::sendConfirmationRequest(EventMessage* event, ReturnValue_t FailureIsolationBase::sendConfirmationRequest(EventMessage* event,
MessageQueueId_t destination) { MessageQueueId_t destination) {
event->setMessageId(EventMessage::CONFIRMATION_REQUEST); event->setMessageId(EventMessage::CONFIRMATION_REQUEST);
if (destination != 0) { if (destination != MessageQueueIF::NO_QUEUE) {
return eventQueue->sendMessage(destination, event); return eventQueue->sendMessage(destination, event);
} else if (faultTreeParent != 0) { } else if (faultTreeParent != objects::NO_OBJECT) {
return eventQueue->sendToDefault(event); return eventQueue->sendToDefault(event);
} }
return RETURN_FAILED; return RETURN_FAILED;

View File

@ -17,18 +17,25 @@ public:
static const Event FDIR_CHANGED_STATE = MAKE_EVENT(1, SEVERITY::INFO); //!< FDIR has an internal state, which changed from par2 (oldState) to par1 (newState). static const Event FDIR_CHANGED_STATE = MAKE_EVENT(1, SEVERITY::INFO); //!< FDIR has an internal state, which changed from par2 (oldState) to par1 (newState).
static const Event FDIR_STARTS_RECOVERY = MAKE_EVENT(2, SEVERITY::MEDIUM); //!< FDIR tries to restart device. Par1: event that caused recovery. static const Event FDIR_STARTS_RECOVERY = MAKE_EVENT(2, SEVERITY::MEDIUM); //!< FDIR tries to restart device. Par1: event that caused recovery.
static const Event FDIR_TURNS_OFF_DEVICE = MAKE_EVENT(3, SEVERITY::MEDIUM); //!< FDIR turns off device. Par1: event that caused recovery. static const Event FDIR_TURNS_OFF_DEVICE = MAKE_EVENT(3, SEVERITY::MEDIUM); //!< FDIR turns off device. Par1: event that caused recovery.
FailureIsolationBase(object_id_t owner, object_id_t parent = 0,
FailureIsolationBase(object_id_t owner,
object_id_t parent = objects::NO_OBJECT,
uint8_t messageDepth = 10, uint8_t parameterDomainBase = 0xF0); uint8_t messageDepth = 10, uint8_t parameterDomainBase = 0xF0);
virtual ~FailureIsolationBase(); virtual ~FailureIsolationBase();
virtual ReturnValue_t initialize(); virtual ReturnValue_t initialize();
/**
* This is called by the DHB in performOperation()
*/
void checkForFailures(); void checkForFailures();
MessageQueueId_t getEventReceptionQueue(); MessageQueueId_t getEventReceptionQueue() override;
virtual void triggerEvent(Event event, uint32_t parameter1 = 0, virtual void triggerEvent(Event event, uint32_t parameter1 = 0,
uint32_t parameter2 = 0); uint32_t parameter2 = 0);
protected: protected:
MessageQueueIF* eventQueue; MessageQueueIF* eventQueue = nullptr;
object_id_t ownerId; object_id_t ownerId;
HasHealthIF* owner; HasHealthIF* owner = nullptr;
object_id_t faultTreeParent; object_id_t faultTreeParent;
uint8_t parameterDomainBase; uint8_t parameterDomainBase;
void setOwnerHealth(HasHealthIF::HealthState health); void setOwnerHealth(HasHealthIF::HealthState health);
@ -38,7 +45,7 @@ protected:
virtual ReturnValue_t confirmFault(EventMessage* event); virtual ReturnValue_t confirmFault(EventMessage* event);
virtual void decrementFaultCounters() = 0; virtual void decrementFaultCounters() = 0;
ReturnValue_t sendConfirmationRequest(EventMessage* event, ReturnValue_t sendConfirmationRequest(EventMessage* event,
MessageQueueId_t destination = 0); MessageQueueId_t destination = MessageQueueIF::NO_QUEUE);
void throwFdirEvent(Event event, uint32_t parameter1 = 0, void throwFdirEvent(Event event, uint32_t parameter1 = 0,
uint32_t parameter2 = 0); uint32_t parameter2 = 0);
private: private:

View File

@ -1,3 +1,4 @@
# This submake file needs to be included by the primary Makefile.
# This file needs FRAMEWORK_PATH and OS_FSFW set correctly by another Makefile. # This file needs FRAMEWORK_PATH and OS_FSFW set correctly by another Makefile.
# Valid API settings: rtems, linux, freeRTOS, host # Valid API settings: rtems, linux, freeRTOS, host

View File

@ -6,7 +6,7 @@
class HealthMessage { class HealthMessage {
public: public:
static const uint8_t MESSAGE_ID = MESSAGE_TYPE::HEALTH_COMMAND; static const uint8_t MESSAGE_ID = messagetypes::HEALTH_COMMAND;
static const Command_t HEALTH_SET = MAKE_COMMAND_ID(1);//REPLY_COMMAND_OK/REPLY_REJECTED static const Command_t HEALTH_SET = MAKE_COMMAND_ID(1);//REPLY_COMMAND_OK/REPLY_REJECTED
static const Command_t HEALTH_ANNOUNCE = MAKE_COMMAND_ID(3); //NO REPLY! static const Command_t HEALTH_ANNOUNCE = MAKE_COMMAND_ID(3); //NO REPLY!
static const Command_t HEALTH_INFO = MAKE_COMMAND_ID(5); static const Command_t HEALTH_INFO = MAKE_COMMAND_ID(5);

View File

@ -26,7 +26,7 @@ ReturnValue_t HealthTable::registerObject(object_id_t object,
void HealthTable::setHealth(object_id_t object, void HealthTable::setHealth(object_id_t object,
HasHealthIF::HealthState newState) { HasHealthIF::HealthState newState) {
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
HealthMap::iterator iter = healthMap.find(object); HealthMap::iterator iter = healthMap.find(object);
if (iter != healthMap.end()) { if (iter != healthMap.end()) {
iter->second = newState; iter->second = newState;
@ -36,7 +36,7 @@ void HealthTable::setHealth(object_id_t object,
HasHealthIF::HealthState HealthTable::getHealth(object_id_t object) { HasHealthIF::HealthState HealthTable::getHealth(object_id_t object) {
HasHealthIF::HealthState state = HasHealthIF::HEALTHY; HasHealthIF::HealthState state = HasHealthIF::HEALTHY;
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
HealthMap::iterator iter = healthMap.find(object); HealthMap::iterator iter = healthMap.find(object);
if (iter != healthMap.end()) { if (iter != healthMap.end()) {
state = iter->second; state = iter->second;
@ -46,7 +46,7 @@ HasHealthIF::HealthState HealthTable::getHealth(object_id_t object) {
} }
uint32_t HealthTable::getPrintSize() { uint32_t HealthTable::getPrintSize() {
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
uint32_t size = healthMap.size() * 5 + 2; uint32_t size = healthMap.size() * 5 + 2;
mutex->unlockMutex(); mutex->unlockMutex();
return size; return size;
@ -54,7 +54,7 @@ uint32_t HealthTable::getPrintSize() {
bool HealthTable::hasHealth(object_id_t object) { bool HealthTable::hasHealth(object_id_t object) {
bool exits = false; bool exits = false;
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
HealthMap::iterator iter = healthMap.find(object); HealthMap::iterator iter = healthMap.find(object);
if (iter != healthMap.end()) { if (iter != healthMap.end()) {
exits = true; exits = true;
@ -64,7 +64,7 @@ bool HealthTable::hasHealth(object_id_t object) {
} }
void HealthTable::printAll(uint8_t* pointer, size_t maxSize) { void HealthTable::printAll(uint8_t* pointer, size_t maxSize) {
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
size_t size = 0; size_t size = 0;
uint16_t count = healthMap.size(); uint16_t count = healthMap.size();
ReturnValue_t result = SerializeAdapter::serialize(&count, ReturnValue_t result = SerializeAdapter::serialize(&count,
@ -85,7 +85,7 @@ void HealthTable::printAll(uint8_t* pointer, size_t maxSize) {
ReturnValue_t HealthTable::iterate( ReturnValue_t HealthTable::iterate(
std::pair<object_id_t, HasHealthIF::HealthState> *value, bool reset) { std::pair<object_id_t, HasHealthIF::HealthState> *value, bool reset) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
if (reset) { if (reset) {
mapIterator = healthMap.begin(); mapIterator = healthMap.begin();
} }

View File

@ -54,7 +54,7 @@ void InternalErrorReporter::lostTm() {
uint32_t InternalErrorReporter::getAndResetQueueHits() { uint32_t InternalErrorReporter::getAndResetQueueHits() {
uint32_t value; uint32_t value;
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
value = queueHits; value = queueHits;
queueHits = 0; queueHits = 0;
mutex->unlockMutex(); mutex->unlockMutex();
@ -63,21 +63,21 @@ uint32_t InternalErrorReporter::getAndResetQueueHits() {
uint32_t InternalErrorReporter::getQueueHits() { uint32_t InternalErrorReporter::getQueueHits() {
uint32_t value; uint32_t value;
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
value = queueHits; value = queueHits;
mutex->unlockMutex(); mutex->unlockMutex();
return value; return value;
} }
void InternalErrorReporter::incrementQueueHits() { void InternalErrorReporter::incrementQueueHits() {
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
queueHits++; queueHits++;
mutex->unlockMutex(); mutex->unlockMutex();
} }
uint32_t InternalErrorReporter::getAndResetTmHits() { uint32_t InternalErrorReporter::getAndResetTmHits() {
uint32_t value; uint32_t value;
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
value = tmHits; value = tmHits;
tmHits = 0; tmHits = 0;
mutex->unlockMutex(); mutex->unlockMutex();
@ -86,14 +86,14 @@ uint32_t InternalErrorReporter::getAndResetTmHits() {
uint32_t InternalErrorReporter::getTmHits() { uint32_t InternalErrorReporter::getTmHits() {
uint32_t value; uint32_t value;
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
value = tmHits; value = tmHits;
mutex->unlockMutex(); mutex->unlockMutex();
return value; return value;
} }
void InternalErrorReporter::incrementTmHits() { void InternalErrorReporter::incrementTmHits() {
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
tmHits++; tmHits++;
mutex->unlockMutex(); mutex->unlockMutex();
} }
@ -104,7 +104,7 @@ void InternalErrorReporter::storeFull() {
uint32_t InternalErrorReporter::getAndResetStoreHits() { uint32_t InternalErrorReporter::getAndResetStoreHits() {
uint32_t value; uint32_t value;
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
value = storeHits; value = storeHits;
storeHits = 0; storeHits = 0;
mutex->unlockMutex(); mutex->unlockMutex();
@ -113,14 +113,14 @@ uint32_t InternalErrorReporter::getAndResetStoreHits() {
uint32_t InternalErrorReporter::getStoreHits() { uint32_t InternalErrorReporter::getStoreHits() {
uint32_t value; uint32_t value;
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
value = storeHits; value = storeHits;
mutex->unlockMutex(); mutex->unlockMutex();
return value; return value;
} }
void InternalErrorReporter::incrementStoreHits() { void InternalErrorReporter::incrementStoreHits() {
mutex->lockMutex(MutexIF::NO_TIMEOUT); mutex->lockMutex(MutexIF::BLOCKING);
storeHits++; storeHits++;
mutex->unlockMutex(); mutex->unlockMutex();
} }

View File

@ -15,7 +15,7 @@
#include "../tmstorage/TmStoreMessage.h" #include "../tmstorage/TmStoreMessage.h"
#include "../parameters/ParameterMessage.h" #include "../parameters/ParameterMessage.h"
namespace MESSAGE_TYPE { namespace messagetypes {
void clearMissionMessage(CommandMessage* message); void clearMissionMessage(CommandMessage* message);
} }
@ -67,35 +67,35 @@ void CommandMessage::setParameter2(uint32_t parameter2) {
void CommandMessage::clearCommandMessage() { void CommandMessage::clearCommandMessage() {
switch((getCommand()>>8) & 0xff){ switch((getCommand()>>8) & 0xff){
case MESSAGE_TYPE::MODE_COMMAND: case messagetypes::MODE_COMMAND:
ModeMessage::clear(this); ModeMessage::clear(this);
break; break;
case MESSAGE_TYPE::HEALTH_COMMAND: case messagetypes::HEALTH_COMMAND:
HealthMessage::clear(this); HealthMessage::clear(this);
break; break;
case MESSAGE_TYPE::MODE_SEQUENCE: case messagetypes::MODE_SEQUENCE:
ModeSequenceMessage::clear(this); ModeSequenceMessage::clear(this);
break; break;
case MESSAGE_TYPE::ACTION: case messagetypes::ACTION:
ActionMessage::clear(this); ActionMessage::clear(this);
break; break;
case MESSAGE_TYPE::DEVICE_HANDLER_COMMAND: case messagetypes::DEVICE_HANDLER_COMMAND:
DeviceHandlerMessage::clear(this); DeviceHandlerMessage::clear(this);
break; break;
case MESSAGE_TYPE::MEMORY: case messagetypes::MEMORY:
MemoryMessage::clear(this); MemoryMessage::clear(this);
break; break;
case MESSAGE_TYPE::MONITORING: case messagetypes::MONITORING:
MonitoringMessage::clear(this); MonitoringMessage::clear(this);
break; break;
case MESSAGE_TYPE::TM_STORE: case messagetypes::TM_STORE:
TmStoreMessage::clear(this); TmStoreMessage::clear(this);
break; break;
case MESSAGE_TYPE::PARAMETER: case messagetypes::PARAMETER:
ParameterMessage::clear(this); ParameterMessage::clear(this);
break; break;
default: default:
MESSAGE_TYPE::clearMissionMessage(this); messagetypes::clearMissionMessage(this);
break; break;
} }
} }

View File

@ -23,7 +23,7 @@ public:
static const ReturnValue_t UNKNOWN_COMMAND = MAKE_RETURN_CODE(0x01); static const ReturnValue_t UNKNOWN_COMMAND = MAKE_RETURN_CODE(0x01);
static const uint8_t MESSAGE_ID = MESSAGE_TYPE::COMMAND; static const uint8_t MESSAGE_ID = messagetypes::COMMAND;
static const Command_t CMD_NONE = MAKE_COMMAND_ID( 0 );//!< Used internally, will be ignored static const Command_t CMD_NONE = MAKE_COMMAND_ID( 0 );//!< Used internally, will be ignored
static const Command_t REPLY_COMMAND_OK = MAKE_COMMAND_ID( 3 ); static const Command_t REPLY_COMMAND_OK = MAKE_COMMAND_ID( 3 );
static const Command_t REPLY_REJECTED = MAKE_COMMAND_ID( 0xD1 );//!< Reply indicating that the current command was rejected, par1 should contain the error code static const Command_t REPLY_REJECTED = MAKE_COMMAND_ID( 0xD1 );//!< Reply indicating that the current command was rejected, par1 should contain the error code

View File

@ -1,7 +1,7 @@
#ifndef FRAMEWORK_IPC_FWMESSAGETYPES_H_ #ifndef FRAMEWORK_IPC_FWMESSAGETYPES_H_
#define FRAMEWORK_IPC_FWMESSAGETYPES_H_ #define FRAMEWORK_IPC_FWMESSAGETYPES_H_
namespace MESSAGE_TYPE { namespace messagetypes {
//Remember to add new Message Types to the clearCommandMessage function! //Remember to add new Message Types to the clearCommandMessage function!
enum FW_MESSAGE_TYPE { enum FW_MESSAGE_TYPE {
COMMAND = 0, COMMAND = 0,

View File

@ -6,15 +6,21 @@
class MutexHelper { class MutexHelper {
public: public:
MutexHelper(MutexIF* mutex, uint32_t timeoutMs) : MutexHelper(MutexIF* mutex, MutexIF::TimeoutType timeoutType =
MutexIF::TimeoutType::BLOCKING, uint32_t timeoutMs = 0) :
internalMutex(mutex) { internalMutex(mutex) {
ReturnValue_t status = mutex->lockMutex(timeoutMs); ReturnValue_t status = mutex->lockMutex(timeoutType,
if(status != HasReturnvaluesIF::RETURN_OK){ timeoutMs);
sif::error << "MutexHelper: Lock of Mutex failed " << status << std::endl; if(status == MutexIF::MUTEX_TIMEOUT) {
sif::error << "MutexHelper: Lock of mutex failed with timeout of "
<< timeoutMs << " milliseconds!" << std::endl;
}
else if(status != HasReturnvaluesIF::RETURN_OK){
sif::error << "MutexHelper: Lock of Mutex failed with code " <<
status << std::endl;
} }
} }
~MutexHelper() { ~MutexHelper() {
internalMutex->unlockMutex(); internalMutex->unlockMutex();
} }

View File

@ -3,9 +3,33 @@
#include "../returnvalues/HasReturnvaluesIF.h" #include "../returnvalues/HasReturnvaluesIF.h"
/**
* @brief Common interface for OS Mutex objects which provide MUTual EXclusion.
* @details https://en.wikipedia.org/wiki/Lock_(computer_science)
* @ingroup osal
* @ingroup interface
*/
class MutexIF { class MutexIF {
public: public:
static const uint32_t NO_TIMEOUT; //!< Needs to be defined in implementation. /**
* Different types of timeout for the mutex lock.
*/
enum TimeoutType {
POLLING, //!< If mutex is not available, return immediately
WAITING, //!< Wait a specified time for the mutex to become available
BLOCKING //!< Block indefinitely until the mutex becomes available.
};
/**
* Lock the mutex. The timeout value will only be used for
* TimeoutType::WAITING
* @param timeoutType
* @param timeoutMs
* @return
*/
virtual ReturnValue_t lockMutex(TimeoutType timeoutType =
TimeoutType::BLOCKING, uint32_t timeoutMs = 0) = 0;
virtual ReturnValue_t unlockMutex() = 0;
static const uint8_t INTERFACE_ID = CLASS_ID::MUTEX_IF; static const uint8_t INTERFACE_ID = CLASS_ID::MUTEX_IF;
/** /**
@ -58,8 +82,6 @@ public:
static const ReturnValue_t MUTEX_DESTROYED_WHILE_WAITING = MAKE_RETURN_CODE(12); static const ReturnValue_t MUTEX_DESTROYED_WHILE_WAITING = MAKE_RETURN_CODE(12);
virtual ~MutexIF() {} virtual ~MutexIF() {}
virtual ReturnValue_t lockMutex(uint32_t timeoutMs) = 0;
virtual ReturnValue_t unlockMutex() = 0;
}; };

View File

@ -9,7 +9,7 @@ class MemoryMessage {
private: private:
MemoryMessage(); //A private ctor inhibits instantiation MemoryMessage(); //A private ctor inhibits instantiation
public: public:
static const uint8_t MESSAGE_ID = MESSAGE_TYPE::MEMORY; static const uint8_t MESSAGE_ID = messagetypes::MEMORY;
static const Command_t CMD_MEMORY_LOAD = MAKE_COMMAND_ID( 0x01 ); static const Command_t CMD_MEMORY_LOAD = MAKE_COMMAND_ID( 0x01 );
static const Command_t CMD_MEMORY_DUMP = MAKE_COMMAND_ID( 0x02 ); static const Command_t CMD_MEMORY_DUMP = MAKE_COMMAND_ID( 0x02 );
static const Command_t CMD_MEMORY_CHECK = MAKE_COMMAND_ID( 0x03 ); static const Command_t CMD_MEMORY_CHECK = MAKE_COMMAND_ID( 0x03 );

View File

@ -17,7 +17,7 @@ class ModeMessage {
private: private:
ModeMessage(); ModeMessage();
public: public:
static const uint8_t MESSAGE_ID = MESSAGE_TYPE::MODE_COMMAND; static const uint8_t MESSAGE_ID = messagetypes::MODE_COMMAND;
static const Command_t CMD_MODE_COMMAND = MAKE_COMMAND_ID(0x01);//!> Command to set the specified Mode, replies are: REPLY_MODE_REPLY, REPLY_WRONG_MODE_REPLY, and REPLY_REJECTED; don't add any replies, as this will break the subsystem mode machine!! static const Command_t CMD_MODE_COMMAND = MAKE_COMMAND_ID(0x01);//!> Command to set the specified Mode, replies are: REPLY_MODE_REPLY, REPLY_WRONG_MODE_REPLY, and REPLY_REJECTED; don't add any replies, as this will break the subsystem mode machine!!
static const Command_t CMD_MODE_COMMAND_FORCED = MAKE_COMMAND_ID(0xF1);//!> Command to set the specified Mode, regardless of external control flag, replies are: REPLY_MODE_REPLY, REPLY_WRONG_MODE_REPLY, and REPLY_REJECTED; don't add any replies, as this will break the subsystem mode machine!! static const Command_t CMD_MODE_COMMAND_FORCED = MAKE_COMMAND_ID(0xF1);//!> Command to set the specified Mode, regardless of external control flag, replies are: REPLY_MODE_REPLY, REPLY_WRONG_MODE_REPLY, and REPLY_REJECTED; don't add any replies, as this will break the subsystem mode machine!!
static const Command_t REPLY_MODE_REPLY = MAKE_COMMAND_ID(0x02);//!> Reply to a CMD_MODE_COMMAND or CMD_MODE_READ static const Command_t REPLY_MODE_REPLY = MAKE_COMMAND_ID(0x02);//!> Reply to a CMD_MODE_COMMAND or CMD_MODE_READ

View File

@ -6,7 +6,7 @@
class MonitoringMessage: public CommandMessage { class MonitoringMessage: public CommandMessage {
public: public:
static const uint8_t MESSAGE_ID = MESSAGE_TYPE::MONITORING; static const uint8_t MESSAGE_ID = messagetypes::MONITORING;
//Object id could be useful, but we better manage that on service level (register potential reporters). //Object id could be useful, but we better manage that on service level (register potential reporters).
static const Command_t LIMIT_VIOLATION_REPORT = MAKE_COMMAND_ID(10); static const Command_t LIMIT_VIOLATION_REPORT = MAKE_COMMAND_ID(10);
virtual ~MonitoringMessage(); virtual ~MonitoringMessage();

View File

@ -100,7 +100,6 @@ void ObjectManager::initialize() {
} }
void ObjectManager::printList() { void ObjectManager::printList() {
std::map<object_id_t, SystemObjectIF*>::iterator it;
sif::debug << "ObjectManager: Object List contains:" << std::endl; sif::debug << "ObjectManager: Object List contains:" << std::endl;
for (auto const& it : objectList) { for (auto const& it : objectList) {
sif::debug << std::hex << it.first << " | " << it.second << std::endl; sif::debug << std::hex << it.first << " | " << it.second << std::endl;

View File

@ -0,0 +1,95 @@
#include "../../osal/FreeRTOS/BinSemaphUsingTask.h"
#include "../../osal/FreeRTOS/TaskManagement.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
BinarySemaphoreUsingTask::BinarySemaphoreUsingTask() {
handle = TaskManagement::getCurrentTaskHandle();
if(handle == nullptr) {
sif::error << "Could not retrieve task handle. Please ensure the"
"constructor was called inside a task." << std::endl;
}
xTaskNotifyGive(handle);
}
BinarySemaphoreUsingTask::~BinarySemaphoreUsingTask() {
// Clear notification value on destruction.
xTaskNotifyAndQuery(handle, 0, eSetValueWithOverwrite, nullptr);
}
ReturnValue_t BinarySemaphoreUsingTask::acquire(TimeoutType timeoutType,
uint32_t timeoutMs) {
TickType_t timeout = 0;
if(timeoutType == TimeoutType::POLLING) {
timeout = 0;
}
else if(timeoutType == TimeoutType::WAITING){
timeout = pdMS_TO_TICKS(timeoutMs);
}
else {
timeout = portMAX_DELAY;
}
return acquireWithTickTimeout(timeoutType, timeout);
}
ReturnValue_t BinarySemaphoreUsingTask::acquireWithTickTimeout(
TimeoutType timeoutType, TickType_t timeoutTicks) {
BaseType_t returncode = ulTaskNotifyTake(pdTRUE, timeoutTicks);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_TIMEOUT;
}
}
ReturnValue_t BinarySemaphoreUsingTask::release() {
return release(this->handle);
}
ReturnValue_t BinarySemaphoreUsingTask::release(
TaskHandle_t taskHandle) {
if(getSemaphoreCounter(taskHandle) == 1) {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
BaseType_t returncode = xTaskNotifyGive(taskHandle);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
// This should never happen.
return HasReturnvaluesIF::RETURN_FAILED;
}
}
TaskHandle_t BinarySemaphoreUsingTask::getTaskHandle() {
return handle;
}
uint8_t BinarySemaphoreUsingTask::getSemaphoreCounter() const {
return getSemaphoreCounter(this->handle);
}
uint8_t BinarySemaphoreUsingTask::getSemaphoreCounter(
TaskHandle_t taskHandle) {
uint32_t notificationValue;
xTaskNotifyAndQuery(taskHandle, 0, eNoAction, &notificationValue);
return notificationValue;
}
// Be careful with the stack size here. This is called from an ISR!
ReturnValue_t BinarySemaphoreUsingTask::releaseFromISR(
TaskHandle_t taskHandle, BaseType_t * higherPriorityTaskWoken) {
if(getSemaphoreCounterFromISR(taskHandle, higherPriorityTaskWoken) == 1) {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
vTaskNotifyGiveFromISR(taskHandle, higherPriorityTaskWoken);
return HasReturnvaluesIF::RETURN_OK;
}
uint8_t BinarySemaphoreUsingTask::getSemaphoreCounterFromISR(
TaskHandle_t taskHandle, BaseType_t* higherPriorityTaskWoken) {
uint32_t notificationValue = 0;
xTaskNotifyAndQueryFromISR(taskHandle, 0, eNoAction, &notificationValue,
higherPriorityTaskWoken);
return notificationValue;
}

View File

@ -0,0 +1,76 @@
#ifndef FRAMEWORK_OSAL_FREERTOS_BINSEMAPHUSINGTASK_H_
#define FRAMEWORK_OSAL_FREERTOS_BINSEMAPHUSINGTASK_H_
#include "../../returnvalues/HasReturnvaluesIF.h"
#include "../../tasks/SemaphoreIF.h"
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
/**
* @brief Binary Semaphore implementation using the task notification value.
* The notification value should therefore not be used
* for other purposes.
* @details
* Additional information: https://www.freertos.org/RTOS-task-notifications.html
* and general semaphore documentation.
*/
class BinarySemaphoreUsingTask: public SemaphoreIF,
public HasReturnvaluesIF {
public:
static const uint8_t INTERFACE_ID = CLASS_ID::SEMAPHORE_IF;
//! @brief Default ctor
BinarySemaphoreUsingTask();
//! @brief Default dtor
virtual~ BinarySemaphoreUsingTask();
ReturnValue_t acquire(TimeoutType timeoutType = TimeoutType::BLOCKING,
uint32_t timeoutMs = portMAX_DELAY) override;
ReturnValue_t release() override;
uint8_t getSemaphoreCounter() const override;
static uint8_t getSemaphoreCounter(TaskHandle_t taskHandle);
static uint8_t getSemaphoreCounterFromISR(TaskHandle_t taskHandle,
BaseType_t* higherPriorityTaskWoken);
/**
* Same as acquire() with timeout in FreeRTOS ticks.
* @param timeoutTicks
* @return - @c RETURN_OK on success
* - @c RETURN_FAILED on failure
*/
ReturnValue_t acquireWithTickTimeout(
TimeoutType timeoutType = TimeoutType::BLOCKING,
TickType_t timeoutTicks = portMAX_DELAY);
/**
* Get handle to the task related to the semaphore.
* @return
*/
TaskHandle_t getTaskHandle();
/**
* Wrapper function to give back semaphore from handle
* @param semaphore
* @return - @c RETURN_OK on success
* - @c RETURN_FAILED on failure
*/
static ReturnValue_t release(TaskHandle_t taskToNotify);
/**
* Wrapper function to give back semaphore from handle when called from an ISR
* @param semaphore
* @param higherPriorityTaskWoken This will be set to pdPASS if a task with
* a higher priority was unblocked. A context switch should be requested
* from an ISR if this is the case (see TaskManagement functions)
* @return - @c RETURN_OK on success
* - @c RETURN_FAILED on failure
*/
static ReturnValue_t releaseFromISR(TaskHandle_t taskToNotify,
BaseType_t * higherPriorityTaskWoken);
protected:
TaskHandle_t handle;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_BINSEMAPHUSINGTASK_H_ */

View File

@ -0,0 +1,108 @@
#include "../../osal/FreeRTOS/BinarySemaphore.h"
#include "../../osal/FreeRTOS/TaskManagement.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
BinarySemaphore::BinarySemaphore() {
handle = xSemaphoreCreateBinary();
if(handle == nullptr) {
sif::error << "Semaphore: Binary semaph creation failure" << std::endl;
}
// Initiated semaphore must be given before it can be taken.
xSemaphoreGive(handle);
}
BinarySemaphore::~BinarySemaphore() {
vSemaphoreDelete(handle);
}
BinarySemaphore::BinarySemaphore(BinarySemaphore&& s) {
handle = xSemaphoreCreateBinary();
if(handle == nullptr) {
sif::error << "Binary semaphore creation failure" << std::endl;
}
xSemaphoreGive(handle);
}
BinarySemaphore& BinarySemaphore::operator =(
BinarySemaphore&& s) {
if(&s != this) {
handle = xSemaphoreCreateBinary();
if(handle == nullptr) {
sif::error << "Binary semaphore creation failure" << std::endl;
}
xSemaphoreGive(handle);
}
return *this;
}
ReturnValue_t BinarySemaphore::acquire(TimeoutType timeoutType,
uint32_t timeoutMs) {
TickType_t timeout = 0;
if(timeoutType == TimeoutType::POLLING) {
timeout = 0;
}
else if(timeoutType == TimeoutType::WAITING){
timeout = pdMS_TO_TICKS(timeoutMs);
}
else {
timeout = portMAX_DELAY;
}
return acquireWithTickTimeout(timeoutType, timeout);
}
ReturnValue_t BinarySemaphore::acquireWithTickTimeout(TimeoutType timeoutType,
TickType_t timeoutTicks) {
if(handle == nullptr) {
return SemaphoreIF::SEMAPHORE_INVALID;
}
BaseType_t returncode = xSemaphoreTake(handle, timeoutTicks);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_TIMEOUT;
}
}
ReturnValue_t BinarySemaphore::release() {
return release(handle);
}
ReturnValue_t BinarySemaphore::release(SemaphoreHandle_t semaphore) {
if (semaphore == nullptr) {
return SemaphoreIF::SEMAPHORE_INVALID;
}
BaseType_t returncode = xSemaphoreGive(semaphore);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
}
uint8_t BinarySemaphore::getSemaphoreCounter() const {
return uxSemaphoreGetCount(handle);
}
SemaphoreHandle_t BinarySemaphore::getSemaphore() {
return handle;
}
// Be careful with the stack size here. This is called from an ISR!
ReturnValue_t BinarySemaphore::releaseFromISR(
SemaphoreHandle_t semaphore, BaseType_t * higherPriorityTaskWoken) {
if (semaphore == nullptr) {
return SemaphoreIF::SEMAPHORE_INVALID;
}
BaseType_t returncode = xSemaphoreGiveFromISR(semaphore,
higherPriorityTaskWoken);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
}

View File

@ -0,0 +1,107 @@
#ifndef FRAMEWORK_OSAL_FREERTOS_BINARYSEMPAHORE_H_
#define FRAMEWORK_OSAL_FREERTOS_BINARYSEMPAHORE_H_
#include "../../returnvalues/HasReturnvaluesIF.h"
#include "../../tasks/SemaphoreIF.h"
#include <freertos/FreeRTOS.h>
#include <freertos/semphr.h>
/**
* @brief OS Tool to achieve synchronization of between tasks or between
* task and ISR. The default semaphore implementation creates a
* binary semaphore, which can only be taken once.
* @details
* Documentation: https://www.freertos.org/Embedded-RTOS-Binary-Semaphores.html
*
* Please note that if the semaphore implementation is only related to
* the synchronization of one task, the new task notifications can be used,
* also see the BinSemaphUsingTask and CountingSemaphUsingTask classes.
* These use the task notification value instead of a queue and are
* faster and more efficient.
*
* @author R. Mueller
* @ingroup osal
*/
class BinarySemaphore: public SemaphoreIF,
public HasReturnvaluesIF {
public:
static const uint8_t INTERFACE_ID = CLASS_ID::SEMAPHORE_IF;
//! @brief Default ctor
BinarySemaphore();
//! @brief Copy ctor, deleted explicitely.
BinarySemaphore(const BinarySemaphore&) = delete;
//! @brief Copy assignment, deleted explicitely.
BinarySemaphore& operator=(const BinarySemaphore&) = delete;
//! @brief Move ctor
BinarySemaphore (BinarySemaphore &&);
//! @brief Move assignment
BinarySemaphore & operator=(BinarySemaphore &&);
//! @brief Destructor
virtual ~BinarySemaphore();
uint8_t getSemaphoreCounter() const override;
/**
* Take the binary semaphore.
* If the semaphore has already been taken, the task will be blocked
* for a maximum of #timeoutMs or until the semaphore is given back,
* for example by an ISR or another task.
* @param timeoutMs
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquire(TimeoutType timeoutType =
TimeoutType::BLOCKING, uint32_t timeoutMs = portMAX_DELAY) override;
/**
* Same as lockBinarySemaphore() with timeout in FreeRTOS ticks.
* @param timeoutTicks
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquireWithTickTimeout(TimeoutType timeoutType =
TimeoutType::BLOCKING, TickType_t timeoutTicks = portMAX_DELAY);
/**
* Release the binary semaphore.
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if the semaphores is
* already available.
*/
ReturnValue_t release() override;
/**
* Get Handle to the semaphore.
* @return
*/
SemaphoreHandle_t getSemaphore();
/**
* Wrapper function to give back semaphore from handle
* @param semaphore
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if the semaphores is
* already available.
*/
static ReturnValue_t release(SemaphoreHandle_t semaphore);
/**
* Wrapper function to give back semaphore from handle when called from an ISR
* @param semaphore
* @param higherPriorityTaskWoken This will be set to pdPASS if a task with
* a higher priority was unblocked. A context switch from an ISR should
* then be requested (see TaskManagement functions)
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if the semaphores is
* already available.
*/
static ReturnValue_t releaseFromISR(SemaphoreHandle_t semaphore,
BaseType_t * higherPriorityTaskWoken);
protected:
SemaphoreHandle_t handle;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_BINARYSEMPAHORE_H_ */

View File

@ -155,7 +155,7 @@ ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) {
if (checkOrCreateClockMutex() != HasReturnvaluesIF::RETURN_OK) { if (checkOrCreateClockMutex() != HasReturnvaluesIF::RETURN_OK) {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
ReturnValue_t result = timeMutex->lockMutex(MutexIF::NO_TIMEOUT); ReturnValue_t result = timeMutex->lockMutex(MutexIF::BLOCKING);
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
return result; return result;
} }
@ -170,7 +170,7 @@ ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) {
if (timeMutex == NULL) { if (timeMutex == NULL) {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
ReturnValue_t result = timeMutex->lockMutex(MutexIF::NO_TIMEOUT); ReturnValue_t result = timeMutex->lockMutex(MutexIF::BLOCKING);
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
return result; return result;
} }

View File

@ -0,0 +1,114 @@
#include "../../osal/FreeRTOS/CountingSemaphUsingTask.h"
#include "../../osal/FreeRTOS/TaskManagement.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
CountingSemaphoreUsingTask::CountingSemaphoreUsingTask(const uint8_t maxCount,
uint8_t initCount): maxCount(maxCount) {
if(initCount > maxCount) {
sif::error << "CountingSemaphoreUsingTask: Max count bigger than "
"intial cout. Setting initial count to max count." << std::endl;
initCount = maxCount;
}
handle = TaskManagement::getCurrentTaskHandle();
if(handle == nullptr) {
sif::error << "CountingSemaphoreUsingTask: Could not retrieve task "
"handle. Please ensure the constructor was called inside a "
"task." << std::endl;
}
uint32_t oldNotificationValue;
xTaskNotifyAndQuery(handle, 0, eSetValueWithOverwrite,
&oldNotificationValue);
if(oldNotificationValue != 0) {
sif::warning << "CountinSemaphoreUsingTask: Semaphore initiated but "
"current notification value is not 0. Please ensure the "
"notification value is not used for other purposes!" << std::endl;
}
for(int i = 0; i < initCount; i++) {
xTaskNotifyGive(handle);
}
}
CountingSemaphoreUsingTask::~CountingSemaphoreUsingTask() {
// Clear notification value on destruction.
// If this is not desired, don't call the destructor
// (or implement a boolean which disables the reset)
xTaskNotifyAndQuery(handle, 0, eSetValueWithOverwrite, nullptr);
}
ReturnValue_t CountingSemaphoreUsingTask::acquire(TimeoutType timeoutType,
uint32_t timeoutMs) {
TickType_t timeout = 0;
if(timeoutType == TimeoutType::POLLING) {
timeout = 0;
}
else if(timeoutType == TimeoutType::WAITING){
timeout = pdMS_TO_TICKS(timeoutMs);
}
else {
timeout = portMAX_DELAY;
}
return acquireWithTickTimeout(timeoutType, timeout);
}
ReturnValue_t CountingSemaphoreUsingTask::acquireWithTickTimeout(
TimeoutType timeoutType, TickType_t timeoutTicks) {
// Decrement notfication value without resetting it.
BaseType_t oldCount = ulTaskNotifyTake(pdFALSE, timeoutTicks);
if (getSemaphoreCounter() == oldCount - 1) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SemaphoreIF::SEMAPHORE_TIMEOUT;
}
}
ReturnValue_t CountingSemaphoreUsingTask::release() {
if(getSemaphoreCounter() == maxCount) {
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
return release(handle);
}
ReturnValue_t CountingSemaphoreUsingTask::release(
TaskHandle_t taskToNotify) {
BaseType_t returncode = xTaskNotifyGive(taskToNotify);
if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK;
}
else {
// This should never happen.
return HasReturnvaluesIF::RETURN_FAILED;
}
}
uint8_t CountingSemaphoreUsingTask::getSemaphoreCounter() const {
uint32_t notificationValue = 0;
xTaskNotifyAndQuery(handle, 0, eNoAction, &notificationValue);
return notificationValue;
}
TaskHandle_t CountingSemaphoreUsingTask::getTaskHandle() {
return handle;
}
ReturnValue_t CountingSemaphoreUsingTask::releaseFromISR(
TaskHandle_t taskToNotify, BaseType_t* higherPriorityTaskWoken) {
vTaskNotifyGiveFromISR(taskToNotify, higherPriorityTaskWoken);
return HasReturnvaluesIF::RETURN_OK;
}
uint8_t CountingSemaphoreUsingTask::getSemaphoreCounterFromISR(
TaskHandle_t task, BaseType_t* higherPriorityTaskWoken) {
uint32_t notificationValue;
xTaskNotifyAndQueryFromISR(task, 0, eNoAction, &notificationValue,
higherPriorityTaskWoken);
return notificationValue;
}
uint8_t CountingSemaphoreUsingTask::getMaxCount() const {
return maxCount;
}

View File

@ -0,0 +1,102 @@
#ifndef FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHUSINGTASK_H_
#define FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHUSINGTASK_H_
#include "../../osal/FreeRTOS/CountingSemaphUsingTask.h"
#include "../../tasks/SemaphoreIF.h"
extern "C" {
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
}
/**
* @brief Couting Semaphore implementation which uses the notification value
* of the task. The notification value should therefore not be used
* for other purposes.
* @details
* Additional information: https://www.freertos.org/RTOS-task-notifications.html
* and general semaphore documentation.
*/
class CountingSemaphoreUsingTask: public SemaphoreIF {
public:
CountingSemaphoreUsingTask(const uint8_t maxCount, uint8_t initCount);
virtual ~CountingSemaphoreUsingTask();
/**
* Acquire the counting semaphore.
* If no semaphores are available, the task will be blocked
* for a maximum of #timeoutMs or until one is given back,
* for example by an ISR or another task.
* @param timeoutMs
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquire(TimeoutType timeoutType = TimeoutType::BLOCKING,
uint32_t timeoutMs = portMAX_DELAY) override;
/**
* Release a semaphore, increasing the number of available counting
* semaphores up to the #maxCount value.
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if #maxCount semaphores are
* already available.
*/
ReturnValue_t release() override;
uint8_t getSemaphoreCounter() const override;
/**
* Get the semaphore counter from an ISR.
* @param task
* @param higherPriorityTaskWoken This will be set to pdPASS if a task with
* a higher priority was unblocked. A context switch should be requested
* from an ISR if this is the case (see TaskManagement functions)
* @return
*/
static uint8_t getSemaphoreCounterFromISR(TaskHandle_t task,
BaseType_t* higherPriorityTaskWoken);
/**
* Acquire with a timeout value in ticks
* @param timeoutTicks
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquireWithTickTimeout(
TimeoutType timeoutType = TimeoutType::BLOCKING,
TickType_t timeoutTicks = portMAX_DELAY);
/**
* Get handle to the task related to the semaphore.
* @return
*/
TaskHandle_t getTaskHandle();
/**
* Release semaphore of task by supplying task handle
* @param taskToNotify
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if #maxCount semaphores are
* already available.
*/
static ReturnValue_t release(TaskHandle_t taskToNotify);
/**
* Release seamphore of a task from an ISR.
* @param taskToNotify
* @param higherPriorityTaskWoken This will be set to pdPASS if a task with
* a higher priority was unblocked. A context switch should be requested
* from an ISR if this is the case (see TaskManagement functions)
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if #maxCount semaphores are
* already available.
*/
static ReturnValue_t releaseFromISR(TaskHandle_t taskToNotify,
BaseType_t* higherPriorityTaskWoken);
uint8_t getMaxCount() const;
private:
TaskHandle_t handle;
const uint8_t maxCount;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHUSINGTASK_H_ */

View File

@ -0,0 +1,43 @@
#include "../../osal/FreeRTOS/CountingSemaphore.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
#include "../../osal/FreeRTOS/TaskManagement.h"
#include <freertos/semphr.h>
// Make sure #define configUSE_COUNTING_SEMAPHORES 1 is set in
// free FreeRTOSConfig.h file.
CountingSemaphore::CountingSemaphore(const uint8_t maxCount, uint8_t initCount):
maxCount(maxCount), initCount(initCount) {
if(initCount > maxCount) {
sif::error << "CountingSemaphoreUsingTask: Max count bigger than "
"intial cout. Setting initial count to max count." << std::endl;
initCount = maxCount;
}
handle = xSemaphoreCreateCounting(maxCount, initCount);
if(handle == nullptr) {
sif::error << "CountingSemaphore: Creation failure" << std::endl;
}
}
CountingSemaphore::CountingSemaphore(CountingSemaphore&& other):
maxCount(other.maxCount), initCount(other.initCount) {
handle = xSemaphoreCreateCounting(other.maxCount, other.initCount);
if(handle == nullptr) {
sif::error << "CountingSemaphore: Creation failure" << std::endl;
}
}
CountingSemaphore& CountingSemaphore::operator =(
CountingSemaphore&& other) {
handle = xSemaphoreCreateCounting(other.maxCount, other.initCount);
if(handle == nullptr) {
sif::error << "CountingSemaphore: Creation failure" << std::endl;
}
return * this;
}
uint8_t CountingSemaphore::getMaxCount() const {
return maxCount;
}

View File

@ -0,0 +1,34 @@
#ifndef FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHORE_H_
#define FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHORE_H_
#include "../../osal/FreeRTOS/BinarySemaphore.h"
/**
* @brief Counting semaphores, which can be acquire more than once.
* @details
* See: https://www.freertos.org/CreateCounting.html
* API of counting semaphores is almost identical to binary semaphores,
* so we just inherit from binary semaphore and provide the respective
* constructors.
*/
class CountingSemaphore: public BinarySemaphore {
public:
CountingSemaphore(const uint8_t maxCount, uint8_t initCount);
//! @brief Copy ctor, disabled
CountingSemaphore(const CountingSemaphore&) = delete;
//! @brief Copy assignment, disabled
CountingSemaphore& operator=(const CountingSemaphore&) = delete;
//! @brief Move ctor
CountingSemaphore (CountingSemaphore &&);
//! @brief Move assignment
CountingSemaphore & operator=(CountingSemaphore &&);
/* Same API as binary semaphore otherwise. acquire() can be called
* until there are not semaphores left and release() can be called
* until maxCount is reached. */
uint8_t getMaxCount() const;
private:
const uint8_t maxCount;
uint8_t initCount = 0;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHORE_H_ */

View File

@ -5,11 +5,12 @@
uint32_t FixedTimeslotTask::deadlineMissedCount = 0; uint32_t FixedTimeslotTask::deadlineMissedCount = 0;
const size_t PeriodicTaskIF::MINIMUM_STACK_SIZE = configMINIMAL_STACK_SIZE; const size_t PeriodicTaskIF::MINIMUM_STACK_SIZE = configMINIMAL_STACK_SIZE;
FixedTimeslotTask::FixedTimeslotTask(const char *name, TaskPriority setPriority, FixedTimeslotTask::FixedTimeslotTask(TaskName name, TaskPriority setPriority,
TaskStackSize setStack, TaskPeriod overallPeriod, TaskStackSize setStack, TaskPeriod overallPeriod,
void (*setDeadlineMissedFunc)()) : void (*setDeadlineMissedFunc)()) :
started(false), handle(NULL), pst(overallPeriod * 1000) { started(false), handle(NULL), pst(overallPeriod * 1000) {
xTaskCreate(taskEntryPoint, name, setStack, this, setPriority, &handle); configSTACK_DEPTH_TYPE stackSize = setStack / sizeof(configSTACK_DEPTH_TYPE);
xTaskCreate(taskEntryPoint, name, stackSize, this, setPriority, &handle);
// All additional attributes are applied to the object. // All additional attributes are applied to the object.
this->deadlineMissedFunc = setDeadlineMissedFunc; this->deadlineMissedFunc = setDeadlineMissedFunc;
} }
@ -82,7 +83,7 @@ ReturnValue_t FixedTimeslotTask::checkSequence() const {
void FixedTimeslotTask::taskFunctionality() { void FixedTimeslotTask::taskFunctionality() {
// A local iterator for the Polling Sequence Table is created to find the // A local iterator for the Polling Sequence Table is created to find the
// start time for the first entry. // start time for the first entry.
FixedSlotSequence::SlotListIter slotListIter = pst.current; auto slotListIter = pst.current;
//The start time for the first entry is read. //The start time for the first entry is read.
uint32_t intervalMs = slotListIter->pollingTimeMs; uint32_t intervalMs = slotListIter->pollingTimeMs;
@ -155,3 +156,7 @@ ReturnValue_t FixedTimeslotTask::sleepFor(uint32_t ms) {
vTaskDelay(pdMS_TO_TICKS(ms)); vTaskDelay(pdMS_TO_TICKS(ms));
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
TaskHandle_t FixedTimeslotTask::getTaskHandle() {
return handle;
}

View File

@ -1,14 +1,16 @@
#ifndef FRAMEWORK_OSAL_FREERTOS_FIXEDTIMESLOTTASK_H_ #ifndef FRAMEWORK_OSAL_FREERTOS_FIXEDTIMESLOTTASK_H_
#define FRAMEWORK_OSAL_FREERTOS_FIXEDTIMESLOTTASK_H_ #define FRAMEWORK_OSAL_FREERTOS_FIXEDTIMESLOTTASK_H_
#include "FreeRTOSTaskIF.h"
#include "../../devicehandlers/FixedSlotSequence.h" #include "../../devicehandlers/FixedSlotSequence.h"
#include "../../tasks/FixedTimeslotTaskIF.h" #include "../../tasks/FixedTimeslotTaskIF.h"
#include "../../tasks/Typedef.h" #include "../../tasks/Typedef.h"
#include <freertos/FreeRTOS.h> #include <freertos/FreeRTOS.h>
#include <freertos/task.h> #include <freertos/task.h>
class FixedTimeslotTask: public FixedTimeslotTaskIF { class FixedTimeslotTask: public FixedTimeslotTaskIF, public FreeRTOSTaskIF {
public: public:
/** /**
@ -23,7 +25,7 @@ public:
* @param setDeadlineMissedFunc Callback if a deadline was missed. * @param setDeadlineMissedFunc Callback if a deadline was missed.
* @return Pointer to the newly created task. * @return Pointer to the newly created task.
*/ */
FixedTimeslotTask(const char *name, TaskPriority setPriority, FixedTimeslotTask(TaskName name, TaskPriority setPriority,
TaskStackSize setStack, TaskPeriod overallPeriod, TaskStackSize setStack, TaskPeriod overallPeriod,
void (*setDeadlineMissedFunc)()); void (*setDeadlineMissedFunc)());
@ -57,6 +59,8 @@ public:
ReturnValue_t sleepFor(uint32_t ms) override; ReturnValue_t sleepFor(uint32_t ms) override;
TaskHandle_t getTaskHandle() override;
protected: protected:
bool started; bool started;
TaskHandle_t handle; TaskHandle_t handle;

View File

@ -0,0 +1,13 @@
#ifndef FRAMEWORK_OSAL_FREERTOS_FREERTOSTASKIF_H_
#define FRAMEWORK_OSAL_FREERTOS_FREERTOSTASKIF_H_
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
class FreeRTOSTaskIF {
public:
virtual~ FreeRTOSTaskIF() {}
virtual TaskHandle_t getTaskHandle() = 0;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_FREERTOSTASKIF_H_ */

View File

@ -2,27 +2,31 @@
#include "../../serviceinterface/ServiceInterfaceStream.h" #include "../../serviceinterface/ServiceInterfaceStream.h"
const uint32_t MutexIF::NO_TIMEOUT = 0;
Mutex::Mutex() { Mutex::Mutex() {
handle = xSemaphoreCreateMutex(); handle = xSemaphoreCreateMutex();
//TODO print error if(handle == nullptr) {
sif::error << "Mutex::Mutex(FreeRTOS): Creation failure" << std::endl;
}
} }
Mutex::~Mutex() { Mutex::~Mutex() {
if (handle != 0) { if (handle != nullptr) {
vSemaphoreDelete(handle); vSemaphoreDelete(handle);
} }
} }
ReturnValue_t Mutex::lockMutex(uint32_t timeoutMs) { ReturnValue_t Mutex::lockMutex(TimeoutType timeoutType,
if (handle == 0) { uint32_t timeoutMs) {
//TODO Does not exist if (handle == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED; return MutexIF::MUTEX_NOT_FOUND;
} }
TickType_t timeout = portMAX_DELAY; // If the timeout type is BLOCKING, this will be the correct value.
if (timeoutMs != NO_TIMEOUT) { uint32_t timeout = portMAX_DELAY;
if(timeoutType == TimeoutType::POLLING) {
timeout = 0;
}
else if(timeoutType == TimeoutType::WAITING){
timeout = pdMS_TO_TICKS(timeoutMs); timeout = pdMS_TO_TICKS(timeoutMs);
} }
@ -30,21 +34,18 @@ ReturnValue_t Mutex::lockMutex(uint32_t timeoutMs) {
if (returncode == pdPASS) { if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} else { } else {
//TODO could not be acquired/timeout return MutexIF::MUTEX_TIMEOUT;
return HasReturnvaluesIF::RETURN_FAILED;
} }
} }
ReturnValue_t Mutex::unlockMutex() { ReturnValue_t Mutex::unlockMutex() {
if (handle == 0) { if (handle == nullptr) {
//TODO Does not exist return MutexIF::MUTEX_NOT_FOUND;
return HasReturnvaluesIF::RETURN_FAILED;
} }
BaseType_t returncode = xSemaphoreGive(handle); BaseType_t returncode = xSemaphoreGive(handle);
if (returncode == pdPASS) { if (returncode == pdPASS) {
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} else { } else {
//TODO is not owner return MutexIF::CURR_THREAD_DOES_NOT_OWN_MUTEX;
return HasReturnvaluesIF::RETURN_FAILED;
} }
} }

View File

@ -1,22 +1,29 @@
#ifndef OS_RTEMS_MUTEX_H_ #ifndef FRAMEWORK_FREERTOS_MUTEX_H_
#define OS_RTEMS_MUTEX_H_ #define FRAMEWORK_FREERTOS_MUTEX_H_
#include "../../ipc/MutexIF.h" #include "../../ipc/MutexIF.h"
#include <freertos/FreeRTOS.h>
#include <freertos/semphr.h>
#include <FreeRTOS.h> /**
#include "semphr.h" * @brief OS component to implement MUTual EXclusion
*
* @details
* Mutexes are binary semaphores which include a priority inheritance mechanism.
* Documentation: https://www.freertos.org/Real-time-embedded-RTOS-mutexes.html
* @ingroup osal
*/
class Mutex : public MutexIF { class Mutex : public MutexIF {
public: public:
Mutex(); Mutex();
~Mutex(); ~Mutex();
ReturnValue_t lockMutex(uint32_t timeoutMs); ReturnValue_t lockMutex(TimeoutType timeoutType,
ReturnValue_t unlockMutex(); uint32_t timeoutMs) override;
ReturnValue_t unlockMutex() override;
private: private:
SemaphoreHandle_t handle; SemaphoreHandle_t handle;
}; };
#endif /* OS_RTEMS_MUTEX_H_ */ #endif /* FRAMEWORK_FREERTOS_MUTEX_H_ */

View File

@ -5,12 +5,13 @@
PeriodicTask::PeriodicTask(const char *name, TaskPriority setPriority, PeriodicTask::PeriodicTask(const char *name, TaskPriority setPriority,
TaskStackSize setStack, TaskPeriod setPeriod, TaskStackSize setStack, TaskPeriod setPeriod,
void (*setDeadlineMissedFunc)()) : TaskDeadlineMissedFunction deadlineMissedFunc) :
started(false), handle(NULL), period(setPeriod), deadlineMissedFunc( started(false), handle(NULL), period(setPeriod), deadlineMissedFunc(
setDeadlineMissedFunc) deadlineMissedFunc)
{ {
configSTACK_DEPTH_TYPE stackSize = setStack / sizeof(configSTACK_DEPTH_TYPE);
BaseType_t status = xTaskCreate(taskEntryPoint, name, BaseType_t status = xTaskCreate(taskEntryPoint, name,
setStack, this, setPriority, &handle); stackSize, this, setPriority, &handle);
if(status != pdPASS){ if(status != pdPASS){
sif::debug << "PeriodicTask Insufficient heap memory remaining. " sif::debug << "PeriodicTask Insufficient heap memory remaining. "
"Status: " << status << std::endl; "Status: " << status << std::endl;
@ -81,19 +82,17 @@ void PeriodicTask::taskFunctionality() {
} }
} }
ReturnValue_t PeriodicTask::addComponent(object_id_t object, bool setTaskIF) { ReturnValue_t PeriodicTask::addComponent(object_id_t object) {
ExecutableObjectIF* newObject = objectManager->get<ExecutableObjectIF>( ExecutableObjectIF* newObject = objectManager->get<ExecutableObjectIF>(
object); object);
if (newObject == nullptr) { if (newObject == nullptr) {
sif::error << "PeriodicTask::addComponent: Invalid object. Make sure" sif::error << "PeriodicTask::addComponent: Invalid object. Make sure"
"it implements ExecutableObjectIF!" << std::endl; "it implement ExecutableObjectIF" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
objectList.push_back(newObject); objectList.push_back(newObject);
if(setTaskIF) {
newObject->setTaskIF(this); newObject->setTaskIF(this);
}
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
@ -124,6 +123,10 @@ void PeriodicTask::checkMissedDeadline(const TickType_t xLastWakeTime,
} }
} }
TaskHandle_t PeriodicTask::getTaskHandle() {
return handle;
}
void PeriodicTask::handleMissedDeadline() { void PeriodicTask::handleMissedDeadline() {
#ifdef DEBUG #ifdef DEBUG
sif::warning << "PeriodicTask: " << pcTaskGetName(NULL) << sif::warning << "PeriodicTask: " << pcTaskGetName(NULL) <<

View File

@ -4,6 +4,8 @@
#include "../../objectmanager/ObjectManagerIF.h" #include "../../objectmanager/ObjectManagerIF.h"
#include "../../tasks/PeriodicTaskIF.h" #include "../../tasks/PeriodicTaskIF.h"
#include "../../tasks/Typedef.h" #include "../../tasks/Typedef.h"
#include "FreeRTOSTaskIF.h"
#include <freertos/FreeRTOS.h> #include <freertos/FreeRTOS.h>
#include <freertos/task.h> #include <freertos/task.h>
@ -17,7 +19,7 @@ class ExecutableObjectIF;
* periodic activities of multiple objects. * periodic activities of multiple objects.
* @ingroup task_handling * @ingroup task_handling
*/ */
class PeriodicTask: public PeriodicTaskIF { class PeriodicTask: public PeriodicTaskIF, public FreeRTOSTaskIF {
public: public:
/** /**
* Keep in Mind that you need to call before this vTaskStartScheduler()! * Keep in Mind that you need to call before this vTaskStartScheduler()!
@ -38,9 +40,9 @@ public:
* The function pointer to the deadline missed function that shall * The function pointer to the deadline missed function that shall
* be assigned. * be assigned.
*/ */
PeriodicTask(const char *name, TaskPriority setPriority, PeriodicTask(TaskName name, TaskPriority setPriority,
TaskStackSize setStack, TaskPeriod setPeriod, TaskStackSize setStack, TaskPeriod setPeriod,
void (*setDeadlineMissedFunc)()); TaskDeadlineMissedFunction deadlineMissedFunc);
/** /**
* @brief Currently, the executed object's lifetime is not coupled with * @brief Currently, the executed object's lifetime is not coupled with
* the task object's lifetime, so the destructor is empty. * the task object's lifetime, so the destructor is empty.
@ -63,12 +65,13 @@ public:
* -@c RETURN_OK on success * -@c RETURN_OK on success
* -@c RETURN_FAILED if the object could not be added. * -@c RETURN_FAILED if the object could not be added.
*/ */
ReturnValue_t addComponent(object_id_t object, ReturnValue_t addComponent(object_id_t object) override;
bool setTaskIF = true) override;
uint32_t getPeriodMs() const override; uint32_t getPeriodMs() const override;
ReturnValue_t sleepFor(uint32_t ms) override; ReturnValue_t sleepFor(uint32_t ms) override;
TaskHandle_t getTaskHandle() override;
protected: protected:
bool started; bool started;
TaskHandle_t handle; TaskHandle_t handle;

View File

@ -0,0 +1,59 @@
#include "../../osal/FreeRTOS/BinarySemaphore.h"
#include "../../osal/FreeRTOS/BinSemaphUsingTask.h"
#include "../../osal/FreeRTOS/CountingSemaphore.h"
#include "../../osal/FreeRTOS/CountingSemaphUsingTask.h"
#include "../../tasks/SemaphoreFactory.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
SemaphoreFactory* SemaphoreFactory::factoryInstance = nullptr;
static const uint32_t USE_REGULAR_SEMAPHORES = 0;
static const uint32_t USE_TASK_NOTIFICATIONS = 1;
SemaphoreFactory::SemaphoreFactory() {
}
SemaphoreFactory::~SemaphoreFactory() {
delete factoryInstance;
}
SemaphoreFactory* SemaphoreFactory::instance() {
if (factoryInstance == nullptr){
factoryInstance = new SemaphoreFactory();
}
return SemaphoreFactory::factoryInstance;
}
SemaphoreIF* SemaphoreFactory::createBinarySemaphore(uint32_t argument) {
if(argument == USE_REGULAR_SEMAPHORES) {
return new BinarySemaphore();
}
else if(argument == USE_TASK_NOTIFICATIONS) {
return new BinarySemaphoreUsingTask();
}
else {
sif::warning << "SemaphoreFactory: Invalid argument, return regular"
"binary semaphore" << std::endl;
return new BinarySemaphore();
}
}
SemaphoreIF* SemaphoreFactory::createCountingSemaphore(uint8_t maxCount,
uint8_t initCount, uint32_t argument) {
if(argument == USE_REGULAR_SEMAPHORES) {
return new CountingSemaphore(maxCount, initCount);
}
else if(argument == USE_TASK_NOTIFICATIONS) {
return new CountingSemaphoreUsingTask(maxCount, initCount);
}
else {
sif::warning << "SemaphoreFactory: Invalid argument, return regular"
"binary semaphore" << std::endl;
return new CountingSemaphore(maxCount, initCount);
}
}
void SemaphoreFactory::deleteSemaphore(SemaphoreIF* semaphore) {
delete semaphore;
}

View File

@ -0,0 +1,24 @@
#include "../../osal/FreeRTOS/TaskManagement.h"
void TaskManagement::vRequestContextSwitchFromTask() {
vTaskDelay(0);
}
void TaskManagement::requestContextSwitch(
CallContext callContext = CallContext::TASK) {
if(callContext == CallContext::ISR) {
// This function depends on the partmacro.h definition for the specific device
vRequestContextSwitchFromISR();
} else {
vRequestContextSwitchFromTask();
}
}
TaskHandle_t TaskManagement::getCurrentTaskHandle() {
return xTaskGetCurrentTaskHandle();
}
size_t TaskManagement::getTaskStackHighWatermark(
TaskHandle_t task) {
return uxTaskGetStackHighWaterMark(task) * sizeof(StackType_t);
}

View File

@ -0,0 +1,64 @@
#ifndef FRAMEWORK_OSAL_FREERTOS_TASKMANAGEMENT_H_
#define FRAMEWORK_OSAL_FREERTOS_TASKMANAGEMENT_H_
#include "../../returnvalues/HasReturnvaluesIF.h"
extern "C" {
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
}
#include <cstdint>
/**
* Architecture dependant portmacro.h function call.
* Should be implemented in bsp.
*/
extern void vRequestContextSwitchFromISR();
/*!
* Used by functions to tell if they are being called from
* within an ISR or from a regular task. This is required because FreeRTOS
* has different functions for handling semaphores and messages from within
* an ISR and task.
*/
enum class CallContext {
TASK = 0x00,//!< task_context
ISR = 0xFF //!< isr_context
};
class TaskManagement {
public:
/**
* @brief In this function, a function dependant on the portmacro.h header
* function calls to request a context switch can be specified.
* This can be used if sending to the queue from an ISR caused a task
* to unblock and a context switch is required.
*/
static void requestContextSwitch(CallContext callContext);
/**
* If task preemption in FreeRTOS is disabled, a context switch
* can be requested manually by calling this function.
*/
static void vRequestContextSwitchFromTask(void);
/**
* @return The current task handle
*/
static TaskHandle_t getCurrentTaskHandle();
/**
* Get returns the minimum amount of remaining stack space in words
* that was a available to the task since the task started executing.
* Please note that the actual value in bytes depends
* on the stack depth type.
* E.g. on a 32 bit machine, a value of 200 means 800 bytes.
* @return Smallest value of stack remaining since the task was started in
* words.
*/
static size_t getTaskStackHighWatermark(
TaskHandle_t task = nullptr);
};
#endif /* FRAMEWORK_OSAL_FREERTOS_TASKMANAGEMENT_H_ */

View File

@ -0,0 +1,149 @@
#include "../../osal/linux/BinarySemaphore.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
extern "C" {
#include <errno.h>
#include <string.h>
}
BinarySemaphore::BinarySemaphore() {
// Using unnamed semaphores for now
initSemaphore();
}
BinarySemaphore::~BinarySemaphore() {
sem_destroy(&handle);
}
BinarySemaphore::BinarySemaphore(BinarySemaphore&& s) {
initSemaphore();
}
BinarySemaphore& BinarySemaphore::operator =(
BinarySemaphore&& s) {
initSemaphore();
return * this;
}
ReturnValue_t BinarySemaphore::acquire(TimeoutType timeoutType,
uint32_t timeoutMs) {
int result = 0;
if(timeoutType == TimeoutType::POLLING) {
result = sem_trywait(&handle);
}
else if(timeoutType == TimeoutType::BLOCKING) {
result = sem_wait(&handle);
}
else if(timeoutType == TimeoutType::WAITING){
timespec timeOut;
clock_gettime(CLOCK_REALTIME, &timeOut);
uint64_t nseconds = timeOut.tv_sec * 1000000000 + timeOut.tv_nsec;
nseconds += timeoutMs * 1000000;
timeOut.tv_sec = nseconds / 1000000000;
timeOut.tv_nsec = nseconds - timeOut.tv_sec * 1000000000;
result = sem_timedwait(&handle, &timeOut);
if(result != 0 and errno == EINVAL) {
sif::debug << "BinarySemaphore::acquire: Invalid time value possible"
<< std::endl;
}
}
if(result == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
switch(errno) {
case(EAGAIN):
// Operation could not be performed without blocking (for sem_trywait)
case(ETIMEDOUT):
// Semaphore is 0
return SemaphoreIF::SEMAPHORE_TIMEOUT;
case(EINVAL):
// Semaphore invalid
return SemaphoreIF::SEMAPHORE_INVALID;
case(EINTR):
// Call was interrupted by signal handler
sif::debug << "BinarySemaphore::acquire: Signal handler interrupted."
"Code " << strerror(errno) << std::endl;
/* No break */
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t BinarySemaphore::release() {
return BinarySemaphore::release(&this->handle);
}
ReturnValue_t BinarySemaphore::release(sem_t *handle) {
ReturnValue_t countResult = checkCount(handle, 1);
if(countResult != HasReturnvaluesIF::RETURN_OK) {
return countResult;
}
int result = sem_post(handle);
if(result == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
switch(errno) {
case(EINVAL):
// Semaphore invalid
return SemaphoreIF::SEMAPHORE_INVALID;
case(EOVERFLOW):
// SEM_MAX_VALUE overflow. This should never happen
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
uint8_t BinarySemaphore::getSemaphoreCounter() const {
// And another ugly cast :-D
return getSemaphoreCounter(const_cast<sem_t*>(&this->handle));
}
uint8_t BinarySemaphore::getSemaphoreCounter(sem_t *handle) {
int value = 0;
int result = sem_getvalue(handle, &value);
if (result == 0) {
return value;
}
else if(result != 0 and errno == EINVAL) {
// Could be called from interrupt, use lightweight printf
printf("BinarySemaphore::getSemaphoreCounter: Invalid semaphore\n");
return 0;
}
else {
// This should never happen.
return 0;
}
}
void BinarySemaphore::initSemaphore(uint8_t initCount) {
auto result = sem_init(&handle, true, initCount);
if(result == -1) {
switch(errno) {
case(EINVAL):
// Value exceeds SEM_VALUE_MAX
case(ENOSYS):
// System does not support process-shared semaphores
sif::error << "BinarySemaphore: Init failed with" << strerror(errno)
<< std::endl;
}
}
}
ReturnValue_t BinarySemaphore::checkCount(sem_t* handle, uint8_t maxCount) {
int value = getSemaphoreCounter(handle);
if(value >= maxCount) {
if(maxCount == 1 and value > 1) {
// Binary Semaphore special case.
// This is a config error use lightweight printf is this is called
// from an interrupt
printf("BinarySemaphore::release: Value of binary semaphore greater"
" than 1!\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
return SemaphoreIF::SEMAPHORE_NOT_OWNED;
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,81 @@
#ifndef FRAMEWORK_OSAL_LINUX_BINARYSEMPAHORE_H_
#define FRAMEWORK_OSAL_LINUX_BINARYSEMPAHORE_H_
#include "../../returnvalues/HasReturnvaluesIF.h"
#include "../../tasks/SemaphoreIF.h"
extern "C" {
#include <semaphore.h>
}
/**
* @brief OS Tool to achieve synchronization of between tasks or between
* task and ISR. The default semaphore implementation creates a
* binary semaphore, which can only be taken once.
* @details
* See: http://www.man7.org/linux/man-pages/man7/sem_overview.7.html
* @author R. Mueller
* @ingroup osal
*/
class BinarySemaphore: public SemaphoreIF,
public HasReturnvaluesIF {
public:
static const uint8_t INTERFACE_ID = CLASS_ID::SEMAPHORE_IF;
//! @brief Default ctor
BinarySemaphore();
//! @brief Copy ctor, deleted explicitely.
BinarySemaphore(const BinarySemaphore&) = delete;
//! @brief Copy assignment, deleted explicitely.
BinarySemaphore& operator=(const BinarySemaphore&) = delete;
//! @brief Move ctor
BinarySemaphore (BinarySemaphore &&);
//! @brief Move assignment
BinarySemaphore & operator=(BinarySemaphore &&);
//! @brief Destructor
virtual ~BinarySemaphore();
void initSemaphore(uint8_t initCount = 1);
uint8_t getSemaphoreCounter() const override;
static uint8_t getSemaphoreCounter(sem_t* handle);
/**
* Take the binary semaphore.
* If the semaphore has already been taken, the task will be blocked
* for a maximum of #timeoutMs or until the semaphore is given back,
* for example by an ISR or another task.
* @param timeoutMs
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_TIMEOUT on timeout
*/
ReturnValue_t acquire(TimeoutType timeoutType = TimeoutType::BLOCKING,
uint32_t timeoutMs = 0) override;
/**
* Release the binary semaphore.
* @return -@c RETURN_OK on success
* -@c SemaphoreIF::SEMAPHORE_NOT_OWNED if the semaphores is
* already available.
*/
virtual ReturnValue_t release() override;
/**
* This static function can be used to release a semaphore by providing
* its handle.
* @param handle
* @return
*/
static ReturnValue_t release(sem_t* handle);
/** Checks the validity of the semaphore count against a specified
* known maxCount
* @param handle
* @param maxCount
* @return
*/
static ReturnValue_t checkCount(sem_t* handle, uint8_t maxCount);
protected:
sem_t handle;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_BINARYSEMPAHORE_H_ */

View File

@ -179,7 +179,7 @@ ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) {
if(checkOrCreateClockMutex()!=HasReturnvaluesIF::RETURN_OK){ if(checkOrCreateClockMutex()!=HasReturnvaluesIF::RETURN_OK){
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
ReturnValue_t result = timeMutex->lockMutex(MutexIF::NO_TIMEOUT); ReturnValue_t result = timeMutex->lockMutex(MutexIF::BLOCKING);
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
return result; return result;
} }
@ -194,7 +194,7 @@ ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) {
if(timeMutex==NULL){ if(timeMutex==NULL){
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
ReturnValue_t result = timeMutex->lockMutex(MutexIF::NO_TIMEOUT); ReturnValue_t result = timeMutex->lockMutex(MutexIF::BLOCKING);
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
return result; return result;
} }

View File

@ -0,0 +1,54 @@
#include "../../osal/linux/CountingSemaphore.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
CountingSemaphore::CountingSemaphore(const uint8_t maxCount, uint8_t initCount):
maxCount(maxCount), initCount(initCount) {
if(initCount > maxCount) {
sif::error << "CountingSemaphoreUsingTask: Max count bigger than "
"intial cout. Setting initial count to max count." << std::endl;
initCount = maxCount;
}
initSemaphore(initCount);
}
CountingSemaphore::CountingSemaphore(CountingSemaphore&& other):
maxCount(other.maxCount), initCount(other.initCount) {
initSemaphore(initCount);
}
CountingSemaphore& CountingSemaphore::operator =(
CountingSemaphore&& other) {
initSemaphore(other.initCount);
return * this;
}
ReturnValue_t CountingSemaphore::release() {
ReturnValue_t result = checkCount(&handle, maxCount);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
return CountingSemaphore::release(&this->handle);
}
ReturnValue_t CountingSemaphore::release(sem_t* handle) {
int result = sem_post(handle);
if(result == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
switch(errno) {
case(EINVAL):
// Semaphore invalid
return SemaphoreIF::SEMAPHORE_INVALID;
case(EOVERFLOW):
// SEM_MAX_VALUE overflow. This should never happen
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
uint8_t CountingSemaphore::getMaxCount() const {
return maxCount;
}

View File

@ -0,0 +1,37 @@
#ifndef FRAMEWORK_OSAL_LINUX_COUNTINGSEMAPHORE_H_
#define FRAMEWORK_OSAL_LINUX_COUNTINGSEMAPHORE_H_
#include "../../osal/linux/BinarySemaphore.h"
/**
* @brief Counting semaphores, which can be acquired more than once.
* @details
* See: https://www.freertos.org/CreateCounting.html
* API of counting semaphores is almost identical to binary semaphores,
* so we just inherit from binary semaphore and provide the respective
* constructors.
*/
class CountingSemaphore: public BinarySemaphore {
public:
CountingSemaphore(const uint8_t maxCount, uint8_t initCount);
//! @brief Copy ctor, disabled
CountingSemaphore(const CountingSemaphore&) = delete;
//! @brief Copy assignment, disabled
CountingSemaphore& operator=(const CountingSemaphore&) = delete;
//! @brief Move ctor
CountingSemaphore (CountingSemaphore &&);
//! @brief Move assignment
CountingSemaphore & operator=(CountingSemaphore &&);
ReturnValue_t release() override;
static ReturnValue_t release(sem_t* sem);
/* Same API as binary semaphore otherwise. acquire() can be called
* until there are not semaphores left and release() can be called
* until maxCount is reached. */
uint8_t getMaxCount() const;
private:
const uint8_t maxCount;
uint8_t initCount = 0;
};
#endif /* FRAMEWORK_OSAL_FREERTOS_COUNTINGSEMAPHORE_H_ */

View File

@ -2,7 +2,6 @@
#include "../../serviceinterface/ServiceInterfaceStream.h" #include "../../serviceinterface/ServiceInterfaceStream.h"
#include "../../timemanager/Clock.h" #include "../../timemanager/Clock.h"
const uint32_t MutexIF::NO_TIMEOUT = 0;
uint8_t Mutex::count = 0; uint8_t Mutex::count = 0;
@ -25,7 +24,9 @@ Mutex::Mutex() {
sif::error << "Mutex: creation with name, id " << mutex.__data.__count sif::error << "Mutex: creation with name, id " << mutex.__data.__count
<< ", " << " failed with " << strerror(status) << std::endl; << ", " << " failed with " << strerror(status) << std::endl;
} }
//After a mutex attributes object has been used to initialize one or more mutexes, any function affecting the attributes object (including destruction) shall not affect any previously initialized mutexes. // After a mutex attributes object has been used to initialize one or more
// mutexes, any function affecting the attributes object
// (including destruction) shall not affect any previously initialized mutexes.
status = pthread_mutexattr_destroy(&mutexAttr); status = pthread_mutexattr_destroy(&mutexAttr);
if (status != 0) { if (status != 0) {
sif::error << "Mutex: Attribute destroy failed with " << strerror(status) << std::endl; sif::error << "Mutex: Attribute destroy failed with " << strerror(status) << std::endl;
@ -37,9 +38,13 @@ Mutex::~Mutex() {
pthread_mutex_destroy(&mutex); pthread_mutex_destroy(&mutex);
} }
ReturnValue_t Mutex::lockMutex(uint32_t timeoutMs) { ReturnValue_t Mutex::lockMutex(TimeoutType timeoutType, uint32_t timeoutMs) {
int status = 0; int status = 0;
if (timeoutMs != MutexIF::NO_TIMEOUT) {
if(timeoutType == TimeoutType::POLLING) {
status = pthread_mutex_trylock(&mutex);
}
else if (timeoutType == TimeoutType::WAITING) {
timespec timeOut; timespec timeOut;
clock_gettime(CLOCK_REALTIME, &timeOut); clock_gettime(CLOCK_REALTIME, &timeOut);
uint64_t nseconds = timeOut.tv_sec * 1000000000 + timeOut.tv_nsec; uint64_t nseconds = timeOut.tv_sec * 1000000000 + timeOut.tv_nsec;
@ -47,14 +52,20 @@ ReturnValue_t Mutex::lockMutex(uint32_t timeoutMs) {
timeOut.tv_sec = nseconds / 1000000000; timeOut.tv_sec = nseconds / 1000000000;
timeOut.tv_nsec = nseconds - timeOut.tv_sec * 1000000000; timeOut.tv_nsec = nseconds - timeOut.tv_sec * 1000000000;
status = pthread_mutex_timedlock(&mutex, &timeOut); status = pthread_mutex_timedlock(&mutex, &timeOut);
} else { }
else if(timeoutType == TimeoutType::BLOCKING) {
status = pthread_mutex_lock(&mutex); status = pthread_mutex_lock(&mutex);
} }
switch (status) { switch (status) {
case EINVAL: case EINVAL:
//The mutex was created with the protocol attribute having the value PTHREAD_PRIO_PROTECT and the calling thread's priority is higher than the mutex's current priority ceiling. // The mutex was created with the protocol attribute having the value
// PTHREAD_PRIO_PROTECT and the calling thread's priority is higher
// than the mutex's current priority ceiling.
return WRONG_ATTRIBUTE_SETTING; return WRONG_ATTRIBUTE_SETTING;
//The process or thread would have blocked, and the abs_timeout parameter specified a nanoseconds field value less than zero or greater than or equal to 1000 million. // The process or thread would have blocked, and the abs_timeout
// parameter specified a nanoseconds field value less than zero or
// greater than or equal to 1000 million.
// The value specified by mutex does not refer to an initialized mutex object. // The value specified by mutex does not refer to an initialized mutex object.
//return MUTEX_NOT_FOUND; //return MUTEX_NOT_FOUND;
case EBUSY: case EBUSY:
@ -64,10 +75,12 @@ ReturnValue_t Mutex::lockMutex(uint32_t timeoutMs) {
// The mutex could not be locked before the specified timeout expired. // The mutex could not be locked before the specified timeout expired.
return MUTEX_TIMEOUT; return MUTEX_TIMEOUT;
case EAGAIN: case EAGAIN:
//The mutex could not be acquired because the maximum number of recursive locks for mutex has been exceeded. // The mutex could not be acquired because the maximum number of
// recursive locks for mutex has been exceeded.
return MUTEX_MAX_LOCKS; return MUTEX_MAX_LOCKS;
case EDEADLK: case EDEADLK:
//A deadlock condition was detected or the current thread already owns the mutex. // A deadlock condition was detected or the current thread
// already owns the mutex.
return CURR_THREAD_ALREADY_OWNS_MUTEX; return CURR_THREAD_ALREADY_OWNS_MUTEX;
case 0: case 0:
//Success //Success

View File

@ -1,14 +1,15 @@
#ifndef OS_RTEMS_MUTEX_H_ #ifndef OS_LINUX_MUTEX_H_
#define OS_RTEMS_MUTEX_H_ #define OS_LINUX_MUTEX_H_
#include "../../ipc/MutexIF.h" #include "../../ipc/MutexIF.h"
#include <pthread.h> #include <pthread.h>
class Mutex : public MutexIF { class Mutex : public MutexIF {
public: public:
Mutex(); Mutex();
virtual ~Mutex(); virtual ~Mutex();
virtual ReturnValue_t lockMutex(uint32_t timeoutMs); virtual ReturnValue_t lockMutex(TimeoutType timeoutType, uint32_t timeoutMs);
virtual ReturnValue_t unlockMutex(); virtual ReturnValue_t unlockMutex();
private: private:
pthread_mutex_t mutex; pthread_mutex_t mutex;

View File

@ -21,8 +21,7 @@ void* PeriodicPosixTask::taskEntryPoint(void* arg) {
return NULL; return NULL;
} }
ReturnValue_t PeriodicPosixTask::addComponent(object_id_t object, ReturnValue_t PeriodicPosixTask::addComponent(object_id_t object) {
bool addTaskIF) {
ExecutableObjectIF* newObject = objectManager->get<ExecutableObjectIF>( ExecutableObjectIF* newObject = objectManager->get<ExecutableObjectIF>(
object); object);
if (newObject == nullptr) { if (newObject == nullptr) {

View File

@ -39,8 +39,7 @@ public:
* @param object Id of the object to add. * @param object Id of the object to add.
* @return RETURN_OK on success, RETURN_FAILED if the object could not be added. * @return RETURN_OK on success, RETURN_FAILED if the object could not be added.
*/ */
ReturnValue_t addComponent(object_id_t object, ReturnValue_t addComponent(object_id_t object) override;
bool addTaskIF = true) override;
uint32_t getPeriodMs() const override; uint32_t getPeriodMs() const override;

View File

@ -0,0 +1,33 @@
#include "../../tasks/SemaphoreFactory.h"
#include "BinarySemaphore.h"
#include "CountingSemaphore.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
SemaphoreFactory* SemaphoreFactory::factoryInstance = nullptr;
SemaphoreFactory::SemaphoreFactory() {
}
SemaphoreFactory::~SemaphoreFactory() {
delete factoryInstance;
}
SemaphoreFactory* SemaphoreFactory::instance() {
if (factoryInstance == nullptr){
factoryInstance = new SemaphoreFactory();
}
return SemaphoreFactory::factoryInstance;
}
SemaphoreIF* SemaphoreFactory::createBinarySemaphore(uint32_t arguments) {
return new BinarySemaphore();
}
SemaphoreIF* SemaphoreFactory::createCountingSemaphore(const uint8_t maxCount,
uint8_t initCount, uint32_t arguments) {
return new CountingSemaphore(maxCount, initCount);
}
void SemaphoreFactory::deleteSemaphore(SemaphoreIF* semaphore) {
delete semaphore;
}

View File

@ -78,6 +78,8 @@ ReturnValue_t MultiObjectTask::addComponent(object_id_t object) {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
objectList.push_back(newObject); objectList.push_back(newObject);
newObject->setTaskIF(this);
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }

View File

@ -1,11 +1,5 @@
/** #ifndef FSFW_OSAL_RTEMS_MULTIOBJECTTASK_H_
* @file MultiObjectTask.h #define FSFW_OSAL_RTEMS_MULTIOBJECTTASK_H_
* @brief This file defines the MultiObjectTask class.
* @date 30.01.2014
* @author baetz
*/
#ifndef MULTIOBJECTTASK_H_
#define MULTIOBJECTTASK_H_
#include "../../objectmanager/ObjectManagerIF.h" #include "../../objectmanager/ObjectManagerIF.h"
#include "../../tasks/PeriodicTaskIF.h" #include "../../tasks/PeriodicTaskIF.h"
@ -21,7 +15,7 @@ class ExecutableObjectIF;
* @details MultiObjectTask is an extension to ObjectTask in the way that it is able to execute * @details MultiObjectTask is an extension to ObjectTask in the way that it is able to execute
* multiple objects that implement the ExecutableObjectIF interface. The objects must be * multiple objects that implement the ExecutableObjectIF interface. The objects must be
* added prior to starting the task. * added prior to starting the task.
* * @author baetz
* @ingroup task_handling * @ingroup task_handling
*/ */
class MultiObjectTask: public TaskBase, public PeriodicTaskIF { class MultiObjectTask: public TaskBase, public PeriodicTaskIF {
@ -63,11 +57,11 @@ public:
* @param object Id of the object to add. * @param object Id of the object to add.
* @return RETURN_OK on success, RETURN_FAILED if the object could not be added. * @return RETURN_OK on success, RETURN_FAILED if the object could not be added.
*/ */
ReturnValue_t addComponent(object_id_t object); ReturnValue_t addComponent(object_id_t object) override;
uint32_t getPeriodMs() const; uint32_t getPeriodMs() const override;
ReturnValue_t sleepFor(uint32_t ms); ReturnValue_t sleepFor(uint32_t ms) override;
protected: protected:
typedef std::vector<ExecutableObjectIF*> ObjectList; //!< Typedef for the List of objects. typedef std::vector<ExecutableObjectIF*> ObjectList; //!< Typedef for the List of objects.
/** /**
@ -110,4 +104,4 @@ protected:
void taskFunctionality(void); void taskFunctionality(void);
}; };
#endif /* MULTIOBJECTTASK_H_ */ #endif /* FSFW_OSAL_RTEMS_MULTIOBJECTTASK_H_ */

View File

@ -1,7 +1,6 @@
#include "Mutex.h" #include "Mutex.h"
#include "../../serviceinterface/ServiceInterfaceStream.h" #include "../../serviceinterface/ServiceInterfaceStream.h"
const uint32_t MutexIF::NO_TIMEOUT = RTEMS_NO_TIMEOUT;
uint8_t Mutex::count = 0; uint8_t Mutex::count = 0;
Mutex::Mutex() : Mutex::Mutex() :
@ -24,8 +23,22 @@ Mutex::~Mutex() {
} }
} }
ReturnValue_t Mutex::lockMutex(uint32_t timeoutMs) { ReturnValue_t Mutex::lockMutex(TimeoutType timeoutType =
rtems_status_code status = rtems_semaphore_obtain(mutexId, RTEMS_WAIT, timeoutMs); TimeoutType::BLOCKING, uint32_t timeoutMs) {
if(timeoutMs == MutexIF::TimeoutType::BLOCKING) {
rtems_status_code status = rtems_semaphore_obtain(mutexId,
RTEMS_WAIT, RTEMS_NO_TIMEOUT);
}
else if(timeoutMs == MutexIF::TimeoutType::POLLING) {
timeoutMs = RTEMS_NO_TIMEOUT;
rtems_status_code status = rtems_semaphore_obtain(mutexId,
RTEMS_NO_WAIT, 0);
}
else {
rtems_status_code status = rtems_semaphore_obtain(mutexId,
RTEMS_WAIT, timeoutMs);
}
switch(status){ switch(status){
case RTEMS_SUCCESSFUL: case RTEMS_SUCCESSFUL:
//semaphore obtained successfully //semaphore obtained successfully

View File

@ -1,5 +1,5 @@
#ifndef OS_RTEMS_MUTEX_H_ #ifndef FRAMEWORK_OSAL_RTEMS_MUTEX_H_
#define OS_RTEMS_MUTEX_H_ #define FRAMEWORK_OSAL_RTEMS_MUTEX_H_
#include "../../ipc/MutexIF.h" #include "../../ipc/MutexIF.h"
#include "RtemsBasic.h" #include "RtemsBasic.h"
@ -8,7 +8,7 @@ class Mutex : public MutexIF {
public: public:
Mutex(); Mutex();
~Mutex(); ~Mutex();
ReturnValue_t lockMutex(uint32_t timeoutMs); ReturnValue_t lockMutex(TimeoutType timeoutType, uint32_t timeoutMs = 0);
ReturnValue_t unlockMutex(); ReturnValue_t unlockMutex();
private: private:
rtems_id mutexId; rtems_id mutexId;

View File

@ -1,12 +1,27 @@
#ifndef HASPARAMETERSIF_H_ #ifndef FSFW_PARAMETERS_HASPARAMETERSIF_H_
#define HASPARAMETERSIF_H_ #define FSFW_PARAMETERS_HASPARAMETERSIF_H_
#include "ParameterWrapper.h" #include "../parameters/ParameterWrapper.h"
#include "../returnvalues/HasReturnvaluesIF.h" #include "../returnvalues/HasReturnvaluesIF.h"
#include <stdint.h> #include <stdint.h>
/** Each parameter is identified with a unique parameter ID */
typedef uint32_t ParameterId_t; typedef uint32_t ParameterId_t;
/**
* @brief This interface is used by components which have modifiable
* parameters, e.g. atittude controllers
* @details
* Each parameter has a unique parameter ID. The first byte of the parameter
* ID is the domain ID which can be used to identify unqiue spacecraft domains
* (e.g. control and sensor domain in the AOCS controller).
*
* The second and third byte represent the matrix ID, which can represent
* a 8-bit row and column number and the last byte...
*
* Yeah, it it matrix ID oder parameter ID now and is index a 16 bit number
* of a 8 bit number now?
*/
class HasParametersIF { class HasParametersIF {
public: public:
static const uint8_t INTERFACE_ID = CLASS_ID::HAS_PARAMETERS_IF; static const uint8_t INTERFACE_ID = CLASS_ID::HAS_PARAMETERS_IF;
@ -32,13 +47,11 @@ public:
return (domainId << 24) + (parameterId << 8) + index; return (domainId << 24) + (parameterId << 8) + index;
} }
virtual ~HasParametersIF() { virtual ~HasParametersIF() {}
}
/** /**
* Always set parameter before checking newValues! * Always set parameter before checking newValues!
* *
*
* @param domainId * @param domainId
* @param parameterId * @param parameterId
* @param parameterWrapper * @param parameterWrapper
@ -51,4 +64,4 @@ public:
const ParameterWrapper *newValues, uint16_t startAtIndex) = 0; const ParameterWrapper *newValues, uint16_t startAtIndex) = 0;
}; };
#endif /* HASPARAMETERSIF_H_ */ #endif /* FSFW_PARAMETERS_HASPARAMETERSIF_H_ */

View File

@ -1,11 +1,9 @@
#include "../objectmanager/ObjectManagerIF.h"
#include "ParameterHelper.h" #include "ParameterHelper.h"
#include "ParameterMessage.h" #include "ParameterMessage.h"
#include "../objectmanager/ObjectManagerIF.h"
ParameterHelper::ParameterHelper(ReceivesParameterMessagesIF* owner) : ParameterHelper::ParameterHelper(ReceivesParameterMessagesIF* owner) :
owner(owner), storage(NULL) { owner(owner) {}
}
ParameterHelper::~ParameterHelper() { ParameterHelper::~ParameterHelper() {
} }
@ -28,7 +26,6 @@ ReturnValue_t ParameterHelper::handleParameterMessage(CommandMessage *message) {
} }
break; break;
case ParameterMessage::CMD_PARAMETER_LOAD: { case ParameterMessage::CMD_PARAMETER_LOAD: {
uint8_t domain = HasParametersIF::getDomain( uint8_t domain = HasParametersIF::getDomain(
ParameterMessage::getParameterId(message)); ParameterMessage::getParameterId(message));
uint16_t parameterId = HasParametersIF::getMatrixId( uint16_t parameterId = HasParametersIF::getMatrixId(
@ -36,12 +33,14 @@ ReturnValue_t ParameterHelper::handleParameterMessage(CommandMessage *message) {
uint8_t index = HasParametersIF::getIndex( uint8_t index = HasParametersIF::getIndex(
ParameterMessage::getParameterId(message)); ParameterMessage::getParameterId(message));
const uint8_t *storedStream; const uint8_t *storedStream = nullptr;
size_t storedStreamSize; size_t storedStreamSize = 0;
result = storage->getData( result = storage->getData(
ParameterMessage::getStoreId(message), &storedStream, ParameterMessage::getStoreId(message), &storedStream,
&storedStreamSize); &storedStreamSize);
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
sif::error << "ParameterHelper::handleParameterMessage: Getting"
" store data failed for load command." << std::endl;
break; break;
} }
@ -125,7 +124,8 @@ ReturnValue_t ParameterHelper::initialize() {
} }
} }
void ParameterHelper::rejectCommand(MessageQueueId_t to, ReturnValue_t reason, Command_t initialCommand) { void ParameterHelper::rejectCommand(MessageQueueId_t to, ReturnValue_t reason,
Command_t initialCommand) {
CommandMessage reply; CommandMessage reply;
reply.setReplyRejected(reason, initialCommand); reply.setReplyRejected(reason, initialCommand);
MessageQueueSenderIF::sendMessage(to, &reply, ownerQueueId); MessageQueueSenderIF::sendMessage(to, &reply, ownerQueueId);

View File

@ -1,9 +1,16 @@
#ifndef PARAMETERHELPER_H_ #ifndef FSFW_PARAMETERS_PARAMETERHELPER_H_
#define PARAMETERHELPER_H_ #define FSFW_PARAMETERS_PARAMETERHELPER_H_
#include "ParameterMessage.h" #include "ParameterMessage.h"
#include "ReceivesParameterMessagesIF.h" #include "ReceivesParameterMessagesIF.h"
#include "../ipc/MessageQueueIF.h"
/**
* @brief Helper class to handle parameter messages.
* @details
* This class simplfies handling of parameter messages, which are sent
* to a class which implements ReceivesParameterMessagesIF.
*/
class ParameterHelper { class ParameterHelper {
public: public:
ParameterHelper(ReceivesParameterMessagesIF *owner); ParameterHelper(ReceivesParameterMessagesIF *owner);
@ -15,13 +22,15 @@ public:
private: private:
ReceivesParameterMessagesIF *owner; ReceivesParameterMessagesIF *owner;
MessageQueueId_t ownerQueueId; MessageQueueId_t ownerQueueId = MessageQueueIF::NO_QUEUE;
StorageManagerIF *storage; StorageManagerIF *storage = nullptr;
ReturnValue_t sendParameter(MessageQueueId_t to, uint32_t id, const ParameterWrapper *description); ReturnValue_t sendParameter(MessageQueueId_t to, uint32_t id,
const ParameterWrapper *description);
void rejectCommand(MessageQueueId_t to, ReturnValue_t reason, Command_t initialCommand); void rejectCommand(MessageQueueId_t to, ReturnValue_t reason,
Command_t initialCommand);
}; };
#endif /* PARAMETERHELPER_H_ */ #endif /* FSFW_PARAMETERS_PARAMETERHELPER_H_ */

View File

@ -1,4 +1,4 @@
#include "ParameterMessage.h" #include "../parameters/ParameterMessage.h"
#include "../objectmanager/ObjectManagerIF.h" #include "../objectmanager/ObjectManagerIF.h"
ParameterId_t ParameterMessage::getParameterId(const CommandMessage* message) { ParameterId_t ParameterMessage::getParameterId(const CommandMessage* message) {

View File

@ -1,15 +1,15 @@
#ifndef PARAMETERMESSAGE_H_ #ifndef FSFW_PARAMETERS_PARAMETERMESSAGE_H_
#define PARAMETERMESSAGE_H_ #define FSFW_PARAMETERS_PARAMETERMESSAGE_H_
#include "../ipc/CommandMessage.h"
#include "HasParametersIF.h" #include "HasParametersIF.h"
#include "../ipc/CommandMessage.h"
#include "../storagemanager/StorageManagerIF.h" #include "../storagemanager/StorageManagerIF.h"
class ParameterMessage { class ParameterMessage {
private: private:
ParameterMessage(); ParameterMessage();
public: public:
static const uint8_t MESSAGE_ID = MESSAGE_TYPE::PARAMETER; static const uint8_t MESSAGE_ID = messagetypes::PARAMETER;
static const Command_t CMD_PARAMETER_LOAD = MAKE_COMMAND_ID( 0x01 ); static const Command_t CMD_PARAMETER_LOAD = MAKE_COMMAND_ID( 0x01 );
static const Command_t CMD_PARAMETER_DUMP = MAKE_COMMAND_ID( 0x02 ); static const Command_t CMD_PARAMETER_DUMP = MAKE_COMMAND_ID( 0x02 );
static const Command_t REPLY_PARAMETER_DUMP = MAKE_COMMAND_ID( 0x03 ); static const Command_t REPLY_PARAMETER_DUMP = MAKE_COMMAND_ID( 0x03 );
@ -26,4 +26,4 @@ public:
}; };
#endif /* PARAMETERMESSAGE_H_ */ #endif /* FSFW_PARAMETERS_PARAMETERMESSAGE_H_ */

View File

@ -1,20 +1,19 @@
#include "ParameterWrapper.h" #include "ParameterWrapper.h"
ParameterWrapper::ParameterWrapper() : ParameterWrapper::ParameterWrapper() :
pointsToStream(false), type(Type::UNKNOWN_TYPE), rows(0), columns(0), data( pointsToStream(false), type(Type::UNKNOWN_TYPE) {
NULL), readonlyData(NULL) {
} }
ParameterWrapper::ParameterWrapper(Type type, uint8_t rows, uint8_t columns, ParameterWrapper::ParameterWrapper(Type type, uint8_t rows, uint8_t columns,
void *data) : void *data) :
pointsToStream(false), type(type), rows(rows), columns(columns), data( pointsToStream(false), type(type), rows(rows), columns(columns),
data), readonlyData(data) { data(data), readonlyData(data) {
} }
ParameterWrapper::ParameterWrapper(Type type, uint8_t rows, uint8_t columns, ParameterWrapper::ParameterWrapper(Type type, uint8_t rows, uint8_t columns,
const void *data) : const void *data) :
pointsToStream(false), type(type), rows(rows), columns(columns), data( pointsToStream(false), type(type), rows(rows), columns(columns),
NULL), readonlyData(data) { data(nullptr), readonlyData(data) {
} }
ParameterWrapper::~ParameterWrapper() { ParameterWrapper::~ParameterWrapper() {
@ -141,6 +140,7 @@ ReturnValue_t ParameterWrapper::deSerializeData(uint8_t startingRow,
} }
ReturnValue_t ParameterWrapper::deSerialize(const uint8_t **buffer, ReturnValue_t ParameterWrapper::deSerialize(const uint8_t **buffer,
size_t *size, Endianness streamEndianness) { size_t *size, Endianness streamEndianness) {
return deSerialize(buffer, size, streamEndianness, 0); return deSerialize(buffer, size, streamEndianness, 0);
@ -184,16 +184,16 @@ ReturnValue_t ParameterWrapper::set(const uint8_t *stream, size_t streamSize,
return SerializeIF::STREAM_TOO_SHORT; return SerializeIF::STREAM_TOO_SHORT;
} }
data = NULL; data = nullptr;
readonlyData = stream; readonlyData = stream;
pointsToStream = true; pointsToStream = true;
stream += dataSize; stream += dataSize;
if (remainingStream != NULL) { if (remainingStream != nullptr) {
*remainingStream = stream; *remainingStream = stream;
} }
streamSize -= dataSize; streamSize -= dataSize;
if (remainingSize != NULL) { if (remainingSize != nullptr) {
*remainingSize = streamSize; *remainingSize = streamSize;
} }
@ -265,15 +265,15 @@ ReturnValue_t ParameterWrapper::copyFrom(const ParameterWrapper *from,
result = UNKNOW_DATATYPE; result = UNKNOW_DATATYPE;
break; break;
} }
} else { }
else {
//need a type to do arithmetic //need a type to do arithmetic
uint8_t *toDataWithType = (uint8_t*) data; uint8_t* typedData = static_cast<uint8_t*>(data);
for (uint8_t fromRow = 0; fromRow < from->rows; fromRow++) { for (uint8_t fromRow = 0; fromRow < from->rows; fromRow++) {
memcpy( size_t offset = (((startingRow + fromRow) * columns) +
toDataWithType startingColumn) * typeSize;
+ (((startingRow + fromRow) * columns) std::memcpy(typedData + offset, from->readonlyData,
+ startingColumn) * typeSize, typeSize * from->columns);
from->readonlyData, typeSize * from->columns);
} }
} }

View File

@ -1,12 +1,16 @@
#ifndef PARAMETERWRAPPER_H_ #ifndef FSFW_PARAMETERS_PARAMETERWRAPPER_H_
#define PARAMETERWRAPPER_H_ #define FSFW_PARAMETERS_PARAMETERWRAPPER_H_
#include "../returnvalues/HasReturnvaluesIF.h" #include "../returnvalues/HasReturnvaluesIF.h"
#include "../serialize/SerializeAdapter.h" #include "../serialize/SerializeAdapter.h"
#include "../serialize/SerializeIF.h" #include "../serialize/SerializeIF.h"
#include <stddef.h>
#include "../globalfunctions/Type.h" #include "../globalfunctions/Type.h"
#include <cstddef>
/**
* @brief
* @details
*/
class ParameterWrapper: public SerializeIF { class ParameterWrapper: public SerializeIF {
friend class DataPoolParameterWrapper; friend class DataPoolParameterWrapper;
public: public:
@ -36,32 +40,21 @@ public:
virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size, virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
Endianness streamEndianness, uint16_t startWritingAtIndex = 0); Endianness streamEndianness, uint16_t startWritingAtIndex = 0);
/**
* Get a specific parameter value by supplying the row and the column.
* @tparam T Type of target data
* @param value [out] Pointer to storage location
* @param row
* @param column
* @return
* -@c RETURN_OK if element was retrieved successfully
* -@c NOT_SET data has not been set yet
* -@c DATATYPE_MISSMATCH Invalid supplied type
* -@c OUT_OF_BOUNDS Invalid row and/or column.
*/
template<typename T> template<typename T>
ReturnValue_t getElement(T *value, uint8_t row = 0, uint8_t column = 0) const { ReturnValue_t getElement(T *value, uint8_t row = 0,
if (readonlyData == NULL){ uint8_t column = 0) const;
return NOT_SET;
}
if (PodTypeConversion<T>::type != type) {
return DATATYPE_MISSMATCH;
}
if ((row >= rows) || (column >= columns)) {
return OUT_OF_BOUNDS;
}
if (pointsToStream) {
const uint8_t *streamWithtype = (const uint8_t *) readonlyData;
streamWithtype += (row * columns + column) * type.getSize();
int32_t size = type.getSize();
return SerializeAdapter::deSerialize(value, &streamWithtype,
&size, true);
} else {
const T *dataWithType = (const T *) readonlyData;
*value = dataWithType[row * columns + column];
return HasReturnvaluesIF::RETURN_OK;
}
}
template<typename T> template<typename T>
void set(T *data, uint8_t rows, uint8_t columns) { void set(T *data, uint8_t rows, uint8_t columns) {
@ -111,21 +104,22 @@ public:
void setMatrix(const T& member) { void setMatrix(const T& member) {
this->set(member[0], sizeof(member)/sizeof(member[0]), sizeof(member[0])/sizeof(member[0][0])); this->set(member[0], sizeof(member)/sizeof(member[0]), sizeof(member[0])/sizeof(member[0][0]));
} }
ReturnValue_t set(const uint8_t *stream, size_t streamSize, ReturnValue_t set(const uint8_t *stream, size_t streamSize,
const uint8_t **remainingStream = NULL, size_t *remainingSize = const uint8_t **remainingStream = nullptr,
NULL); size_t *remainingSize = nullptr);
ReturnValue_t copyFrom(const ParameterWrapper *from, ReturnValue_t copyFrom(const ParameterWrapper *from,
uint16_t startWritingAtIndex); uint16_t startWritingAtIndex);
private: private:
bool pointsToStream; bool pointsToStream = false;
Type type; Type type;
uint8_t rows; uint8_t rows = 0;
uint8_t columns; uint8_t columns = 0;
void *data; void *data = nullptr;
const void *readonlyData; const void *readonlyData = nullptr;
template<typename T> template<typename T>
ReturnValue_t serializeData(uint8_t** buffer, size_t* size, ReturnValue_t serializeData(uint8_t** buffer, size_t* size,
@ -136,4 +130,33 @@ private:
const void *from, uint8_t fromRows, uint8_t fromColumns); const void *from, uint8_t fromRows, uint8_t fromColumns);
}; };
#endif /* PARAMETERWRAPPER_H_ */ template <typename T>
inline ReturnValue_t ParameterWrapper::getElement(T *value, uint8_t row,
uint8_t column) const {
if (readonlyData == nullptr){
return NOT_SET;
}
if (PodTypeConversion<T>::type != type) {
return DATATYPE_MISSMATCH;
}
if ((row >= rows) or (column >= columns)) {
return OUT_OF_BOUNDS;
}
if (pointsToStream) {
const uint8_t *streamWithType = static_cast<const uint8_t*>(readonlyData);
streamWithType += (row * columns + column) * type.getSize();
int32_t size = type.getSize();
return SerializeAdapter::deSerialize(value, &streamWithType,
&size, true);
}
else {
const T *dataWithType = static_cast<const T*>(readonlyData);
*value = dataWithType[row * columns + column];
return HasReturnvaluesIF::RETURN_OK;
}
}
#endif /* FSFW_PARAMETERS_PARAMETERWRAPPER_H_ */

View File

@ -1,5 +1,5 @@
#ifndef RECEIVESPARAMETERMESSAGESIF_H_ #ifndef FSFW_PARAMETERS_RECEIVESPARAMETERMESSAGESIF_H_
#define RECEIVESPARAMETERMESSAGESIF_H_ #define FSFW_PARAMETERS_RECEIVESPARAMETERMESSAGESIF_H_
#include "HasParametersIF.h" #include "HasParametersIF.h"
@ -16,4 +16,4 @@ public:
}; };
#endif /* RECEIVESPARAMETERMESSAGESIF_H_ */ #endif /* FSFW_PARAMETERS_RECEIVESPARAMETERMESSAGESIF_H_ */

View File

@ -1,89 +1,123 @@
#include "SerialBufferAdapter.h" #include "../serialize/SerialBufferAdapter.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
#include <cstring> #include <cstring>
template<typename count_t>
SerialBufferAdapter<count_t>::SerialBufferAdapter(const uint8_t* buffer,
count_t bufferLength, bool serializeLength) :
serializeLength(serializeLength),
constBuffer(buffer), buffer(nullptr),
bufferLength(bufferLength) {}
template<typename count_t>
SerialBufferAdapter<count_t>::SerialBufferAdapter(uint8_t* buffer,
count_t bufferLength, bool serializeLength) :
serializeLength(serializeLength), constBuffer(buffer), buffer(buffer),
bufferLength(bufferLength) {}
template<typename T> template<typename count_t>
SerialBufferAdapter<T>::SerialBufferAdapter(const uint8_t* buffer, SerialBufferAdapter<count_t>::~SerialBufferAdapter() {
T bufferLength, bool serializeLenght) :
serializeLength(serializeLenght), constBuffer(buffer), buffer(NULL), bufferLength(
bufferLength) {
} }
template<typename T> template<typename count_t>
SerialBufferAdapter<T>::SerialBufferAdapter(uint8_t* buffer, T bufferLength, ReturnValue_t SerialBufferAdapter<count_t>::serialize(uint8_t** buffer,
bool serializeLenght) : size_t* size, size_t maxSize, Endianness streamEndianness) const {
serializeLength(serializeLenght), constBuffer(NULL), buffer(buffer), bufferLength(
bufferLength) {
}
template<typename T>
SerialBufferAdapter<T>::~SerialBufferAdapter() {
}
template<typename T>
ReturnValue_t SerialBufferAdapter<T>::serialize(uint8_t** buffer, size_t* size,
size_t maxSize, Endianness streamEndianness) const {
uint32_t serializedLength = bufferLength;
if (serializeLength) { if (serializeLength) {
serializedLength += SerializeAdapter::getSerializedSize( ReturnValue_t result = SerializeAdapter::serialize(&bufferLength,
&bufferLength); buffer, size, maxSize, streamEndianness);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
} }
if (*size + serializedLength > maxSize) { }
if (*size + bufferLength > maxSize) {
return BUFFER_TOO_SHORT; return BUFFER_TOO_SHORT;
} else {
if (serializeLength) {
SerializeAdapter::serialize(&bufferLength, buffer, size,
maxSize, streamEndianness);
} }
if (this->constBuffer != NULL) {
memcpy(*buffer, this->constBuffer, bufferLength); if (this->constBuffer != nullptr) {
} else if (this->buffer != NULL) { std::memcpy(*buffer, this->constBuffer, bufferLength);
memcpy(*buffer, this->buffer, bufferLength); }
} else { else if (this->buffer != nullptr) {
// This will propably be never reached, constBuffer should always be
// set if non-const buffer is set.
std::memcpy(*buffer, this->buffer, bufferLength);
}
else {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
*size += bufferLength; *size += bufferLength;
(*buffer) += bufferLength; (*buffer) += bufferLength;
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
}
} }
template<typename T> template<typename count_t>
size_t SerialBufferAdapter<T>::getSerializedSize() const { size_t SerialBufferAdapter<count_t>::getSerializedSize() const {
if (serializeLength) { if (serializeLength) {
return bufferLength + SerializeAdapter::getSerializedSize(&bufferLength); return bufferLength + SerializeAdapter::getSerializedSize(&bufferLength);
} else { } else {
return bufferLength; return bufferLength;
} }
} }
template<typename T>
ReturnValue_t SerialBufferAdapter<T>::deSerialize(const uint8_t** buffer, template<typename count_t>
ReturnValue_t SerialBufferAdapter<count_t>::deSerialize(const uint8_t** buffer,
size_t* size, Endianness streamEndianness) { size_t* size, Endianness streamEndianness) {
//TODO Ignores Endian flag! if (this->buffer == nullptr) {
if (buffer != NULL) {
if(serializeLength){
T serializedSize = SerializeAdapter::getSerializedSize(
&bufferLength);
if((*size - bufferLength - serializedSize) >= 0){
*buffer += serializedSize;
*size -= serializedSize;
}else{
return STREAM_TOO_SHORT;
}
}
//No Else If, go on with buffer
if (*size - bufferLength >= 0) {
*size -= bufferLength;
memcpy(this->buffer, *buffer, bufferLength);
(*buffer) += bufferLength;
return HasReturnvaluesIF::RETURN_OK;
} else {
return STREAM_TOO_SHORT;
}
} else {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
if(serializeLength){
count_t lengthField = 0;
ReturnValue_t result = SerializeAdapter::deSerialize(&lengthField,
buffer, size, streamEndianness);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
if(lengthField > bufferLength) {
return TOO_MANY_ELEMENTS;
}
bufferLength = lengthField;
}
if (bufferLength <= *size) {
*size -= bufferLength;
std::memcpy(this->buffer, *buffer, bufferLength);
(*buffer) += bufferLength;
return HasReturnvaluesIF::RETURN_OK;
}
else {
return STREAM_TOO_SHORT;
}
}
template<typename count_t>
uint8_t * SerialBufferAdapter<count_t>::getBuffer() {
if(buffer == nullptr) {
sif::error << "Wrong access function for stored type !"
" Use getConstBuffer()." << std::endl;
return nullptr;
}
return buffer;
}
template<typename count_t>
const uint8_t * SerialBufferAdapter<count_t>::getConstBuffer() {
if(constBuffer == nullptr) {
sif::error << "SerialBufferAdapter::getConstBuffer:"
" Buffers are unitialized!" << std::endl;
return nullptr;
}
return constBuffer;
}
template<typename count_t>
void SerialBufferAdapter<count_t>::setBuffer(uint8_t* buffer,
count_t bufferLength) {
this->buffer = buffer;
this->constBuffer = buffer;
this->bufferLength = bufferLength;
} }
@ -91,4 +125,5 @@ ReturnValue_t SerialBufferAdapter<T>::deSerialize(const uint8_t** buffer,
template class SerialBufferAdapter<uint8_t>; template class SerialBufferAdapter<uint8_t>;
template class SerialBufferAdapter<uint16_t>; template class SerialBufferAdapter<uint16_t>;
template class SerialBufferAdapter<uint32_t>; template class SerialBufferAdapter<uint32_t>;
template class SerialBufferAdapter<uint64_t>;

View File

@ -1,18 +1,47 @@
#ifndef SERIALBUFFERADAPTER_H_ #ifndef SERIALBUFFERADAPTER_H_
#define SERIALBUFFERADAPTER_H_ #define SERIALBUFFERADAPTER_H_
#include "SerializeIF.h" #include "../serialize/SerializeIF.h"
#include "SerializeAdapter.h" #include "../serialize/SerializeAdapter.h"
/** /**
* This adapter provides an interface for SerializeIF to serialize or deserialize
* buffers with no length header but a known size.
*
* Additionally, the buffer length can be serialized too and will be put in
* front of the serialized buffer.
*
* Can be used with SerialLinkedListAdapter by declaring a SerializeElement with
* SerialElement<SerialBufferAdapter<bufferLengthType(will be uint8_t mostly)>>.
* Right now, the SerialBufferAdapter must always
* be initialized with the buffer and size !
*
* \ingroup serialize * \ingroup serialize
*/ */
template<typename T> template<typename count_t>
class SerialBufferAdapter: public SerializeIF { class SerialBufferAdapter: public SerializeIF {
public: public:
SerialBufferAdapter(const uint8_t * buffer, T bufferLength, bool serializeLenght = false);
SerialBufferAdapter(uint8_t* buffer, T bufferLength, /**
bool serializeLenght = false); * Constructor for constant uint8_t buffer. Length field can be serialized optionally.
* Type of length can be supplied as template type.
* @param buffer
* @param bufferLength
* @param serializeLength
*/
SerialBufferAdapter(const uint8_t* buffer, count_t bufferLength,
bool serializeLength = false);
/**
* Constructor for non-constant uint8_t buffer.
* Length field can be serialized optionally.
* Type of length can be supplied as template type.
* @param buffer
* @param bufferLength
* @param serializeLength Length field will be serialized with size count_t
*/
SerialBufferAdapter(uint8_t* buffer, count_t bufferLength,
bool serializeLength = false);
virtual ~SerialBufferAdapter(); virtual ~SerialBufferAdapter();
@ -21,15 +50,29 @@ public:
virtual size_t getSerializedSize() const override; virtual size_t getSerializedSize() const override;
/**
* @brief This function deserializes a buffer into the member buffer.
* @details
* If a length field is present, it is ignored, as the size should have
* been set in the constructor. If the size is not known beforehand,
* consider using SerialFixedArrayListAdapter instead.
* @param buffer [out] Resulting buffer
* @param size remaining size to deserialize, should be larger than buffer
* + size field size
* @param bigEndian
* @return
*/
virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size, virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
Endianness streamEndianness) override; Endianness streamEndianness) override;
uint8_t * getBuffer();
const uint8_t * getConstBuffer();
void setBuffer(uint8_t* buffer, count_t bufferLength);
private: private:
bool serializeLength; bool serializeLength = false;
const uint8_t *constBuffer; const uint8_t *constBuffer = nullptr;
uint8_t *buffer; uint8_t *buffer = nullptr;
T bufferLength; count_t bufferLength = 0;
}; };
#endif /* SERIALBUFFERADAPTER_H_ */ #endif /* SERIALBUFFERADAPTER_H_ */

View File

@ -1,17 +1,17 @@
#ifndef SERIALIZEIF_H_ #ifndef FSFW_SERIALIZE_SERIALIZEIF_H_
#define SERIALIZEIF_H_ #define FSFW_SERIALIZE_SERIALIZEIF_H_
#include "../returnvalues/HasReturnvaluesIF.h" #include "../returnvalues/HasReturnvaluesIF.h"
#include <stddef.h> #include <stddef.h>
/** /**
* \defgroup serialize Serialization * @defgroup serialize Serialization
* Contains serialisation services. * Contains serialization services.
*/ */
/** /**
* Translation of objects into data streams. * Translation of objects into data streams and from data streams.
* \ingroup serialize * @ingroup serialize
*/ */
class SerializeIF { class SerializeIF {
public: public:
@ -20,21 +20,65 @@ public:
}; };
static const uint8_t INTERFACE_ID = CLASS_ID::SERIALIZE_IF; static const uint8_t INTERFACE_ID = CLASS_ID::SERIALIZE_IF;
static const ReturnValue_t BUFFER_TOO_SHORT = MAKE_RETURN_CODE(1); static const ReturnValue_t BUFFER_TOO_SHORT = MAKE_RETURN_CODE(1); // !< The given buffer in serialize is too short
static const ReturnValue_t STREAM_TOO_SHORT = MAKE_RETURN_CODE(2); static const ReturnValue_t STREAM_TOO_SHORT = MAKE_RETURN_CODE(2); // !< The input stream in deserialize is too short
static const ReturnValue_t TOO_MANY_ELEMENTS = MAKE_RETURN_CODE(3); static const ReturnValue_t TOO_MANY_ELEMENTS = MAKE_RETURN_CODE(3);// !< There are too many elements to be deserialized
virtual ~SerializeIF() { virtual ~SerializeIF() {
} }
/**
* @brief
* Function to serialize the object into a buffer with maxSize. Size represents the written amount.
* If a part of the buffer has been used already, size must be set to the used amount of bytes.
*
* @details
* Implementations of this function must increase the size variable and move the buffer pointer.
* MaxSize must be checked by implementations of this function
* and BUFFER_TOO_SHORT has to be returned if size would be larger than maxSize.
*
* Custom implementations might use additional return values.
*
* @param[in/out] buffer Buffer to serialize into, will be set to the current write location
* @param[in/out] size Size that has been used in the buffer already, will be increased by the function
* @param[in] maxSize The size of the buffer that is allowed to be used for serialize.
* @param[in] streamEndianness Endianness of the serialized data according to SerializeIF::Endianness
* @return
* - @¢ BUFFER_TOO_SHORT The given buffer in is too short
* - @c RETURN_FAILED Generic error
* - @c RETURN_OK Successful serialization
*/
virtual ReturnValue_t serialize(uint8_t **buffer, size_t *size, virtual ReturnValue_t serialize(uint8_t **buffer, size_t *size,
size_t maxSize, Endianness streamEndianness) const = 0; size_t maxSize, Endianness streamEndianness) const = 0;
/**
* Gets the size of a object if it would be serialized in a buffer
* @return Size of serialized object
*/
virtual size_t getSerializedSize() const = 0; virtual size_t getSerializedSize() const = 0;
/**
* @brief
* Deserializes a object from a given buffer of given size.
*
* @details
* Buffer must be moved to the current read location by the implementation
* of this function. Size must be decreased by the implementation.
* Implementations are not allowed to alter the buffer as indicated by const pointer.
*
* Custom implementations might use additional return values.
*
* @param[in/out] buffer Buffer to deSerialize from. Will be moved by the function.
* @param[in/out] size Remaining size of the buffer to read from. Will be decreased by function.
* @param[in] streamEndianness Endianness as in according to SerializeIF::Endianness
* @return
* - @c STREAM_TOO_SHORT The input stream is too short to deSerialize the object
* - @c TOO_MANY_ELEMENTS The buffer has more inputs than expected
* - @c RETURN_FAILED Generic Error
* - @c RETURN_OK Successful deserialization
*/
virtual ReturnValue_t deSerialize(const uint8_t **buffer, size_t *size, virtual ReturnValue_t deSerialize(const uint8_t **buffer, size_t *size,
Endianness streamEndianness) = 0; Endianness streamEndianness) = 0;
}; };
#endif /* SERIALIZEIF_H_ */ #endif /* FSFW_SERIALIZE_SERIALIZEIF_H_ */

View File

@ -17,7 +17,7 @@ inline PoolManager<NUMBER_OF_POOLS>::~PoolManager(void) {
template<uint8_t NUMBER_OF_POOLS> template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::reserveSpace( inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::reserveSpace(
const uint32_t size, store_address_t* address, bool ignoreFault) { const uint32_t size, store_address_t* address, bool ignoreFault) {
MutexHelper mutexHelper(mutex,MutexIF::NO_TIMEOUT); MutexHelper mutexHelper(mutex,MutexIF::BLOCKING);
ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::reserveSpace(size, ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::reserveSpace(size,
address,ignoreFault); address,ignoreFault);
return status; return status;
@ -29,7 +29,7 @@ inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::deleteData(
// debug << "PoolManager( " << translateObject(getObjectId()) << // debug << "PoolManager( " << translateObject(getObjectId()) <<
// " )::deleteData from store " << packet_id.pool_index << // " )::deleteData from store " << packet_id.pool_index <<
// ". id is "<< packet_id.packet_index << std::endl; // ". id is "<< packet_id.packet_index << std::endl;
MutexHelper mutexHelper(mutex,MutexIF::NO_TIMEOUT); MutexHelper mutexHelper(mutex,MutexIF::BLOCKING);
ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::deleteData(packet_id); ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::deleteData(packet_id);
return status; return status;
} }
@ -37,7 +37,7 @@ inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::deleteData(
template<uint8_t NUMBER_OF_POOLS> template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::deleteData(uint8_t* buffer, inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::deleteData(uint8_t* buffer,
size_t size, store_address_t* storeId) { size_t size, store_address_t* storeId) {
MutexHelper mutexHelper(mutex,MutexIF::NO_TIMEOUT); MutexHelper mutexHelper(mutex,MutexIF::BLOCKING);
ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::deleteData(buffer, ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::deleteData(buffer,
size, storeId); size, storeId);
return status; return status;
@ -46,7 +46,7 @@ inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::deleteData(uint8_t* buffer,
template<uint8_t NUMBER_OF_POOLS> template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::modifyData( inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::modifyData(
store_address_t packet_id, uint8_t** packet_ptr, size_t* size) { store_address_t packet_id, uint8_t** packet_ptr, size_t* size) {
MutexHelper mutexHelper(mutex,MutexIF::NO_TIMEOUT); MutexHelper mutexHelper(mutex,MutexIF::BLOCKING);
ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::modifyData(packet_id, ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::modifyData(packet_id,
packet_ptr, size); packet_ptr, size);
return status; return status;

View File

@ -151,7 +151,6 @@ HybridIterator<ModeListEntry> Subsystem::getTable(Mode_t id) {
} }
ReturnValue_t Subsystem::handleCommandMessage(CommandMessage *message) { ReturnValue_t Subsystem::handleCommandMessage(CommandMessage *message) {
ReturnValue_t result;
switch (message->getCommand()) { switch (message->getCommand()) {
case HealthMessage::HEALTH_INFO: { case HealthMessage::HEALTH_INFO: {
HealthState health = HealthMessage::getHealth(message); HealthState health = HealthMessage::getHealth(message);
@ -166,7 +165,7 @@ ReturnValue_t Subsystem::handleCommandMessage(CommandMessage *message) {
FixedArrayList<ModeListEntry, MAX_LENGTH_OF_TABLE_OR_SEQUENCE> sequence; FixedArrayList<ModeListEntry, MAX_LENGTH_OF_TABLE_OR_SEQUENCE> sequence;
const uint8_t *pointer; const uint8_t *pointer;
size_t sizeRead; size_t sizeRead;
result = IPCStore->getData( ReturnValue_t result = IPCStore->getData(
ModeSequenceMessage::getStoreAddress(message), &pointer, ModeSequenceMessage::getStoreAddress(message), &pointer,
&sizeRead); &sizeRead);
if (result == RETURN_OK) { if (result == RETURN_OK) {
@ -193,7 +192,7 @@ ReturnValue_t Subsystem::handleCommandMessage(CommandMessage *message) {
FixedArrayList<ModeListEntry, MAX_LENGTH_OF_TABLE_OR_SEQUENCE> table; FixedArrayList<ModeListEntry, MAX_LENGTH_OF_TABLE_OR_SEQUENCE> table;
const uint8_t *pointer; const uint8_t *pointer;
size_t sizeRead; size_t sizeRead;
result = IPCStore->getData( ReturnValue_t result = IPCStore->getData(
ModeSequenceMessage::getStoreAddress(message), &pointer, ModeSequenceMessage::getStoreAddress(message), &pointer,
&sizeRead); &sizeRead);
if (result == RETURN_OK) { if (result == RETURN_OK) {
@ -210,21 +209,23 @@ ReturnValue_t Subsystem::handleCommandMessage(CommandMessage *message) {
} }
break; break;
case ModeSequenceMessage::DELETE_SEQUENCE: case ModeSequenceMessage::DELETE_SEQUENCE:{
if (isInTransition) { if (isInTransition) {
replyToCommand(IN_TRANSITION, 0); replyToCommand(IN_TRANSITION, 0);
break; break;
} }
result = deleteSequence(ModeSequenceMessage::getSequenceId(message)); ReturnValue_t result = deleteSequence(ModeSequenceMessage::getSequenceId(message));
replyToCommand(result, 0); replyToCommand(result, 0);
}
break; break;
case ModeSequenceMessage::DELETE_TABLE: case ModeSequenceMessage::DELETE_TABLE:{
if (isInTransition) { if (isInTransition) {
replyToCommand(IN_TRANSITION, 0); replyToCommand(IN_TRANSITION, 0);
break; break;
} }
result = deleteTable(ModeSequenceMessage::getTableId(message)); ReturnValue_t result = deleteTable(ModeSequenceMessage::getTableId(message));
replyToCommand(result, 0); replyToCommand(result, 0);
}
break; break;
case ModeSequenceMessage::LIST_SEQUENCES: { case ModeSequenceMessage::LIST_SEQUENCES: {
SerialFixedArrayListAdapter<Mode_t, MAX_NUMBER_OF_TABLES_OR_SEQUENCES> sequences; SerialFixedArrayListAdapter<Mode_t, MAX_NUMBER_OF_TABLES_OR_SEQUENCES> sequences;

View File

@ -7,7 +7,7 @@
class ModeSequenceMessage { class ModeSequenceMessage {
public: public:
static const uint8_t MESSAGE_ID = MESSAGE_TYPE::MODE_SEQUENCE; static const uint8_t MESSAGE_ID = messagetypes::MODE_SEQUENCE;
static const Command_t ADD_SEQUENCE = MAKE_COMMAND_ID(0x01); static const Command_t ADD_SEQUENCE = MAKE_COMMAND_ID(0x01);
static const Command_t ADD_TABLE = MAKE_COMMAND_ID(0x02); static const Command_t ADD_TABLE = MAKE_COMMAND_ID(0x02);

View File

@ -36,8 +36,7 @@ public:
* to the component. * to the component.
* @return * @return
*/ */
virtual ReturnValue_t addComponent(object_id_t object, virtual ReturnValue_t addComponent(object_id_t object) {
bool setTaskIF = true) {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}; };

50
tasks/SemaphoreFactory.h Normal file
View File

@ -0,0 +1,50 @@
#ifndef FSFW_TASKS_SEMAPHOREFACTORY_H_
#define FSFW_TASKS_SEMAPHOREFACTORY_H_
#include "../tasks/SemaphoreIF.h"
/**
* Creates Semaphore.
* This class is a "singleton" interface, i.e. it provides an
* interface, but also is the base class for a singleton.
*/
class SemaphoreFactory {
public:
virtual ~SemaphoreFactory();
/**
* Returns the single instance of SemaphoreFactory.
* The implementation of #instance is found in its subclasses.
* Thus, we choose link-time variability of the instance.
*/
static SemaphoreFactory* instance();
/**
* Create a binary semaphore.
* Creator function for a binary semaphore which may only be acquired once
* @param argument Can be used to pass implementation specific information.
* @return Pointer to newly created semaphore class instance.
*/
SemaphoreIF* createBinarySemaphore(uint32_t arguments = 0);
/**
* Create a counting semaphore.
* Creator functons for a counting semaphore which may be acquired multiple
* times.
* @param count Semaphore can be taken count times.
* @param initCount Initial count value.
* @param argument Can be used to pass implementation specific information.
* @return
*/
SemaphoreIF* createCountingSemaphore(const uint8_t maxCount,
uint8_t initCount, uint32_t arguments = 0);
void deleteSemaphore(SemaphoreIF* semaphore);
private:
/**
* External instantiation is not allowed.
*/
SemaphoreFactory();
static SemaphoreFactory* factoryInstance;
};
#endif /* FSFW_TASKS_SEMAPHOREFACTORY_H_ */

68
tasks/SemaphoreIF.h Normal file
View File

@ -0,0 +1,68 @@
#ifndef FRAMEWORK_TASKS_SEMAPHOREIF_H_
#define FRAMEWORK_TASKS_SEMAPHOREIF_H_
#include "../returnvalues/FwClassIds.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include <cstdint>
/**
* @brief Generic interface for semaphores, which can be used to achieve
* task synchronization. This is a generic interface which can be
* used for both binary semaphores and counting semaphores.
* @details
* A semaphore is a synchronization primitive.
* See: https://en.wikipedia.org/wiki/Semaphore_(programming)
* A semaphore can be used to achieve task synchonization and track the
* availability of resources by using either the binary or the counting
* semaphore types.
*
* If mutual exlcusion of a resource is desired, a mutex should be used,
* which is a special form of a semaphore and has an own interface.
*/
class SemaphoreIF {
public:
/**
* Different types of timeout for the mutex lock.
*/
enum TimeoutType {
POLLING, //!< If mutex is not available, return immediately
WAITING, //!< Wait a specified time for the mutex to become available
BLOCKING //!< Block indefinitely until the mutex becomes available.
};
virtual~ SemaphoreIF() {};
static const uint8_t INTERFACE_ID = CLASS_ID::SEMAPHORE_IF;
//! Semaphore timeout
static constexpr ReturnValue_t SEMAPHORE_TIMEOUT = MAKE_RETURN_CODE(1);
//! The current semaphore can not be given, because it is not owned
static constexpr ReturnValue_t SEMAPHORE_NOT_OWNED = MAKE_RETURN_CODE(2);
static constexpr ReturnValue_t SEMAPHORE_INVALID = MAKE_RETURN_CODE(3);
/**
* Generic call to acquire a semaphore.
* If there are no more semaphores to be taken (for a counting semaphore,
* a semaphore may be taken more than once), the taks will block
* for a maximum of timeoutMs while trying to acquire the semaphore.
* This can be used to achieve task synchrnization.
* @param timeoutMs
* @return - c RETURN_OK for successfull acquisition
*/
virtual ReturnValue_t acquire(TimeoutType timeoutType =
TimeoutType::BLOCKING, uint32_t timeoutMs = 0) = 0;
/**
* Corrensponding call to release a semaphore.
* @return -@c RETURN_OK for successfull release
*/
virtual ReturnValue_t release() = 0;
/**
* If the semaphore is a counting semaphore then the semaphores current
* count value is returned. If the semaphore is a binary semaphore then 1
* is returned if the semaphore is available, and 0 is returned if the
* semaphore is not available.
*/
virtual uint8_t getSemaphoreCounter() const = 0;
};
#endif /* FRAMEWORK_TASKS_SEMAPHOREIF_H_ */

View File

@ -1,7 +1,6 @@
#ifndef FRAMEWORK_TASKS_TYPEDEF_H_ #ifndef FRAMEWORK_TASKS_TYPEDEF_H_
#define FRAMEWORK_TASKS_TYPEDEF_H_ #define FRAMEWORK_TASKS_TYPEDEF_H_
//TODO more generic?
typedef const char* TaskName; typedef const char* TaskName;
typedef uint8_t TaskPriority; typedef uint8_t TaskPriority;
typedef size_t TaskStackSize; typedef size_t TaskStackSize;

View File

@ -119,7 +119,7 @@ ReturnValue_t CCSDSTime::convertFromCCS(Clock::TimeOfDay_t* to, const uint8_t* f
if (temp->pField & (1 << 3)) { //day of year variation if (temp->pField & (1 << 3)) { //day of year variation
uint16_t tempDay = (temp->month << 8) + temp->day; uint16_t tempDay = (temp->month << 8) + temp->day;
ReturnValue_t result = convertDaysOfYear(tempDay, to->year, result = convertDaysOfYear(tempDay, to->year,
&(temp->month), &(temp->day)); &(temp->month), &(temp->day));
if (result != RETURN_OK) { if (result != RETURN_OK) {
return result; return result;

View File

@ -41,7 +41,7 @@ public:
static store_address_t getStoreId(const CommandMessage* cmd); static store_address_t getStoreId(const CommandMessage* cmd);
virtual ~TmStoreMessage(); virtual ~TmStoreMessage();
static const uint8_t MESSAGE_ID = MESSAGE_TYPE::TM_STORE; static const uint8_t MESSAGE_ID = messagetypes::TM_STORE;
static const Command_t ENABLE_STORING = MAKE_COMMAND_ID(1); static const Command_t ENABLE_STORING = MAKE_COMMAND_ID(1);
static const Command_t DELETE_STORE_CONTENT = MAKE_COMMAND_ID(2); static const Command_t DELETE_STORE_CONTENT = MAKE_COMMAND_ID(2);
static const Command_t DOWNLINK_STORE_CONTENT = MAKE_COMMAND_ID(3); static const Command_t DOWNLINK_STORE_CONTENT = MAKE_COMMAND_ID(3);