diff --git a/FSFWVersion.h b/FSFWVersion.h index dcb592dc..11a60891 100644 --- a/FSFWVersion.h +++ b/FSFWVersion.h @@ -1,10 +1,11 @@ #ifndef FSFW_DEFAULTCFG_VERSION_H_ #define FSFW_DEFAULTCFG_VERSION_H_ -const char* const FSFW_VERSION_NAME = "fsfw"; +const char* const FSFW_VERSION_NAME = "ASTP"; #define FSFW_VERSION 0 #define FSFW_SUBVERSION 0 +#define FSFW_REVISION 1 diff --git a/README.md b/README.md index fc86fca7..52fec27e 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,159 @@ Flight Software Framework (FSFW) ====== -I want to be written! +The Flight Software Framework is a C++ Object Oriented Framework for unmanned, +automated systems like Satellites. + +The initial version of the Flight Software Framework was developed during +the Flying Laptop Project by the University of Stuttgart in cooperation +with Airbus Defence and Space GmbH. + +## Intended Use + +The framework is designed for systems, which communicate with external devices, perform control loops, receive telecommands and send telemetry, and need to maintain a high level of availability. +Therefore, a mode and health system provides control over the states of the software and the controlled devices. +In addition, a simple mechanism of event based fault detection, isolation and recovery is implemented as well. + +The recommended hardware is a microprocessor with more than 2 MB of RAM and 1 MB of non-volatile Memory. +For reference, current Applications use a Cobham Gaisler UT699 (LEON3FT), a ISISPACE IOBC or a Zynq-7020 SoC. + + +## Structure + +The general structure is driven by the usage of interfaces provided by objects. The FSFW uses C++11 as baseline. The intention behind this is that this C++ Standard should be widely available, even with older compilers. +The FSFW uses dynamic allocation during the initialization but provides static containers during runtime. +This simplifies the instantiation of objects and allows the usage of some standard containers. +Dynamic Allocation after initialization is discouraged and different solutions are provided in the FSFW to achieve that. +The fsfw uses Run-time type information. +Exceptions are not allowed. + +### Failure Handling + +Functions should return a defined ReturnValue_t to signal to the caller that something is gone wrong. +Returnvalues must be unique. For this the function HasReturnvaluesIF::makeReturnCode or the Macro MAKE_RETURN can be used. +The CLASS_ID is a unique id for that type of object. See returnvalues/FwClassIds. + +### OSAL +The FSFW provides operation system abstraction layers for Linux, FreeRTOS and RTEMS. A independent OSAL called "host" is currently not finished. This aims to be running on windows as well. +The OSAL provides periodic tasks, message queues, clocks and Semaphores as well as Mutexes. + +### Core Components + +Clock: + * This is a class of static functions that can be used at anytime + * Leap Seconds must be set if any time conversions from UTC to other times is used + +ObjectManager (must be created): + +* The component which handles all references. All SystemObjects register at this component. +* Any SystemObject needs to have a unique ObjectId. Those can be managed like objects::framework_objects. +* A reference to an object can be get by calling the following function. T must be the specific Interface you want to call. +A nullptr check of the returning Pointer must be done. This function is based on Run-time type information. + +``` c++ + template T* ObjectManagerIF::get( object_id_t id ) + +``` +* A typical way to create all objects on startup is a handing a static produce function to the ObjectManager on creation. +By calling objectManager->initialize() the produce function will be called and all SystemObjects will be initialized afterwards. + +Event Manager: + +* Component which allows routing of events +* Other objects can subscribe to specific events, ranges of events or all events of an object. +* Subscriptions can be done during runtime but should be done during initialization +* Amounts of allowed subscriptions must be configured by setting this parameters: + +``` c++ +namespace fsfwconfig { +//! Configure the allocated pool sizes for the event manager. +static constexpr size_t FSFW_EVENTMGMR_MATCHTREE_NODES = 240; +static constexpr size_t FSFW_EVENTMGMT_EVENTIDMATCHERS = 120; +static constexpr size_t FSFW_EVENTMGMR_RANGEMATCHERS = 120; +} +``` + + +Health Table: + +* A component which holds every health state +* Provides a thread safe way to access all health states without the need of message exchanges + +Stores + +* The message based communication can only exchange a few bytes of information inside the message itself. Therefore, additional information can be exchanged with Stores. With this, only the store address must be exchanged in the message. +* Internally, the FSFW uses an IPC Store to exchange data between processes. For incoming TCs a TC Store is used. For outgoing TM a TM store is used. +* All of them should use the Thread Safe Class storagemanager/PoolManager + +Tasks + +There are two different types of tasks: + * The PeriodicTask just executes objects that are of type ExecutableObjectIF in the order of the insertion to the Tasks. + * FixedTimeslotTask executes a list of calls in the order of the given list. This is intended for DeviceHandlers, where polling should be in a defined order. An example can be found in defaultcfg/fsfwconfig/pollingSequence + + +### Static Ids in the framework + +Some parts of the framework use a static routing address for communication. +An example setup of ids can be found in the example config in "defaultcft/fsfwconfig/objects/Factory::setStaticFrameworkObjectIds()". + +### Events + +Events are tied to objects. EventIds can be generated by calling the Macro MAKE_EVENT. This works analog to the returnvalues. +Every object that needs own EventIds has to get a unique SUBSYSTEM_ID. +Every SystemObject can call triggerEvent from the parent class. +Therefore, event messages contain the specific EventId and the objectId of the object that has triggered. + +### Internal Communication + +Components communicate mostly over Message through Queues. +Those queues are created by calling the singleton QueueFactory::instance()->create(). + +### External Communication + +The external communication with the mission control system is mostly up to the user implementation. +The FSFW provides PUS Services which can be used to but don't need to be used. +The services can be seen as a conversion from a TC to a message based communication and back. + +#### CCSDS Frames, CCSDS Space Packets and PUS + +If the communication is based on CCSDS Frames and Space Packets, several classes can be used to distributed the packets to the corresponding services. Those can be found in tcdistribution. +If Space Packets are used, a timestamper must be created. +An example can be found in the timemanager folder, this uses CCSDSTime::CDS_short. + +#### DeviceHandling + +DeviceHandlers are a core component of the FSFW. +The idea is, to have a software counterpart of every physical device to provide a simple mode, health and commanding interface. +By separating the underlying Communication Interface with DeviceCommunicationIF, a DH can be tested on different hardware. +The DH has mechanisms to monitor the communication with the physical device which allow for FDIR reaction. +A standard FDIR component for the DH will be created automatically but can be overwritten by the user. + +#### Modes, Health + +The two interfaces HasModesIF and HasHealthIF provide access for commanding and monitoring of components. +On-board Mode Management is implement in hierarchy system. +DeviceHandlers and Controllers are the lowest part of the hierarchy. +The next layer are Assemblies. Those assemblies act as a component which handle redundancies of handlers. +Assemblies share a common core with the next level which are the Subsystems. + +Those Assemblies are intended to act as auto-generated components from a database which describes the subsystem modes. +The definitions contain transition and target tables which contain the DH, Assembly and Controller Modes to be commanded. +Transition tables contain as many steps as needed to reach the mode from any other mode, e.g. a switch into any higher AOCS mode might first turn on the sensors, than the actuators and the controller as last component. +The target table is used to describe the state that is checked continuously by the subsystem. +All of this allows System Modes to be generated as Subsystem object as well from the same database. +This System contains list of subsystem modes in the transition and target tables. +Therefore, it allows a modular system to create system modes and easy commanding of those, because only the highest components must be commanded. + +The health state represents if the component is able to perform its tasks. +This can be used to signal the system to avoid using this component instead of a redundant one. +The on-board FDIR uses the health state for isolation and recovery. + +## Example config + +A example config can be found in defaultcfg/fsfwconfig. + +## Unit Tests + +Unit Tests are provided in the unittest folder. Those use the catch2 framework but do not include catch2 itself. +See README.md in the unittest Folder. \ No newline at end of file