include replacements
This commit is contained in:
parent
111f9dce7d
commit
f13e7b4255
@ -1,227 +1,227 @@
|
|||||||
#include <framework/serviceinterface/ServiceInterfaceStream.h>
|
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
||||||
#include <framework/timemanager/Clock.h>
|
#include "../../timemanager/Clock.h"
|
||||||
|
|
||||||
#include <chrono>
|
#include <chrono>
|
||||||
#if defined(WIN32)
|
#if defined(WIN32)
|
||||||
#include <windows.h>
|
#include <windows.h>
|
||||||
#elif defined(LINUX)
|
#elif defined(LINUX)
|
||||||
#include <fstream>
|
#include <fstream>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
uint16_t Clock::leapSeconds = 0;
|
uint16_t Clock::leapSeconds = 0;
|
||||||
MutexIF* Clock::timeMutex = NULL;
|
MutexIF* Clock::timeMutex = NULL;
|
||||||
|
|
||||||
using SystemClock = std::chrono::system_clock;
|
using SystemClock = std::chrono::system_clock;
|
||||||
|
|
||||||
uint32_t Clock::getTicksPerSecond(void){
|
uint32_t Clock::getTicksPerSecond(void){
|
||||||
sif::warning << "Clock::getTicksPerSecond: not implemented yet" << std::endl;
|
sif::warning << "Clock::getTicksPerSecond: not implemented yet" << std::endl;
|
||||||
return 0;
|
return 0;
|
||||||
//return CLOCKS_PER_SEC;
|
//return CLOCKS_PER_SEC;
|
||||||
//uint32_t ticks = sysconf(_SC_CLK_TCK);
|
//uint32_t ticks = sysconf(_SC_CLK_TCK);
|
||||||
//return ticks;
|
//return ticks;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t Clock::setClock(const TimeOfDay_t* time) {
|
ReturnValue_t Clock::setClock(const TimeOfDay_t* time) {
|
||||||
// do some magic with chrono
|
// do some magic with chrono
|
||||||
sif::warning << "Clock::setClock: not implemented yet" << std::endl;
|
sif::warning << "Clock::setClock: not implemented yet" << std::endl;
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t Clock::setClock(const timeval* time) {
|
ReturnValue_t Clock::setClock(const timeval* time) {
|
||||||
// do some magic with chrono
|
// do some magic with chrono
|
||||||
#if defined(WIN32)
|
#if defined(WIN32)
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
#elif defined(LINUX)
|
#elif defined(LINUX)
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
#else
|
#else
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
sif::warning << "Clock::getUptime: Not implemented for found OS" << std::endl;
|
sif::warning << "Clock::getUptime: Not implemented for found OS" << std::endl;
|
||||||
return HasReturnvaluesIF::RETURN_FAILED;
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t Clock::getClock_timeval(timeval* time) {
|
ReturnValue_t Clock::getClock_timeval(timeval* time) {
|
||||||
#if defined(WIN32)
|
#if defined(WIN32)
|
||||||
auto now = std::chrono::system_clock::now();
|
auto now = std::chrono::system_clock::now();
|
||||||
auto secondsChrono = std::chrono::time_point_cast<std::chrono::seconds>(now);
|
auto secondsChrono = std::chrono::time_point_cast<std::chrono::seconds>(now);
|
||||||
auto epoch = now.time_since_epoch();
|
auto epoch = now.time_since_epoch();
|
||||||
time->tv_sec = std::chrono::duration_cast<std::chrono::seconds>(epoch).count();
|
time->tv_sec = std::chrono::duration_cast<std::chrono::seconds>(epoch).count();
|
||||||
auto fraction = now - secondsChrono;
|
auto fraction = now - secondsChrono;
|
||||||
time->tv_usec = std::chrono::duration_cast<std::chrono::microseconds>(
|
time->tv_usec = std::chrono::duration_cast<std::chrono::microseconds>(
|
||||||
fraction).count();
|
fraction).count();
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
#elif defined(LINUX)
|
#elif defined(LINUX)
|
||||||
timespec timeUnix;
|
timespec timeUnix;
|
||||||
int status = clock_gettime(CLOCK_REALTIME,&timeUnix);
|
int status = clock_gettime(CLOCK_REALTIME,&timeUnix);
|
||||||
if(status!=0){
|
if(status!=0){
|
||||||
return HasReturnvaluesIF::RETURN_FAILED;
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||||||
}
|
}
|
||||||
time->tv_sec = timeUnix.tv_sec;
|
time->tv_sec = timeUnix.tv_sec;
|
||||||
time->tv_usec = timeUnix.tv_nsec / 1000.0;
|
time->tv_usec = timeUnix.tv_nsec / 1000.0;
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
#else
|
#else
|
||||||
sif::warning << "Clock::getUptime: Not implemented for found OS" << std::endl;
|
sif::warning << "Clock::getUptime: Not implemented for found OS" << std::endl;
|
||||||
return HasReturnvaluesIF::RETURN_FAILED;
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t Clock::getClock_usecs(uint64_t* time) {
|
ReturnValue_t Clock::getClock_usecs(uint64_t* time) {
|
||||||
// do some magic with chrono
|
// do some magic with chrono
|
||||||
sif::warning << "Clock::gerClock_usecs: not implemented yet" << std::endl;
|
sif::warning << "Clock::gerClock_usecs: not implemented yet" << std::endl;
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
timeval Clock::getUptime() {
|
timeval Clock::getUptime() {
|
||||||
timeval timeval;
|
timeval timeval;
|
||||||
#if defined(WIN32)
|
#if defined(WIN32)
|
||||||
auto uptime = std::chrono::milliseconds(GetTickCount64());
|
auto uptime = std::chrono::milliseconds(GetTickCount64());
|
||||||
auto secondsChrono = std::chrono::duration_cast<std::chrono::seconds>(uptime);
|
auto secondsChrono = std::chrono::duration_cast<std::chrono::seconds>(uptime);
|
||||||
timeval.tv_sec = secondsChrono.count();
|
timeval.tv_sec = secondsChrono.count();
|
||||||
auto fraction = uptime - secondsChrono;
|
auto fraction = uptime - secondsChrono;
|
||||||
timeval.tv_usec = std::chrono::duration_cast<std::chrono::microseconds>(
|
timeval.tv_usec = std::chrono::duration_cast<std::chrono::microseconds>(
|
||||||
fraction).count();
|
fraction).count();
|
||||||
#elif defined(LINUX)
|
#elif defined(LINUX)
|
||||||
double uptimeSeconds;
|
double uptimeSeconds;
|
||||||
if (std::ifstream("/proc/uptime", std::ios::in) >> uptimeSeconds)
|
if (std::ifstream("/proc/uptime", std::ios::in) >> uptimeSeconds)
|
||||||
{
|
{
|
||||||
// value is rounded down automatically
|
// value is rounded down automatically
|
||||||
timeval.tv_sec = uptimeSeconds;
|
timeval.tv_sec = uptimeSeconds;
|
||||||
timeval.tv_usec = uptimeSeconds *(double) 1e6 - (timeval.tv_sec *1e6);
|
timeval.tv_usec = uptimeSeconds *(double) 1e6 - (timeval.tv_sec *1e6);
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
sif::warning << "Clock::getUptime: Not implemented for found OS" << std::endl;
|
sif::warning << "Clock::getUptime: Not implemented for found OS" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
return timeval;
|
return timeval;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t Clock::getUptime(timeval* uptime) {
|
ReturnValue_t Clock::getUptime(timeval* uptime) {
|
||||||
*uptime = getUptime();
|
*uptime = getUptime();
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t Clock::getUptime(uint32_t* uptimeMs) {
|
ReturnValue_t Clock::getUptime(uint32_t* uptimeMs) {
|
||||||
timeval uptime = getUptime();
|
timeval uptime = getUptime();
|
||||||
*uptimeMs = uptime.tv_sec * 1000 + uptime.tv_usec / 1000;
|
*uptimeMs = uptime.tv_sec * 1000 + uptime.tv_usec / 1000;
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) {
|
ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) {
|
||||||
// do some magic with chrono (C++20!)
|
// do some magic with chrono (C++20!)
|
||||||
// Right now, the library doesn't have the new features yet.
|
// Right now, the library doesn't have the new features yet.
|
||||||
// so we work around that for now.
|
// so we work around that for now.
|
||||||
auto now = SystemClock::now();
|
auto now = SystemClock::now();
|
||||||
auto seconds = std::chrono::time_point_cast<std::chrono::seconds>(now);
|
auto seconds = std::chrono::time_point_cast<std::chrono::seconds>(now);
|
||||||
auto fraction = now - seconds;
|
auto fraction = now - seconds;
|
||||||
time_t tt = SystemClock::to_time_t(now);
|
time_t tt = SystemClock::to_time_t(now);
|
||||||
struct tm* timeInfo;
|
struct tm* timeInfo;
|
||||||
timeInfo = gmtime(&tt);
|
timeInfo = gmtime(&tt);
|
||||||
time->year = timeInfo->tm_year + 1900;
|
time->year = timeInfo->tm_year + 1900;
|
||||||
time->month = timeInfo->tm_mon+1;
|
time->month = timeInfo->tm_mon+1;
|
||||||
time->day = timeInfo->tm_mday;
|
time->day = timeInfo->tm_mday;
|
||||||
time->hour = timeInfo->tm_hour;
|
time->hour = timeInfo->tm_hour;
|
||||||
time->minute = timeInfo->tm_min;
|
time->minute = timeInfo->tm_min;
|
||||||
time->second = timeInfo->tm_sec;
|
time->second = timeInfo->tm_sec;
|
||||||
auto usecond = std::chrono::duration_cast<std::chrono::microseconds>(fraction);
|
auto usecond = std::chrono::duration_cast<std::chrono::microseconds>(fraction);
|
||||||
time->usecond = usecond.count();
|
time->usecond = usecond.count();
|
||||||
|
|
||||||
//sif::warning << "Clock::getDateAndTime: not implemented yet" << std::endl;
|
//sif::warning << "Clock::getDateAndTime: not implemented yet" << std::endl;
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t Clock::convertTimeOfDayToTimeval(const TimeOfDay_t* from,
|
ReturnValue_t Clock::convertTimeOfDayToTimeval(const TimeOfDay_t* from,
|
||||||
timeval* to) {
|
timeval* to) {
|
||||||
struct tm time_tm;
|
struct tm time_tm;
|
||||||
|
|
||||||
time_tm.tm_year = from->year - 1900;
|
time_tm.tm_year = from->year - 1900;
|
||||||
time_tm.tm_mon = from->month - 1;
|
time_tm.tm_mon = from->month - 1;
|
||||||
time_tm.tm_mday = from->day;
|
time_tm.tm_mday = from->day;
|
||||||
|
|
||||||
time_tm.tm_hour = from->hour;
|
time_tm.tm_hour = from->hour;
|
||||||
time_tm.tm_min = from->minute;
|
time_tm.tm_min = from->minute;
|
||||||
time_tm.tm_sec = from->second;
|
time_tm.tm_sec = from->second;
|
||||||
|
|
||||||
time_t seconds = mktime(&time_tm);
|
time_t seconds = mktime(&time_tm);
|
||||||
|
|
||||||
to->tv_sec = seconds;
|
to->tv_sec = seconds;
|
||||||
to->tv_usec = from->usecond;
|
to->tv_usec = from->usecond;
|
||||||
//Fails in 2038..
|
//Fails in 2038..
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
sif::warning << "Clock::convertTimeBla: not implemented yet" << std::endl;
|
sif::warning << "Clock::convertTimeBla: not implemented yet" << std::endl;
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t Clock::convertTimevalToJD2000(timeval time, double* JD2000) {
|
ReturnValue_t Clock::convertTimevalToJD2000(timeval time, double* JD2000) {
|
||||||
*JD2000 = (time.tv_sec - 946728000. + time.tv_usec / 1000000.) / 24.
|
*JD2000 = (time.tv_sec - 946728000. + time.tv_usec / 1000000.) / 24.
|
||||||
/ 3600.;
|
/ 3600.;
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t Clock::convertUTCToTT(timeval utc, timeval* tt) {
|
ReturnValue_t Clock::convertUTCToTT(timeval utc, timeval* tt) {
|
||||||
//SHOULDDO: works not for dates in the past (might have less leap seconds)
|
//SHOULDDO: works not for dates in the past (might have less leap seconds)
|
||||||
if (timeMutex == NULL) {
|
if (timeMutex == NULL) {
|
||||||
return HasReturnvaluesIF::RETURN_FAILED;
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||||||
}
|
}
|
||||||
|
|
||||||
uint16_t leapSeconds;
|
uint16_t leapSeconds;
|
||||||
ReturnValue_t result = getLeapSeconds(&leapSeconds);
|
ReturnValue_t result = getLeapSeconds(&leapSeconds);
|
||||||
if (result != HasReturnvaluesIF::RETURN_OK) {
|
if (result != HasReturnvaluesIF::RETURN_OK) {
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
timeval leapSeconds_timeval = { 0, 0 };
|
timeval leapSeconds_timeval = { 0, 0 };
|
||||||
leapSeconds_timeval.tv_sec = leapSeconds;
|
leapSeconds_timeval.tv_sec = leapSeconds;
|
||||||
|
|
||||||
//initial offset between UTC and TAI
|
//initial offset between UTC and TAI
|
||||||
timeval UTCtoTAI1972 = { 10, 0 };
|
timeval UTCtoTAI1972 = { 10, 0 };
|
||||||
|
|
||||||
timeval TAItoTT = { 32, 184000 };
|
timeval TAItoTT = { 32, 184000 };
|
||||||
|
|
||||||
*tt = utc + leapSeconds_timeval + UTCtoTAI1972 + TAItoTT;
|
*tt = utc + leapSeconds_timeval + UTCtoTAI1972 + TAItoTT;
|
||||||
|
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) {
|
ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) {
|
||||||
if(checkOrCreateClockMutex()!=HasReturnvaluesIF::RETURN_OK){
|
if(checkOrCreateClockMutex()!=HasReturnvaluesIF::RETURN_OK){
|
||||||
return HasReturnvaluesIF::RETURN_FAILED;
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||||||
}
|
}
|
||||||
ReturnValue_t result = timeMutex->lockMutex(MutexIF::BLOCKING);
|
ReturnValue_t result = timeMutex->lockMutex(MutexIF::BLOCKING);
|
||||||
if (result != HasReturnvaluesIF::RETURN_OK) {
|
if (result != HasReturnvaluesIF::RETURN_OK) {
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
leapSeconds = leapSeconds_;
|
leapSeconds = leapSeconds_;
|
||||||
|
|
||||||
result = timeMutex->unlockMutex();
|
result = timeMutex->unlockMutex();
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) {
|
ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) {
|
||||||
if(timeMutex == nullptr){
|
if(timeMutex == nullptr){
|
||||||
return HasReturnvaluesIF::RETURN_FAILED;
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||||||
}
|
}
|
||||||
ReturnValue_t result = timeMutex->lockMutex(MutexIF::BLOCKING);
|
ReturnValue_t result = timeMutex->lockMutex(MutexIF::BLOCKING);
|
||||||
if (result != HasReturnvaluesIF::RETURN_OK) {
|
if (result != HasReturnvaluesIF::RETURN_OK) {
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
*leapSeconds_ = leapSeconds;
|
*leapSeconds_ = leapSeconds;
|
||||||
|
|
||||||
result = timeMutex->unlockMutex();
|
result = timeMutex->unlockMutex();
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t Clock::checkOrCreateClockMutex(){
|
ReturnValue_t Clock::checkOrCreateClockMutex(){
|
||||||
if(timeMutex == nullptr){
|
if(timeMutex == nullptr){
|
||||||
MutexFactory* mutexFactory = MutexFactory::instance();
|
MutexFactory* mutexFactory = MutexFactory::instance();
|
||||||
if (mutexFactory == nullptr) {
|
if (mutexFactory == nullptr) {
|
||||||
return HasReturnvaluesIF::RETURN_FAILED;
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||||||
}
|
}
|
||||||
timeMutex = mutexFactory->createMutex();
|
timeMutex = mutexFactory->createMutex();
|
||||||
if (timeMutex == nullptr) {
|
if (timeMutex == nullptr) {
|
||||||
return HasReturnvaluesIF::RETURN_FAILED;
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
@ -1,191 +1,191 @@
|
|||||||
#include <framework/osal/host/FixedTimeslotTask.h>
|
#include "../../osal/host/FixedTimeslotTask.h"
|
||||||
|
|
||||||
#include <framework/ipc/MutexFactory.h>
|
#include "../../ipc/MutexFactory.h"
|
||||||
#include <framework/osal/host/Mutex.h>
|
#include "../../osal/host/Mutex.h"
|
||||||
#include <framework/osal/host/FixedTimeslotTask.h>
|
#include "../../osal/host/FixedTimeslotTask.h"
|
||||||
|
|
||||||
#include <framework/serviceinterface/ServiceInterfaceStream.h>
|
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
||||||
#include <framework/tasks/ExecutableObjectIF.h>
|
#include "../../tasks/ExecutableObjectIF.h"
|
||||||
|
|
||||||
#include <thread>
|
#include <thread>
|
||||||
#include <chrono>
|
#include <chrono>
|
||||||
|
|
||||||
#if defined(WIN32)
|
#if defined(WIN32)
|
||||||
#include <windows.h>
|
#include <windows.h>
|
||||||
#elif defined(LINUX)
|
#elif defined(LINUX)
|
||||||
#include <pthread.h>
|
#include <pthread.h>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
FixedTimeslotTask::FixedTimeslotTask(const char *name, TaskPriority setPriority,
|
FixedTimeslotTask::FixedTimeslotTask(const char *name, TaskPriority setPriority,
|
||||||
TaskStackSize setStack, TaskPeriod setPeriod,
|
TaskStackSize setStack, TaskPeriod setPeriod,
|
||||||
void (*setDeadlineMissedFunc)()) :
|
void (*setDeadlineMissedFunc)()) :
|
||||||
started(false), pollingSeqTable(setPeriod*1000), taskName(name),
|
started(false), pollingSeqTable(setPeriod*1000), taskName(name),
|
||||||
period(setPeriod), deadlineMissedFunc(setDeadlineMissedFunc) {
|
period(setPeriod), deadlineMissedFunc(setDeadlineMissedFunc) {
|
||||||
// It is propably possible to set task priorities by using the native
|
// It is propably possible to set task priorities by using the native
|
||||||
// task handles for Windows / Linux
|
// task handles for Windows / Linux
|
||||||
mainThread = std::thread(&FixedTimeslotTask::taskEntryPoint, this, this);
|
mainThread = std::thread(&FixedTimeslotTask::taskEntryPoint, this, this);
|
||||||
#if defined(WIN32)
|
#if defined(WIN32)
|
||||||
/* List of possible priority classes:
|
/* List of possible priority classes:
|
||||||
* https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/
|
* https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/
|
||||||
* nf-processthreadsapi-setpriorityclass
|
* nf-processthreadsapi-setpriorityclass
|
||||||
* And respective thread priority numbers:
|
* And respective thread priority numbers:
|
||||||
* https://docs.microsoft.com/en-us/windows/
|
* https://docs.microsoft.com/en-us/windows/
|
||||||
* win32/procthread/scheduling-priorities */
|
* win32/procthread/scheduling-priorities */
|
||||||
int result = SetPriorityClass(
|
int result = SetPriorityClass(
|
||||||
reinterpret_cast<HANDLE>(mainThread.native_handle()),
|
reinterpret_cast<HANDLE>(mainThread.native_handle()),
|
||||||
ABOVE_NORMAL_PRIORITY_CLASS);
|
ABOVE_NORMAL_PRIORITY_CLASS);
|
||||||
if(result != 0) {
|
if(result != 0) {
|
||||||
sif::error << "FixedTimeslotTask: Windows SetPriorityClass failed with code "
|
sif::error << "FixedTimeslotTask: Windows SetPriorityClass failed with code "
|
||||||
<< GetLastError() << std::endl;
|
<< GetLastError() << std::endl;
|
||||||
}
|
}
|
||||||
result = SetThreadPriority(
|
result = SetThreadPriority(
|
||||||
reinterpret_cast<HANDLE>(mainThread.native_handle()),
|
reinterpret_cast<HANDLE>(mainThread.native_handle()),
|
||||||
THREAD_PRIORITY_NORMAL);
|
THREAD_PRIORITY_NORMAL);
|
||||||
if(result != 0) {
|
if(result != 0) {
|
||||||
sif::error << "FixedTimeslotTask: Windows SetPriorityClass failed with code "
|
sif::error << "FixedTimeslotTask: Windows SetPriorityClass failed with code "
|
||||||
<< GetLastError() << std::endl;
|
<< GetLastError() << std::endl;
|
||||||
}
|
}
|
||||||
#elif defined(LINUX)
|
#elif defined(LINUX)
|
||||||
// we can just copy and paste the code from linux here.
|
// we can just copy and paste the code from linux here.
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
FixedTimeslotTask::~FixedTimeslotTask(void) {
|
FixedTimeslotTask::~FixedTimeslotTask(void) {
|
||||||
//Do not delete objects, we were responsible for ptrs only.
|
//Do not delete objects, we were responsible for ptrs only.
|
||||||
terminateThread = true;
|
terminateThread = true;
|
||||||
if(mainThread.joinable()) {
|
if(mainThread.joinable()) {
|
||||||
mainThread.join();
|
mainThread.join();
|
||||||
}
|
}
|
||||||
delete this;
|
delete this;
|
||||||
}
|
}
|
||||||
|
|
||||||
void FixedTimeslotTask::taskEntryPoint(void* argument) {
|
void FixedTimeslotTask::taskEntryPoint(void* argument) {
|
||||||
FixedTimeslotTask *originalTask(reinterpret_cast<FixedTimeslotTask*>(argument));
|
FixedTimeslotTask *originalTask(reinterpret_cast<FixedTimeslotTask*>(argument));
|
||||||
|
|
||||||
if (not originalTask->started) {
|
if (not originalTask->started) {
|
||||||
// we have to suspend/block here until the task is started.
|
// we have to suspend/block here until the task is started.
|
||||||
// if semaphores are implemented, use them here.
|
// if semaphores are implemented, use them here.
|
||||||
std::unique_lock<std::mutex> lock(initMutex);
|
std::unique_lock<std::mutex> lock(initMutex);
|
||||||
initCondition.wait(lock);
|
initCondition.wait(lock);
|
||||||
}
|
}
|
||||||
|
|
||||||
this->taskFunctionality();
|
this->taskFunctionality();
|
||||||
sif::debug << "FixedTimeslotTask::taskEntryPoint: "
|
sif::debug << "FixedTimeslotTask::taskEntryPoint: "
|
||||||
"Returned from taskFunctionality." << std::endl;
|
"Returned from taskFunctionality." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t FixedTimeslotTask::startTask() {
|
ReturnValue_t FixedTimeslotTask::startTask() {
|
||||||
started = true;
|
started = true;
|
||||||
|
|
||||||
// Notify task to start.
|
// Notify task to start.
|
||||||
std::lock_guard<std::mutex> lock(initMutex);
|
std::lock_guard<std::mutex> lock(initMutex);
|
||||||
initCondition.notify_one();
|
initCondition.notify_one();
|
||||||
|
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t FixedTimeslotTask::sleepFor(uint32_t ms) {
|
ReturnValue_t FixedTimeslotTask::sleepFor(uint32_t ms) {
|
||||||
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
|
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
void FixedTimeslotTask::taskFunctionality() {
|
void FixedTimeslotTask::taskFunctionality() {
|
||||||
// A local iterator for the Polling Sequence Table is created to
|
// A local iterator for the Polling Sequence Table is created to
|
||||||
// find the start time for the first entry.
|
// find the start time for the first entry.
|
||||||
FixedSlotSequence::SlotListIter slotListIter = pollingSeqTable.current;
|
FixedSlotSequence::SlotListIter slotListIter = pollingSeqTable.current;
|
||||||
// Get start time for first entry.
|
// Get start time for first entry.
|
||||||
chron_ms interval(slotListIter->pollingTimeMs);
|
chron_ms interval(slotListIter->pollingTimeMs);
|
||||||
auto currentStartTime {
|
auto currentStartTime {
|
||||||
std::chrono::duration_cast<chron_ms>(
|
std::chrono::duration_cast<chron_ms>(
|
||||||
std::chrono::system_clock::now().time_since_epoch())
|
std::chrono::system_clock::now().time_since_epoch())
|
||||||
};
|
};
|
||||||
if(interval.count() > 0) {
|
if(interval.count() > 0) {
|
||||||
delayForInterval(¤tStartTime, interval);
|
delayForInterval(¤tStartTime, interval);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Enter the loop that defines the task behavior. */
|
/* Enter the loop that defines the task behavior. */
|
||||||
for (;;) {
|
for (;;) {
|
||||||
if(terminateThread.load()) {
|
if(terminateThread.load()) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
//The component for this slot is executed and the next one is chosen.
|
//The component for this slot is executed and the next one is chosen.
|
||||||
this->pollingSeqTable.executeAndAdvance();
|
this->pollingSeqTable.executeAndAdvance();
|
||||||
if (not pollingSeqTable.slotFollowsImmediately()) {
|
if (not pollingSeqTable.slotFollowsImmediately()) {
|
||||||
// we need to wait before executing the current slot
|
// we need to wait before executing the current slot
|
||||||
//this gives us the time to wait:
|
//this gives us the time to wait:
|
||||||
interval = chron_ms(this->pollingSeqTable.getIntervalToPreviousSlotMs());
|
interval = chron_ms(this->pollingSeqTable.getIntervalToPreviousSlotMs());
|
||||||
delayForInterval(¤tStartTime, interval);
|
delayForInterval(¤tStartTime, interval);
|
||||||
//TODO deadline missed check
|
//TODO deadline missed check
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t FixedTimeslotTask::addSlot(object_id_t componentId,
|
ReturnValue_t FixedTimeslotTask::addSlot(object_id_t componentId,
|
||||||
uint32_t slotTimeMs, int8_t executionStep) {
|
uint32_t slotTimeMs, int8_t executionStep) {
|
||||||
if (objectManager->get<ExecutableObjectIF>(componentId) != nullptr) {
|
if (objectManager->get<ExecutableObjectIF>(componentId) != nullptr) {
|
||||||
pollingSeqTable.addSlot(componentId, slotTimeMs, executionStep, this);
|
pollingSeqTable.addSlot(componentId, slotTimeMs, executionStep, this);
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
sif::error << "Component " << std::hex << componentId <<
|
sif::error << "Component " << std::hex << componentId <<
|
||||||
" not found, not adding it to pst" << std::endl;
|
" not found, not adding it to pst" << std::endl;
|
||||||
return HasReturnvaluesIF::RETURN_FAILED;
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t FixedTimeslotTask::checkSequence() const {
|
ReturnValue_t FixedTimeslotTask::checkSequence() const {
|
||||||
return pollingSeqTable.checkSequence();
|
return pollingSeqTable.checkSequence();
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t FixedTimeslotTask::getPeriodMs() const {
|
uint32_t FixedTimeslotTask::getPeriodMs() const {
|
||||||
return period * 1000;
|
return period * 1000;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool FixedTimeslotTask::delayForInterval(chron_ms * previousWakeTimeMs,
|
bool FixedTimeslotTask::delayForInterval(chron_ms * previousWakeTimeMs,
|
||||||
const chron_ms interval) {
|
const chron_ms interval) {
|
||||||
bool shouldDelay = false;
|
bool shouldDelay = false;
|
||||||
//Get current wakeup time
|
//Get current wakeup time
|
||||||
auto currentStartTime =
|
auto currentStartTime =
|
||||||
std::chrono::duration_cast<chron_ms>(
|
std::chrono::duration_cast<chron_ms>(
|
||||||
std::chrono::system_clock::now().time_since_epoch());
|
std::chrono::system_clock::now().time_since_epoch());
|
||||||
/* Generate the tick time at which the task wants to wake. */
|
/* Generate the tick time at which the task wants to wake. */
|
||||||
auto nextTimeToWake_ms = (*previousWakeTimeMs) + interval;
|
auto nextTimeToWake_ms = (*previousWakeTimeMs) + interval;
|
||||||
|
|
||||||
if (currentStartTime < *previousWakeTimeMs) {
|
if (currentStartTime < *previousWakeTimeMs) {
|
||||||
/* The tick count has overflowed since this function was
|
/* The tick count has overflowed since this function was
|
||||||
lasted called. In this case the only time we should ever
|
lasted called. In this case the only time we should ever
|
||||||
actually delay is if the wake time has also overflowed,
|
actually delay is if the wake time has also overflowed,
|
||||||
and the wake time is greater than the tick time. When this
|
and the wake time is greater than the tick time. When this
|
||||||
is the case it is as if neither time had overflowed. */
|
is the case it is as if neither time had overflowed. */
|
||||||
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|
||||||
&& (nextTimeToWake_ms > currentStartTime)) {
|
&& (nextTimeToWake_ms > currentStartTime)) {
|
||||||
shouldDelay = true;
|
shouldDelay = true;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
/* The tick time has not overflowed. In this case we will
|
/* The tick time has not overflowed. In this case we will
|
||||||
delay if either the wake time has overflowed, and/or the
|
delay if either the wake time has overflowed, and/or the
|
||||||
tick time is less than the wake time. */
|
tick time is less than the wake time. */
|
||||||
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|
||||||
|| (nextTimeToWake_ms > currentStartTime)) {
|
|| (nextTimeToWake_ms > currentStartTime)) {
|
||||||
shouldDelay = true;
|
shouldDelay = true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Update the wake time ready for the next call. */
|
/* Update the wake time ready for the next call. */
|
||||||
|
|
||||||
(*previousWakeTimeMs) = nextTimeToWake_ms;
|
(*previousWakeTimeMs) = nextTimeToWake_ms;
|
||||||
|
|
||||||
if (shouldDelay) {
|
if (shouldDelay) {
|
||||||
auto sleepTime = std::chrono::duration_cast<chron_ms>(
|
auto sleepTime = std::chrono::duration_cast<chron_ms>(
|
||||||
nextTimeToWake_ms - currentStartTime);
|
nextTimeToWake_ms - currentStartTime);
|
||||||
std::this_thread::sleep_for(sleepTime);
|
std::this_thread::sleep_for(sleepTime);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
//We are shifting the time in case the deadline was missed like rtems
|
//We are shifting the time in case the deadline was missed like rtems
|
||||||
(*previousWakeTimeMs) = currentStartTime;
|
(*previousWakeTimeMs) = currentStartTime;
|
||||||
return false;
|
return false;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,130 +1,130 @@
|
|||||||
#ifndef FRAMEWORK_OSAL_HOST_FIXEDTIMESLOTTASK_H_
|
#ifndef FRAMEWORK_OSAL_HOST_FIXEDTIMESLOTTASK_H_
|
||||||
#define FRAMEWORK_OSAL_HOST_FIXEDTIMESLOTTASK_H_
|
#define FRAMEWORK_OSAL_HOST_FIXEDTIMESLOTTASK_H_
|
||||||
|
|
||||||
#include <framework/objectmanager/ObjectManagerIF.h>
|
#include "../../objectmanager/ObjectManagerIF.h"
|
||||||
#include <framework/tasks/FixedSlotSequence.h>
|
#include "../../tasks/FixedSlotSequence.h"
|
||||||
#include <framework/tasks/FixedTimeslotTaskIF.h>
|
#include "../../tasks/FixedTimeslotTaskIF.h"
|
||||||
#include <framework/tasks/Typedef.h>
|
#include "../../tasks/Typedef.h"
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <thread>
|
#include <thread>
|
||||||
#include <condition_variable>
|
#include <condition_variable>
|
||||||
#include <atomic>
|
#include <atomic>
|
||||||
|
|
||||||
class ExecutableObjectIF;
|
class ExecutableObjectIF;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief This class represents a task for periodic activities with multiple
|
* @brief This class represents a task for periodic activities with multiple
|
||||||
* steps and strict timeslot requirements for these steps.
|
* steps and strict timeslot requirements for these steps.
|
||||||
* @details
|
* @details
|
||||||
* @ingroup task_handling
|
* @ingroup task_handling
|
||||||
*/
|
*/
|
||||||
class FixedTimeslotTask: public FixedTimeslotTaskIF {
|
class FixedTimeslotTask: public FixedTimeslotTaskIF {
|
||||||
public:
|
public:
|
||||||
/**
|
/**
|
||||||
* @brief Standard constructor of the class.
|
* @brief Standard constructor of the class.
|
||||||
* @details
|
* @details
|
||||||
* The class is initialized without allocated objects. These need to be
|
* The class is initialized without allocated objects. These need to be
|
||||||
* added with #addComponent.
|
* added with #addComponent.
|
||||||
* @param priority
|
* @param priority
|
||||||
* @param stack_size
|
* @param stack_size
|
||||||
* @param setPeriod
|
* @param setPeriod
|
||||||
* @param setDeadlineMissedFunc
|
* @param setDeadlineMissedFunc
|
||||||
* The function pointer to the deadline missed function that shall be
|
* The function pointer to the deadline missed function that shall be
|
||||||
* assigned.
|
* assigned.
|
||||||
*/
|
*/
|
||||||
FixedTimeslotTask(const char *name, TaskPriority setPriority,
|
FixedTimeslotTask(const char *name, TaskPriority setPriority,
|
||||||
TaskStackSize setStack, TaskPeriod setPeriod,
|
TaskStackSize setStack, TaskPeriod setPeriod,
|
||||||
void (*setDeadlineMissedFunc)());
|
void (*setDeadlineMissedFunc)());
|
||||||
/**
|
/**
|
||||||
* @brief Currently, the executed object's lifetime is not coupled with
|
* @brief Currently, the executed object's lifetime is not coupled with
|
||||||
* the task object's lifetime, so the destructor is empty.
|
* the task object's lifetime, so the destructor is empty.
|
||||||
*/
|
*/
|
||||||
virtual ~FixedTimeslotTask(void);
|
virtual ~FixedTimeslotTask(void);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief The method to start the task.
|
* @brief The method to start the task.
|
||||||
* @details The method starts the task with the respective system call.
|
* @details The method starts the task with the respective system call.
|
||||||
* Entry point is the taskEntryPoint method described below.
|
* Entry point is the taskEntryPoint method described below.
|
||||||
* The address of the task object is passed as an argument
|
* The address of the task object is passed as an argument
|
||||||
* to the system call.
|
* to the system call.
|
||||||
*/
|
*/
|
||||||
ReturnValue_t startTask(void);
|
ReturnValue_t startTask(void);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Add timeslot to the polling sequence table.
|
* Add timeslot to the polling sequence table.
|
||||||
* @param componentId
|
* @param componentId
|
||||||
* @param slotTimeMs
|
* @param slotTimeMs
|
||||||
* @param executionStep
|
* @param executionStep
|
||||||
* @return
|
* @return
|
||||||
*/
|
*/
|
||||||
ReturnValue_t addSlot(object_id_t componentId,
|
ReturnValue_t addSlot(object_id_t componentId,
|
||||||
uint32_t slotTimeMs, int8_t executionStep);
|
uint32_t slotTimeMs, int8_t executionStep);
|
||||||
|
|
||||||
ReturnValue_t checkSequence() const;
|
ReturnValue_t checkSequence() const;
|
||||||
|
|
||||||
uint32_t getPeriodMs() const;
|
uint32_t getPeriodMs() const;
|
||||||
|
|
||||||
ReturnValue_t sleepFor(uint32_t ms);
|
ReturnValue_t sleepFor(uint32_t ms);
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
using chron_ms = std::chrono::milliseconds;
|
using chron_ms = std::chrono::milliseconds;
|
||||||
|
|
||||||
bool started;
|
bool started;
|
||||||
//!< Typedef for the List of objects.
|
//!< Typedef for the List of objects.
|
||||||
typedef std::vector<ExecutableObjectIF*> ObjectList;
|
typedef std::vector<ExecutableObjectIF*> ObjectList;
|
||||||
std::thread mainThread;
|
std::thread mainThread;
|
||||||
std::atomic<bool> terminateThread = false;
|
std::atomic<bool> terminateThread = false;
|
||||||
|
|
||||||
//! Polling sequence table which contains the object to execute
|
//! Polling sequence table which contains the object to execute
|
||||||
//! and information like the timeslots and the passed execution step.
|
//! and information like the timeslots and the passed execution step.
|
||||||
FixedSlotSequence pollingSeqTable;
|
FixedSlotSequence pollingSeqTable;
|
||||||
|
|
||||||
std::condition_variable initCondition;
|
std::condition_variable initCondition;
|
||||||
std::mutex initMutex;
|
std::mutex initMutex;
|
||||||
std::string taskName;
|
std::string taskName;
|
||||||
/**
|
/**
|
||||||
* @brief The period of the task.
|
* @brief The period of the task.
|
||||||
* @details
|
* @details
|
||||||
* The period determines the frequency of the task's execution.
|
* The period determines the frequency of the task's execution.
|
||||||
* It is expressed in clock ticks.
|
* It is expressed in clock ticks.
|
||||||
*/
|
*/
|
||||||
TaskPeriod period;
|
TaskPeriod period;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief The pointer to the deadline-missed function.
|
* @brief The pointer to the deadline-missed function.
|
||||||
* @details
|
* @details
|
||||||
* This pointer stores the function that is executed if the task's deadline
|
* This pointer stores the function that is executed if the task's deadline
|
||||||
* is missed. So, each may react individually on a timing failure.
|
* is missed. So, each may react individually on a timing failure.
|
||||||
* The pointer may be NULL, then nothing happens on missing the deadline.
|
* The pointer may be NULL, then nothing happens on missing the deadline.
|
||||||
* The deadline is equal to the next execution of the periodic task.
|
* The deadline is equal to the next execution of the periodic task.
|
||||||
*/
|
*/
|
||||||
void (*deadlineMissedFunc)(void);
|
void (*deadlineMissedFunc)(void);
|
||||||
/**
|
/**
|
||||||
* @brief This is the function executed in the new task's context.
|
* @brief This is the function executed in the new task's context.
|
||||||
* @details
|
* @details
|
||||||
* It converts the argument back to the thread object type and copies the
|
* It converts the argument back to the thread object type and copies the
|
||||||
* class instance to the task context.
|
* class instance to the task context.
|
||||||
* The taskFunctionality method is called afterwards.
|
* The taskFunctionality method is called afterwards.
|
||||||
* @param A pointer to the task object itself is passed as argument.
|
* @param A pointer to the task object itself is passed as argument.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
void taskEntryPoint(void* argument);
|
void taskEntryPoint(void* argument);
|
||||||
/**
|
/**
|
||||||
* @brief The function containing the actual functionality of the task.
|
* @brief The function containing the actual functionality of the task.
|
||||||
* @details
|
* @details
|
||||||
* The method sets and starts the task's period, then enters a loop that is
|
* The method sets and starts the task's period, then enters a loop that is
|
||||||
* repeated as long as the isRunning attribute is true. Within the loop,
|
* repeated as long as the isRunning attribute is true. Within the loop,
|
||||||
* all performOperation methods of the added objects are called. Afterwards
|
* all performOperation methods of the added objects are called. Afterwards
|
||||||
* the checkAndRestartPeriod system call blocks the task until the next
|
* the checkAndRestartPeriod system call blocks the task until the next
|
||||||
* period. On missing the deadline, the deadlineMissedFunction is executed.
|
* period. On missing the deadline, the deadlineMissedFunction is executed.
|
||||||
*/
|
*/
|
||||||
void taskFunctionality(void);
|
void taskFunctionality(void);
|
||||||
|
|
||||||
bool delayForInterval(chron_ms * previousWakeTimeMs,
|
bool delayForInterval(chron_ms * previousWakeTimeMs,
|
||||||
const chron_ms interval);
|
const chron_ms interval);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#endif /* FRAMEWORK_OSAL_HOST_FIXEDTIMESLOTTASK_H_ */
|
#endif /* FRAMEWORK_OSAL_HOST_FIXEDTIMESLOTTASK_H_ */
|
||||||
|
@ -1,155 +1,155 @@
|
|||||||
#include <framework/osal/host/MessageQueue.h>
|
#include "../../osal/host/MessageQueue.h"
|
||||||
#include <framework/serviceinterface/ServiceInterfaceStream.h>
|
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
||||||
#include <framework/osal/host/QueueMapManager.h>
|
#include "../../osal/host/QueueMapManager.h"
|
||||||
#include <framework/ipc/MutexFactory.h>
|
#include "../../ipc/MutexFactory.h"
|
||||||
#include <framework/ipc/MutexHelper.h>
|
#include "../../ipc/MutexHelper.h"
|
||||||
|
|
||||||
MessageQueue::MessageQueue(size_t messageDepth, size_t maxMessageSize):
|
MessageQueue::MessageQueue(size_t messageDepth, size_t maxMessageSize):
|
||||||
messageSize(maxMessageSize), messageDepth(messageDepth) {
|
messageSize(maxMessageSize), messageDepth(messageDepth) {
|
||||||
queueLock = MutexFactory::instance()->createMutex();
|
queueLock = MutexFactory::instance()->createMutex();
|
||||||
auto result = QueueMapManager::instance()->addMessageQueue(this, &mqId);
|
auto result = QueueMapManager::instance()->addMessageQueue(this, &mqId);
|
||||||
if(result != HasReturnvaluesIF::RETURN_OK) {
|
if(result != HasReturnvaluesIF::RETURN_OK) {
|
||||||
sif::error << "MessageQueue: Could not be created" << std::endl;
|
sif::error << "MessageQueue: Could not be created" << std::endl;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
MessageQueue::~MessageQueue() {
|
MessageQueue::~MessageQueue() {
|
||||||
MutexFactory::instance()->deleteMutex(queueLock);
|
MutexFactory::instance()->deleteMutex(queueLock);
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t MessageQueue::sendMessage(MessageQueueId_t sendTo,
|
ReturnValue_t MessageQueue::sendMessage(MessageQueueId_t sendTo,
|
||||||
MessageQueueMessageIF* message, bool ignoreFault) {
|
MessageQueueMessageIF* message, bool ignoreFault) {
|
||||||
return sendMessageFrom(sendTo, message, this->getId(), ignoreFault);
|
return sendMessageFrom(sendTo, message, this->getId(), ignoreFault);
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t MessageQueue::sendToDefault(MessageQueueMessageIF* message) {
|
ReturnValue_t MessageQueue::sendToDefault(MessageQueueMessageIF* message) {
|
||||||
return sendToDefaultFrom(message, this->getId());
|
return sendToDefaultFrom(message, this->getId());
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t MessageQueue::sendToDefaultFrom(MessageQueueMessageIF* message,
|
ReturnValue_t MessageQueue::sendToDefaultFrom(MessageQueueMessageIF* message,
|
||||||
MessageQueueId_t sentFrom, bool ignoreFault) {
|
MessageQueueId_t sentFrom, bool ignoreFault) {
|
||||||
return sendMessageFrom(defaultDestination,message,sentFrom,ignoreFault);
|
return sendMessageFrom(defaultDestination,message,sentFrom,ignoreFault);
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t MessageQueue::reply(MessageQueueMessageIF* message) {
|
ReturnValue_t MessageQueue::reply(MessageQueueMessageIF* message) {
|
||||||
if (this->lastPartner != 0) {
|
if (this->lastPartner != 0) {
|
||||||
return sendMessageFrom(this->lastPartner, message, this->getId());
|
return sendMessageFrom(this->lastPartner, message, this->getId());
|
||||||
} else {
|
} else {
|
||||||
return MessageQueueIF::NO_REPLY_PARTNER;
|
return MessageQueueIF::NO_REPLY_PARTNER;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t MessageQueue::sendMessageFrom(MessageQueueId_t sendTo,
|
ReturnValue_t MessageQueue::sendMessageFrom(MessageQueueId_t sendTo,
|
||||||
MessageQueueMessageIF* message, MessageQueueId_t sentFrom,
|
MessageQueueMessageIF* message, MessageQueueId_t sentFrom,
|
||||||
bool ignoreFault) {
|
bool ignoreFault) {
|
||||||
return sendMessageFromMessageQueue(sendTo, message, sentFrom,
|
return sendMessageFromMessageQueue(sendTo, message, sentFrom,
|
||||||
ignoreFault);
|
ignoreFault);
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t MessageQueue::receiveMessage(MessageQueueMessageIF* message,
|
ReturnValue_t MessageQueue::receiveMessage(MessageQueueMessageIF* message,
|
||||||
MessageQueueId_t* receivedFrom) {
|
MessageQueueId_t* receivedFrom) {
|
||||||
ReturnValue_t status = this->receiveMessage(message);
|
ReturnValue_t status = this->receiveMessage(message);
|
||||||
if(status == HasReturnvaluesIF::RETURN_OK) {
|
if(status == HasReturnvaluesIF::RETURN_OK) {
|
||||||
*receivedFrom = this->lastPartner;
|
*receivedFrom = this->lastPartner;
|
||||||
}
|
}
|
||||||
return status;
|
return status;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t MessageQueue::receiveMessage(MessageQueueMessageIF* message) {
|
ReturnValue_t MessageQueue::receiveMessage(MessageQueueMessageIF* message) {
|
||||||
if(messageQueue.empty()) {
|
if(messageQueue.empty()) {
|
||||||
return MessageQueueIF::EMPTY;
|
return MessageQueueIF::EMPTY;
|
||||||
}
|
}
|
||||||
// not sure this will work..
|
// not sure this will work..
|
||||||
//*message = std::move(messageQueue.front());
|
//*message = std::move(messageQueue.front());
|
||||||
MutexHelper mutexLock(queueLock, 20);
|
MutexHelper mutexLock(queueLock, 20);
|
||||||
MessageQueueMessage* currentMessage = &messageQueue.front();
|
MessageQueueMessage* currentMessage = &messageQueue.front();
|
||||||
std::copy(currentMessage->getBuffer(),
|
std::copy(currentMessage->getBuffer(),
|
||||||
currentMessage->getBuffer() + messageSize, message->getBuffer());
|
currentMessage->getBuffer() + messageSize, message->getBuffer());
|
||||||
messageQueue.pop();
|
messageQueue.pop();
|
||||||
// The last partner is the first uint32_t field in the message
|
// The last partner is the first uint32_t field in the message
|
||||||
this->lastPartner = message->getSender();
|
this->lastPartner = message->getSender();
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
MessageQueueId_t MessageQueue::getLastPartner() const {
|
MessageQueueId_t MessageQueue::getLastPartner() const {
|
||||||
return lastPartner;
|
return lastPartner;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t MessageQueue::flush(uint32_t* count) {
|
ReturnValue_t MessageQueue::flush(uint32_t* count) {
|
||||||
*count = messageQueue.size();
|
*count = messageQueue.size();
|
||||||
// Clears the queue.
|
// Clears the queue.
|
||||||
messageQueue = std::queue<MessageQueueMessage>();
|
messageQueue = std::queue<MessageQueueMessage>();
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
MessageQueueId_t MessageQueue::getId() const {
|
MessageQueueId_t MessageQueue::getId() const {
|
||||||
return mqId;
|
return mqId;
|
||||||
}
|
}
|
||||||
|
|
||||||
void MessageQueue::setDefaultDestination(MessageQueueId_t defaultDestination) {
|
void MessageQueue::setDefaultDestination(MessageQueueId_t defaultDestination) {
|
||||||
defaultDestinationSet = true;
|
defaultDestinationSet = true;
|
||||||
this->defaultDestination = defaultDestination;
|
this->defaultDestination = defaultDestination;
|
||||||
}
|
}
|
||||||
|
|
||||||
MessageQueueId_t MessageQueue::getDefaultDestination() const {
|
MessageQueueId_t MessageQueue::getDefaultDestination() const {
|
||||||
return defaultDestination;
|
return defaultDestination;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool MessageQueue::isDefaultDestinationSet() const {
|
bool MessageQueue::isDefaultDestinationSet() const {
|
||||||
return defaultDestinationSet;
|
return defaultDestinationSet;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// static core function to send messages.
|
// static core function to send messages.
|
||||||
ReturnValue_t MessageQueue::sendMessageFromMessageQueue(MessageQueueId_t sendTo,
|
ReturnValue_t MessageQueue::sendMessageFromMessageQueue(MessageQueueId_t sendTo,
|
||||||
MessageQueueMessageIF* message, MessageQueueId_t sentFrom,
|
MessageQueueMessageIF* message, MessageQueueId_t sentFrom,
|
||||||
bool ignoreFault) {
|
bool ignoreFault) {
|
||||||
if(message->getMessageSize() > message->getMaximumMessageSize()) {
|
if(message->getMessageSize() > message->getMaximumMessageSize()) {
|
||||||
// Actually, this should never happen or an error will be emitted
|
// Actually, this should never happen or an error will be emitted
|
||||||
// in MessageQueueMessage.
|
// in MessageQueueMessage.
|
||||||
// But I will still return a failure here.
|
// But I will still return a failure here.
|
||||||
return HasReturnvaluesIF::RETURN_FAILED;
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||||||
}
|
}
|
||||||
MessageQueue* targetQueue = dynamic_cast<MessageQueue*>(
|
MessageQueue* targetQueue = dynamic_cast<MessageQueue*>(
|
||||||
QueueMapManager::instance()->getMessageQueue(sendTo));
|
QueueMapManager::instance()->getMessageQueue(sendTo));
|
||||||
if(targetQueue == nullptr) {
|
if(targetQueue == nullptr) {
|
||||||
if(not ignoreFault) {
|
if(not ignoreFault) {
|
||||||
InternalErrorReporterIF* internalErrorReporter =
|
InternalErrorReporterIF* internalErrorReporter =
|
||||||
objectManager->get<InternalErrorReporterIF>(
|
objectManager->get<InternalErrorReporterIF>(
|
||||||
objects::INTERNAL_ERROR_REPORTER);
|
objects::INTERNAL_ERROR_REPORTER);
|
||||||
if (internalErrorReporter != nullptr) {
|
if (internalErrorReporter != nullptr) {
|
||||||
internalErrorReporter->queueMessageNotSent();
|
internalErrorReporter->queueMessageNotSent();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// TODO: Better returnvalue
|
// TODO: Better returnvalue
|
||||||
return HasReturnvaluesIF::RETURN_FAILED;
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||||||
}
|
}
|
||||||
|
|
||||||
if(targetQueue->messageQueue.size() < targetQueue->messageDepth) {
|
if(targetQueue->messageQueue.size() < targetQueue->messageDepth) {
|
||||||
MutexHelper mutexLock(targetQueue->queueLock, 20);
|
MutexHelper mutexLock(targetQueue->queueLock, 20);
|
||||||
// not ideal, works for now though.
|
// not ideal, works for now though.
|
||||||
MessageQueueMessage* mqmMessage =
|
MessageQueueMessage* mqmMessage =
|
||||||
dynamic_cast<MessageQueueMessage*>(message);
|
dynamic_cast<MessageQueueMessage*>(message);
|
||||||
if(message != nullptr) {
|
if(message != nullptr) {
|
||||||
targetQueue->messageQueue.push(*mqmMessage);
|
targetQueue->messageQueue.push(*mqmMessage);
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
sif::error << "MessageQueue::sendMessageFromMessageQueue: Message"
|
sif::error << "MessageQueue::sendMessageFromMessageQueue: Message"
|
||||||
"is not MessageQueueMessage!" << std::endl;
|
"is not MessageQueueMessage!" << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
return MessageQueueIF::FULL;
|
return MessageQueueIF::FULL;
|
||||||
}
|
}
|
||||||
message->setSender(sentFrom);
|
message->setSender(sentFrom);
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t MessageQueue::lockQueue(dur_millis_t lockTimeout) {
|
ReturnValue_t MessageQueue::lockQueue(dur_millis_t lockTimeout) {
|
||||||
return queueLock->lockMutex(lockTimeout);
|
return queueLock->lockMutex(lockTimeout);
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t MessageQueue::unlockQueue() {
|
ReturnValue_t MessageQueue::unlockQueue() {
|
||||||
return queueLock->unlockMutex();
|
return queueLock->unlockMutex();
|
||||||
}
|
}
|
||||||
|
@ -1,230 +1,230 @@
|
|||||||
#ifndef FRAMEWORK_OSAL_HOST_MESSAGEQUEUE_H_
|
#ifndef FRAMEWORK_OSAL_HOST_MESSAGEQUEUE_H_
|
||||||
#define FRAMEWORK_OSAL_HOST_MESSAGEQUEUE_H_
|
#define FRAMEWORK_OSAL_HOST_MESSAGEQUEUE_H_
|
||||||
|
|
||||||
#include <framework/internalError/InternalErrorReporterIF.h>
|
#include "../../internalError/InternalErrorReporterIF.h"
|
||||||
#include <framework/ipc/MessageQueueIF.h>
|
#include "../../ipc/MessageQueueIF.h"
|
||||||
#include <framework/ipc/MessageQueueMessage.h>
|
#include "../../ipc/MessageQueueMessage.h"
|
||||||
#include <framework/ipc/MutexIF.h>
|
#include "../../ipc/MutexIF.h"
|
||||||
#include <framework/timemanager/Clock.h>
|
#include "../../timemanager/Clock.h"
|
||||||
|
|
||||||
#include <queue>
|
#include <queue>
|
||||||
#include <memory>
|
#include <memory>
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief This class manages sending and receiving of
|
* @brief This class manages sending and receiving of
|
||||||
* message queue messages.
|
* message queue messages.
|
||||||
* @details
|
* @details
|
||||||
* Message queues are used to pass asynchronous messages between processes.
|
* Message queues are used to pass asynchronous messages between processes.
|
||||||
* They work like post boxes, where all incoming messages are stored in FIFO
|
* They work like post boxes, where all incoming messages are stored in FIFO
|
||||||
* order. This class creates a new receiving queue and provides methods to fetch
|
* order. This class creates a new receiving queue and provides methods to fetch
|
||||||
* received messages. Being a child of MessageQueueSender, this class also
|
* received messages. Being a child of MessageQueueSender, this class also
|
||||||
* provides methods to send a message to a user-defined or a default destination.
|
* provides methods to send a message to a user-defined or a default destination.
|
||||||
* In addition it also provides a reply method to answer to the queue it
|
* In addition it also provides a reply method to answer to the queue it
|
||||||
* received its last message from.
|
* received its last message from.
|
||||||
*
|
*
|
||||||
* The MessageQueue should be used as "post box" for a single owning object.
|
* The MessageQueue should be used as "post box" for a single owning object.
|
||||||
* So all message queue communication is "n-to-one".
|
* So all message queue communication is "n-to-one".
|
||||||
* For creating the queue, as well as sending and receiving messages, the class
|
* For creating the queue, as well as sending and receiving messages, the class
|
||||||
* makes use of the operating system calls provided.
|
* makes use of the operating system calls provided.
|
||||||
*
|
*
|
||||||
* Please keep in mind that FreeRTOS offers different calls for message queue
|
* Please keep in mind that FreeRTOS offers different calls for message queue
|
||||||
* operations if called from an ISR.
|
* operations if called from an ISR.
|
||||||
* For now, the system context needs to be switched manually.
|
* For now, the system context needs to be switched manually.
|
||||||
* @ingroup osal
|
* @ingroup osal
|
||||||
* @ingroup message_queue
|
* @ingroup message_queue
|
||||||
*/
|
*/
|
||||||
class MessageQueue : public MessageQueueIF {
|
class MessageQueue : public MessageQueueIF {
|
||||||
friend class MessageQueueSenderIF;
|
friend class MessageQueueSenderIF;
|
||||||
public:
|
public:
|
||||||
/**
|
/**
|
||||||
* @brief The constructor initializes and configures the message queue.
|
* @brief The constructor initializes and configures the message queue.
|
||||||
* @details
|
* @details
|
||||||
* By making use of the according operating system call, a message queue is
|
* By making use of the according operating system call, a message queue is
|
||||||
* created and initialized. The message depth - the maximum number of
|
* created and initialized. The message depth - the maximum number of
|
||||||
* messages to be buffered - may be set with the help of a parameter,
|
* messages to be buffered - may be set with the help of a parameter,
|
||||||
* whereas the message size is automatically set to the maximum message
|
* whereas the message size is automatically set to the maximum message
|
||||||
* queue message size. The operating system sets the message queue id, or
|
* queue message size. The operating system sets the message queue id, or
|
||||||
* in case of failure, it is set to zero.
|
* in case of failure, it is set to zero.
|
||||||
* @param message_depth
|
* @param message_depth
|
||||||
* The number of messages to be buffered before passing an error to the
|
* The number of messages to be buffered before passing an error to the
|
||||||
* sender. Default is three.
|
* sender. Default is three.
|
||||||
* @param max_message_size
|
* @param max_message_size
|
||||||
* With this parameter, the maximum message size can be adjusted.
|
* With this parameter, the maximum message size can be adjusted.
|
||||||
* This should be left default.
|
* This should be left default.
|
||||||
*/
|
*/
|
||||||
MessageQueue(size_t messageDepth = 3,
|
MessageQueue(size_t messageDepth = 3,
|
||||||
size_t maxMessageSize = MessageQueueMessage::MAX_MESSAGE_SIZE);
|
size_t maxMessageSize = MessageQueueMessage::MAX_MESSAGE_SIZE);
|
||||||
|
|
||||||
/** Copying message queues forbidden */
|
/** Copying message queues forbidden */
|
||||||
MessageQueue(const MessageQueue&) = delete;
|
MessageQueue(const MessageQueue&) = delete;
|
||||||
MessageQueue& operator=(const MessageQueue&) = delete;
|
MessageQueue& operator=(const MessageQueue&) = delete;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief The destructor deletes the formerly created message queue.
|
* @brief The destructor deletes the formerly created message queue.
|
||||||
* @details This is accomplished by using the delete call provided
|
* @details This is accomplished by using the delete call provided
|
||||||
* by the operating system.
|
* by the operating system.
|
||||||
*/
|
*/
|
||||||
virtual ~MessageQueue();
|
virtual ~MessageQueue();
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief This operation sends a message to the given destination.
|
* @brief This operation sends a message to the given destination.
|
||||||
* @details It directly uses the sendMessage call of the MessageQueueSender
|
* @details It directly uses the sendMessage call of the MessageQueueSender
|
||||||
* parent, but passes its queue id as "sentFrom" parameter.
|
* parent, but passes its queue id as "sentFrom" parameter.
|
||||||
* @param sendTo This parameter specifies the message queue id of the
|
* @param sendTo This parameter specifies the message queue id of the
|
||||||
* destination message queue.
|
* destination message queue.
|
||||||
* @param message A pointer to a previously created message, which is sent.
|
* @param message A pointer to a previously created message, which is sent.
|
||||||
* @param ignoreFault If set to true, the internal software fault counter
|
* @param ignoreFault If set to true, the internal software fault counter
|
||||||
* is not incremented if queue is full.
|
* is not incremented if queue is full.
|
||||||
*/
|
*/
|
||||||
ReturnValue_t sendMessage(MessageQueueId_t sendTo,
|
ReturnValue_t sendMessage(MessageQueueId_t sendTo,
|
||||||
MessageQueueMessageIF* message, bool ignoreFault = false) override;
|
MessageQueueMessageIF* message, bool ignoreFault = false) override;
|
||||||
/**
|
/**
|
||||||
* @brief This operation sends a message to the default destination.
|
* @brief This operation sends a message to the default destination.
|
||||||
* @details As in the sendMessage method, this function uses the
|
* @details As in the sendMessage method, this function uses the
|
||||||
* sendToDefault call of the MessageQueueSender parent class and adds its
|
* sendToDefault call of the MessageQueueSender parent class and adds its
|
||||||
* queue id as "sentFrom" information.
|
* queue id as "sentFrom" information.
|
||||||
* @param message A pointer to a previously created message, which is sent.
|
* @param message A pointer to a previously created message, which is sent.
|
||||||
*/
|
*/
|
||||||
ReturnValue_t sendToDefault(MessageQueueMessageIF* message) override;
|
ReturnValue_t sendToDefault(MessageQueueMessageIF* message) override;
|
||||||
/**
|
/**
|
||||||
* @brief This operation sends a message to the last communication partner.
|
* @brief This operation sends a message to the last communication partner.
|
||||||
* @details This operation simplifies answering an incoming message by using
|
* @details This operation simplifies answering an incoming message by using
|
||||||
* the stored lastPartner information as destination. If there was no
|
* the stored lastPartner information as destination. If there was no
|
||||||
* message received yet (i.e. lastPartner is zero), an error code is returned.
|
* message received yet (i.e. lastPartner is zero), an error code is returned.
|
||||||
* @param message A pointer to a previously created message, which is sent.
|
* @param message A pointer to a previously created message, which is sent.
|
||||||
*/
|
*/
|
||||||
ReturnValue_t reply(MessageQueueMessageIF* message) override;
|
ReturnValue_t reply(MessageQueueMessageIF* message) override;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief With the sendMessage call, a queue message is sent to a
|
* @brief With the sendMessage call, a queue message is sent to a
|
||||||
* receiving queue.
|
* receiving queue.
|
||||||
* @details
|
* @details
|
||||||
* This method takes the message provided, adds the sentFrom information and
|
* This method takes the message provided, adds the sentFrom information and
|
||||||
* passes it on to the destination provided with an operating system call.
|
* passes it on to the destination provided with an operating system call.
|
||||||
* The OS's return value is returned.
|
* The OS's return value is returned.
|
||||||
* @param sendTo This parameter specifies the message queue id to send
|
* @param sendTo This parameter specifies the message queue id to send
|
||||||
* the message to.
|
* the message to.
|
||||||
* @param message This is a pointer to a previously created message,
|
* @param message This is a pointer to a previously created message,
|
||||||
* which is sent.
|
* which is sent.
|
||||||
* @param sentFrom The sentFrom information can be set to inject the
|
* @param sentFrom The sentFrom information can be set to inject the
|
||||||
* sender's queue id into the message. This variable is set to zero by
|
* sender's queue id into the message. This variable is set to zero by
|
||||||
* default.
|
* default.
|
||||||
* @param ignoreFault If set to true, the internal software fault counter
|
* @param ignoreFault If set to true, the internal software fault counter
|
||||||
* is not incremented if queue is full.
|
* is not incremented if queue is full.
|
||||||
*/
|
*/
|
||||||
virtual ReturnValue_t sendMessageFrom( MessageQueueId_t sendTo,
|
virtual ReturnValue_t sendMessageFrom( MessageQueueId_t sendTo,
|
||||||
MessageQueueMessageIF* message, MessageQueueId_t sentFrom = NO_QUEUE,
|
MessageQueueMessageIF* message, MessageQueueId_t sentFrom = NO_QUEUE,
|
||||||
bool ignoreFault = false) override;
|
bool ignoreFault = false) override;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief The sendToDefault method sends a queue message to the default
|
* @brief The sendToDefault method sends a queue message to the default
|
||||||
* destination.
|
* destination.
|
||||||
* @details
|
* @details
|
||||||
* In all other aspects, it works identical to the sendMessage method.
|
* In all other aspects, it works identical to the sendMessage method.
|
||||||
* @param message This is a pointer to a previously created message,
|
* @param message This is a pointer to a previously created message,
|
||||||
* which is sent.
|
* which is sent.
|
||||||
* @param sentFrom The sentFrom information can be set to inject the
|
* @param sentFrom The sentFrom information can be set to inject the
|
||||||
* sender's queue id into the message. This variable is set to zero by
|
* sender's queue id into the message. This variable is set to zero by
|
||||||
* default.
|
* default.
|
||||||
*/
|
*/
|
||||||
virtual ReturnValue_t sendToDefaultFrom( MessageQueueMessageIF* message,
|
virtual ReturnValue_t sendToDefaultFrom( MessageQueueMessageIF* message,
|
||||||
MessageQueueId_t sentFrom = NO_QUEUE,
|
MessageQueueId_t sentFrom = NO_QUEUE,
|
||||||
bool ignoreFault = false) override;
|
bool ignoreFault = false) override;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief This function reads available messages from the message queue
|
* @brief This function reads available messages from the message queue
|
||||||
* and returns the sender.
|
* and returns the sender.
|
||||||
* @details
|
* @details
|
||||||
* It works identically to the other receiveMessage call, but in addition
|
* It works identically to the other receiveMessage call, but in addition
|
||||||
* returns the sender's queue id.
|
* returns the sender's queue id.
|
||||||
* @param message A pointer to a message in which the received data is stored.
|
* @param message A pointer to a message in which the received data is stored.
|
||||||
* @param receivedFrom A pointer to a queue id in which the sender's id is stored.
|
* @param receivedFrom A pointer to a queue id in which the sender's id is stored.
|
||||||
*/
|
*/
|
||||||
ReturnValue_t receiveMessage(MessageQueueMessageIF* message,
|
ReturnValue_t receiveMessage(MessageQueueMessageIF* message,
|
||||||
MessageQueueId_t *receivedFrom) override;
|
MessageQueueId_t *receivedFrom) override;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief This function reads available messages from the message queue.
|
* @brief This function reads available messages from the message queue.
|
||||||
* @details
|
* @details
|
||||||
* If data is available it is stored in the passed message pointer.
|
* If data is available it is stored in the passed message pointer.
|
||||||
* The message's original content is overwritten and the sendFrom
|
* The message's original content is overwritten and the sendFrom
|
||||||
* information is stored in the lastPartner attribute. Else, the lastPartner
|
* information is stored in the lastPartner attribute. Else, the lastPartner
|
||||||
* information remains untouched, the message's content is cleared and the
|
* information remains untouched, the message's content is cleared and the
|
||||||
* function returns immediately.
|
* function returns immediately.
|
||||||
* @param message A pointer to a message in which the received data is stored.
|
* @param message A pointer to a message in which the received data is stored.
|
||||||
*/
|
*/
|
||||||
ReturnValue_t receiveMessage(MessageQueueMessageIF* message) override;
|
ReturnValue_t receiveMessage(MessageQueueMessageIF* message) override;
|
||||||
/**
|
/**
|
||||||
* Deletes all pending messages in the queue.
|
* Deletes all pending messages in the queue.
|
||||||
* @param count The number of flushed messages.
|
* @param count The number of flushed messages.
|
||||||
* @return RETURN_OK on success.
|
* @return RETURN_OK on success.
|
||||||
*/
|
*/
|
||||||
ReturnValue_t flush(uint32_t* count) override;
|
ReturnValue_t flush(uint32_t* count) override;
|
||||||
/**
|
/**
|
||||||
* @brief This method returns the message queue id of the last
|
* @brief This method returns the message queue id of the last
|
||||||
* communication partner.
|
* communication partner.
|
||||||
*/
|
*/
|
||||||
MessageQueueId_t getLastPartner() const override;
|
MessageQueueId_t getLastPartner() const override;
|
||||||
/**
|
/**
|
||||||
* @brief This method returns the message queue id of this class's
|
* @brief This method returns the message queue id of this class's
|
||||||
* message queue.
|
* message queue.
|
||||||
*/
|
*/
|
||||||
MessageQueueId_t getId() const override;
|
MessageQueueId_t getId() const override;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief This method is a simple setter for the default destination.
|
* @brief This method is a simple setter for the default destination.
|
||||||
*/
|
*/
|
||||||
void setDefaultDestination(MessageQueueId_t defaultDestination) override;
|
void setDefaultDestination(MessageQueueId_t defaultDestination) override;
|
||||||
/**
|
/**
|
||||||
* @brief This method is a simple getter for the default destination.
|
* @brief This method is a simple getter for the default destination.
|
||||||
*/
|
*/
|
||||||
MessageQueueId_t getDefaultDestination() const override;
|
MessageQueueId_t getDefaultDestination() const override;
|
||||||
|
|
||||||
bool isDefaultDestinationSet() const override;
|
bool isDefaultDestinationSet() const override;
|
||||||
|
|
||||||
ReturnValue_t lockQueue(dur_millis_t lockTimeout);
|
ReturnValue_t lockQueue(dur_millis_t lockTimeout);
|
||||||
ReturnValue_t unlockQueue();
|
ReturnValue_t unlockQueue();
|
||||||
protected:
|
protected:
|
||||||
/**
|
/**
|
||||||
* @brief Implementation to be called from any send Call within
|
* @brief Implementation to be called from any send Call within
|
||||||
* MessageQueue and MessageQueueSenderIF.
|
* MessageQueue and MessageQueueSenderIF.
|
||||||
* @details
|
* @details
|
||||||
* This method takes the message provided, adds the sentFrom information and
|
* This method takes the message provided, adds the sentFrom information and
|
||||||
* passes it on to the destination provided with an operating system call.
|
* passes it on to the destination provided with an operating system call.
|
||||||
* The OS's return value is returned.
|
* The OS's return value is returned.
|
||||||
* @param sendTo
|
* @param sendTo
|
||||||
* This parameter specifies the message queue id to send the message to.
|
* This parameter specifies the message queue id to send the message to.
|
||||||
* @param message
|
* @param message
|
||||||
* This is a pointer to a previously created message, which is sent.
|
* This is a pointer to a previously created message, which is sent.
|
||||||
* @param sentFrom
|
* @param sentFrom
|
||||||
* The sentFrom information can be set to inject the sender's queue id into
|
* The sentFrom information can be set to inject the sender's queue id into
|
||||||
* the message. This variable is set to zero by default.
|
* the message. This variable is set to zero by default.
|
||||||
* @param ignoreFault
|
* @param ignoreFault
|
||||||
* If set to true, the internal software fault counter is not incremented
|
* If set to true, the internal software fault counter is not incremented
|
||||||
* if queue is full.
|
* if queue is full.
|
||||||
* @param context Specify whether call is made from task or from an ISR.
|
* @param context Specify whether call is made from task or from an ISR.
|
||||||
*/
|
*/
|
||||||
static ReturnValue_t sendMessageFromMessageQueue(MessageQueueId_t sendTo,
|
static ReturnValue_t sendMessageFromMessageQueue(MessageQueueId_t sendTo,
|
||||||
MessageQueueMessageIF* message, MessageQueueId_t sentFrom = NO_QUEUE,
|
MessageQueueMessageIF* message, MessageQueueId_t sentFrom = NO_QUEUE,
|
||||||
bool ignoreFault=false);
|
bool ignoreFault=false);
|
||||||
|
|
||||||
//static ReturnValue_t handleSendResult(BaseType_t result, bool ignoreFault);
|
//static ReturnValue_t handleSendResult(BaseType_t result, bool ignoreFault);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
std::queue<MessageQueueMessage> messageQueue;
|
std::queue<MessageQueueMessage> messageQueue;
|
||||||
/**
|
/**
|
||||||
* @brief The class stores the queue id it got assigned.
|
* @brief The class stores the queue id it got assigned.
|
||||||
* If initialization fails, the queue id is set to zero.
|
* If initialization fails, the queue id is set to zero.
|
||||||
*/
|
*/
|
||||||
MessageQueueId_t mqId = 0;
|
MessageQueueId_t mqId = 0;
|
||||||
size_t messageSize = 0;
|
size_t messageSize = 0;
|
||||||
size_t messageDepth = 0;
|
size_t messageDepth = 0;
|
||||||
|
|
||||||
MutexIF* queueLock;
|
MutexIF* queueLock;
|
||||||
|
|
||||||
bool defaultDestinationSet = false;
|
bool defaultDestinationSet = false;
|
||||||
MessageQueueId_t defaultDestination = 0;
|
MessageQueueId_t defaultDestination = 0;
|
||||||
MessageQueueId_t lastPartner = 0;
|
MessageQueueId_t lastPartner = 0;
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif /* FRAMEWORK_OSAL_HOST_MESSAGEQUEUE_H_ */
|
#endif /* FRAMEWORK_OSAL_HOST_MESSAGEQUEUE_H_ */
|
||||||
|
@ -1,40 +1,40 @@
|
|||||||
#include <framework/osal/host/Mutex.h>
|
#include "../../osal/host/Mutex.h"
|
||||||
#include <framework/serviceinterface/ServiceInterfaceStream.h>
|
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
||||||
|
|
||||||
const uint32_t MutexIF::POLLING = 0;
|
const uint32_t MutexIF::POLLING = 0;
|
||||||
const uint32_t MutexIF::BLOCKING = 0xffffffff;
|
const uint32_t MutexIF::BLOCKING = 0xffffffff;
|
||||||
|
|
||||||
ReturnValue_t Mutex::lockMutex(uint32_t timeoutMs) {
|
ReturnValue_t Mutex::lockMutex(uint32_t timeoutMs) {
|
||||||
if(timeoutMs == MutexIF::BLOCKING) {
|
if(timeoutMs == MutexIF::BLOCKING) {
|
||||||
mutex.lock();
|
mutex.lock();
|
||||||
locked = true;
|
locked = true;
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
else if(timeoutMs == MutexIF::POLLING) {
|
else if(timeoutMs == MutexIF::POLLING) {
|
||||||
if(mutex.try_lock()) {
|
if(mutex.try_lock()) {
|
||||||
locked = true;
|
locked = true;
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else if(timeoutMs > MutexIF::POLLING){
|
else if(timeoutMs > MutexIF::POLLING){
|
||||||
auto chronoMs = std::chrono::milliseconds(timeoutMs);
|
auto chronoMs = std::chrono::milliseconds(timeoutMs);
|
||||||
if(mutex.try_lock_for(chronoMs)) {
|
if(mutex.try_lock_for(chronoMs)) {
|
||||||
locked = true;
|
locked = true;
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return MutexIF::MUTEX_TIMEOUT;
|
return MutexIF::MUTEX_TIMEOUT;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t Mutex::unlockMutex() {
|
ReturnValue_t Mutex::unlockMutex() {
|
||||||
if(not locked) {
|
if(not locked) {
|
||||||
return MutexIF::CURR_THREAD_DOES_NOT_OWN_MUTEX;
|
return MutexIF::CURR_THREAD_DOES_NOT_OWN_MUTEX;
|
||||||
}
|
}
|
||||||
mutex.unlock();
|
mutex.unlock();
|
||||||
locked = false;
|
locked = false;
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::timed_mutex* Mutex::getMutexHandle() {
|
std::timed_mutex* Mutex::getMutexHandle() {
|
||||||
return &mutex;
|
return &mutex;
|
||||||
}
|
}
|
||||||
|
@ -1,28 +1,28 @@
|
|||||||
#ifndef FRAMEWORK_OSAL_FREERTOS_MUTEX_H_
|
#ifndef FRAMEWORK_OSAL_FREERTOS_MUTEX_H_
|
||||||
#define FRAMEWORK_OSAL_FREERTOS_MUTEX_H_
|
#define FRAMEWORK_OSAL_FREERTOS_MUTEX_H_
|
||||||
|
|
||||||
#include <framework/ipc/MutexIF.h>
|
#include "../../ipc/MutexIF.h"
|
||||||
|
|
||||||
#include <mutex>
|
#include <mutex>
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief OS component to implement MUTual EXclusion
|
* @brief OS component to implement MUTual EXclusion
|
||||||
*
|
*
|
||||||
* @details
|
* @details
|
||||||
* Mutexes are binary semaphores which include a priority inheritance mechanism.
|
* Mutexes are binary semaphores which include a priority inheritance mechanism.
|
||||||
* Documentation: https://www.freertos.org/Real-time-embedded-RTOS-mutexes.html
|
* Documentation: https://www.freertos.org/Real-time-embedded-RTOS-mutexes.html
|
||||||
* @ingroup osal
|
* @ingroup osal
|
||||||
*/
|
*/
|
||||||
class Mutex : public MutexIF {
|
class Mutex : public MutexIF {
|
||||||
public:
|
public:
|
||||||
Mutex() = default;
|
Mutex() = default;
|
||||||
ReturnValue_t lockMutex(uint32_t timeoutMs = MutexIF::BLOCKING) override;
|
ReturnValue_t lockMutex(uint32_t timeoutMs = MutexIF::BLOCKING) override;
|
||||||
ReturnValue_t unlockMutex() override;
|
ReturnValue_t unlockMutex() override;
|
||||||
|
|
||||||
std::timed_mutex* getMutexHandle();
|
std::timed_mutex* getMutexHandle();
|
||||||
private:
|
private:
|
||||||
bool locked = false;
|
bool locked = false;
|
||||||
std::timed_mutex mutex;
|
std::timed_mutex mutex;
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif /* FRAMEWORK_FREERTOS_MUTEX_H_ */
|
#endif /* FRAMEWORK_FREERTOS_MUTEX_H_ */
|
||||||
|
@ -1,28 +1,28 @@
|
|||||||
#include <framework/ipc/MutexFactory.h>
|
#include "../../ipc/MutexFactory.h"
|
||||||
#include <framework/osal/host/Mutex.h>
|
#include "../../osal/host/Mutex.h"
|
||||||
|
|
||||||
//TODO: Different variant than the lazy loading in QueueFactory.
|
//TODO: Different variant than the lazy loading in QueueFactory.
|
||||||
//What's better and why? -> one is on heap the other on bss/data
|
//What's better and why? -> one is on heap the other on bss/data
|
||||||
//MutexFactory* MutexFactory::factoryInstance = new MutexFactory();
|
//MutexFactory* MutexFactory::factoryInstance = new MutexFactory();
|
||||||
MutexFactory* MutexFactory::factoryInstance = nullptr;
|
MutexFactory* MutexFactory::factoryInstance = nullptr;
|
||||||
|
|
||||||
MutexFactory::MutexFactory() {
|
MutexFactory::MutexFactory() {
|
||||||
}
|
}
|
||||||
|
|
||||||
MutexFactory::~MutexFactory() {
|
MutexFactory::~MutexFactory() {
|
||||||
}
|
}
|
||||||
|
|
||||||
MutexFactory* MutexFactory::instance() {
|
MutexFactory* MutexFactory::instance() {
|
||||||
if (factoryInstance == nullptr){
|
if (factoryInstance == nullptr){
|
||||||
factoryInstance = new MutexFactory();
|
factoryInstance = new MutexFactory();
|
||||||
}
|
}
|
||||||
return MutexFactory::factoryInstance;
|
return MutexFactory::factoryInstance;
|
||||||
}
|
}
|
||||||
|
|
||||||
MutexIF* MutexFactory::createMutex() {
|
MutexIF* MutexFactory::createMutex() {
|
||||||
return new Mutex();
|
return new Mutex();
|
||||||
}
|
}
|
||||||
|
|
||||||
void MutexFactory::deleteMutex(MutexIF* mutex) {
|
void MutexFactory::deleteMutex(MutexIF* mutex) {
|
||||||
delete mutex;
|
delete mutex;
|
||||||
}
|
}
|
||||||
|
@ -1,176 +1,176 @@
|
|||||||
#include <framework/ipc/MutexFactory.h>
|
#include "../../ipc/MutexFactory.h"
|
||||||
#include <framework/osal/host/Mutex.h>
|
#include "../../osal/host/Mutex.h"
|
||||||
#include <framework/osal/host/PeriodicTask.h>
|
#include "../../osal/host/PeriodicTask.h"
|
||||||
|
|
||||||
#include <framework/serviceinterface/ServiceInterfaceStream.h>
|
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
||||||
#include <framework/tasks/ExecutableObjectIF.h>
|
#include "../../tasks/ExecutableObjectIF.h"
|
||||||
|
|
||||||
#include <thread>
|
#include <thread>
|
||||||
#include <chrono>
|
#include <chrono>
|
||||||
|
|
||||||
#if defined(WIN32)
|
#if defined(WIN32)
|
||||||
#include <windows.h>
|
#include <windows.h>
|
||||||
#elif defined(LINUX)
|
#elif defined(LINUX)
|
||||||
#include <pthread.h>
|
#include <pthread.h>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
PeriodicTask::PeriodicTask(const char *name, TaskPriority setPriority,
|
PeriodicTask::PeriodicTask(const char *name, TaskPriority setPriority,
|
||||||
TaskStackSize setStack, TaskPeriod setPeriod,
|
TaskStackSize setStack, TaskPeriod setPeriod,
|
||||||
void (*setDeadlineMissedFunc)()) :
|
void (*setDeadlineMissedFunc)()) :
|
||||||
started(false), taskName(name), period(setPeriod),
|
started(false), taskName(name), period(setPeriod),
|
||||||
deadlineMissedFunc(setDeadlineMissedFunc) {
|
deadlineMissedFunc(setDeadlineMissedFunc) {
|
||||||
// It is propably possible to set task priorities by using the native
|
// It is propably possible to set task priorities by using the native
|
||||||
// task handles for Windows / Linux
|
// task handles for Windows / Linux
|
||||||
mainThread = std::thread(&PeriodicTask::taskEntryPoint, this, this);
|
mainThread = std::thread(&PeriodicTask::taskEntryPoint, this, this);
|
||||||
#if defined(WIN32)
|
#if defined(WIN32)
|
||||||
/* List of possible priority classes:
|
/* List of possible priority classes:
|
||||||
* https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/
|
* https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/
|
||||||
* nf-processthreadsapi-setpriorityclass
|
* nf-processthreadsapi-setpriorityclass
|
||||||
* And respective thread priority numbers:
|
* And respective thread priority numbers:
|
||||||
* https://docs.microsoft.com/en-us/windows/
|
* https://docs.microsoft.com/en-us/windows/
|
||||||
* win32/procthread/scheduling-priorities */
|
* win32/procthread/scheduling-priorities */
|
||||||
int result = SetPriorityClass(
|
int result = SetPriorityClass(
|
||||||
reinterpret_cast<HANDLE>(mainThread.native_handle()),
|
reinterpret_cast<HANDLE>(mainThread.native_handle()),
|
||||||
ABOVE_NORMAL_PRIORITY_CLASS);
|
ABOVE_NORMAL_PRIORITY_CLASS);
|
||||||
if(result != 0) {
|
if(result != 0) {
|
||||||
sif::error << "PeriodicTask: Windows SetPriorityClass failed with code "
|
sif::error << "PeriodicTask: Windows SetPriorityClass failed with code "
|
||||||
<< GetLastError() << std::endl;
|
<< GetLastError() << std::endl;
|
||||||
}
|
}
|
||||||
result = SetThreadPriority(
|
result = SetThreadPriority(
|
||||||
reinterpret_cast<HANDLE>(mainThread.native_handle()),
|
reinterpret_cast<HANDLE>(mainThread.native_handle()),
|
||||||
THREAD_PRIORITY_NORMAL);
|
THREAD_PRIORITY_NORMAL);
|
||||||
if(result != 0) {
|
if(result != 0) {
|
||||||
sif::error << "PeriodicTask: Windows SetPriorityClass failed with code "
|
sif::error << "PeriodicTask: Windows SetPriorityClass failed with code "
|
||||||
<< GetLastError() << std::endl;
|
<< GetLastError() << std::endl;
|
||||||
}
|
}
|
||||||
#elif defined(LINUX)
|
#elif defined(LINUX)
|
||||||
// we can just copy and paste the code from linux here.
|
// we can just copy and paste the code from linux here.
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
PeriodicTask::~PeriodicTask(void) {
|
PeriodicTask::~PeriodicTask(void) {
|
||||||
//Do not delete objects, we were responsible for ptrs only.
|
//Do not delete objects, we were responsible for ptrs only.
|
||||||
terminateThread = true;
|
terminateThread = true;
|
||||||
if(mainThread.joinable()) {
|
if(mainThread.joinable()) {
|
||||||
mainThread.join();
|
mainThread.join();
|
||||||
}
|
}
|
||||||
delete this;
|
delete this;
|
||||||
}
|
}
|
||||||
|
|
||||||
void PeriodicTask::taskEntryPoint(void* argument) {
|
void PeriodicTask::taskEntryPoint(void* argument) {
|
||||||
PeriodicTask *originalTask(reinterpret_cast<PeriodicTask*>(argument));
|
PeriodicTask *originalTask(reinterpret_cast<PeriodicTask*>(argument));
|
||||||
|
|
||||||
|
|
||||||
if (not originalTask->started) {
|
if (not originalTask->started) {
|
||||||
// we have to suspend/block here until the task is started.
|
// we have to suspend/block here until the task is started.
|
||||||
// if semaphores are implemented, use them here.
|
// if semaphores are implemented, use them here.
|
||||||
std::unique_lock<std::mutex> lock(initMutex);
|
std::unique_lock<std::mutex> lock(initMutex);
|
||||||
initCondition.wait(lock);
|
initCondition.wait(lock);
|
||||||
}
|
}
|
||||||
|
|
||||||
this->taskFunctionality();
|
this->taskFunctionality();
|
||||||
sif::debug << "PeriodicTask::taskEntryPoint: "
|
sif::debug << "PeriodicTask::taskEntryPoint: "
|
||||||
"Returned from taskFunctionality." << std::endl;
|
"Returned from taskFunctionality." << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t PeriodicTask::startTask() {
|
ReturnValue_t PeriodicTask::startTask() {
|
||||||
started = true;
|
started = true;
|
||||||
|
|
||||||
// Notify task to start.
|
// Notify task to start.
|
||||||
std::lock_guard<std::mutex> lock(initMutex);
|
std::lock_guard<std::mutex> lock(initMutex);
|
||||||
initCondition.notify_one();
|
initCondition.notify_one();
|
||||||
|
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t PeriodicTask::sleepFor(uint32_t ms) {
|
ReturnValue_t PeriodicTask::sleepFor(uint32_t ms) {
|
||||||
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
|
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
void PeriodicTask::taskFunctionality() {
|
void PeriodicTask::taskFunctionality() {
|
||||||
std::chrono::milliseconds periodChrono(static_cast<uint32_t>(period*1000));
|
std::chrono::milliseconds periodChrono(static_cast<uint32_t>(period*1000));
|
||||||
auto currentStartTime {
|
auto currentStartTime {
|
||||||
std::chrono::duration_cast<std::chrono::milliseconds>(
|
std::chrono::duration_cast<std::chrono::milliseconds>(
|
||||||
std::chrono::system_clock::now().time_since_epoch())
|
std::chrono::system_clock::now().time_since_epoch())
|
||||||
};
|
};
|
||||||
auto nextStartTime{ currentStartTime };
|
auto nextStartTime{ currentStartTime };
|
||||||
|
|
||||||
/* Enter the loop that defines the task behavior. */
|
/* Enter the loop that defines the task behavior. */
|
||||||
for (;;) {
|
for (;;) {
|
||||||
if(terminateThread.load()) {
|
if(terminateThread.load()) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
for (ObjectList::iterator it = objectList.begin();
|
for (ObjectList::iterator it = objectList.begin();
|
||||||
it != objectList.end(); ++it) {
|
it != objectList.end(); ++it) {
|
||||||
(*it)->performOperation();
|
(*it)->performOperation();
|
||||||
}
|
}
|
||||||
if(not delayForInterval(¤tStartTime, periodChrono)) {
|
if(not delayForInterval(¤tStartTime, periodChrono)) {
|
||||||
sif::warning << "PeriodicTask: " << taskName <<
|
sif::warning << "PeriodicTask: " << taskName <<
|
||||||
" missed deadline!\n" << std::flush;
|
" missed deadline!\n" << std::flush;
|
||||||
if(deadlineMissedFunc != nullptr) {
|
if(deadlineMissedFunc != nullptr) {
|
||||||
this->deadlineMissedFunc();
|
this->deadlineMissedFunc();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t PeriodicTask::addComponent(object_id_t object) {
|
ReturnValue_t PeriodicTask::addComponent(object_id_t object) {
|
||||||
ExecutableObjectIF* newObject = objectManager->get<ExecutableObjectIF>(
|
ExecutableObjectIF* newObject = objectManager->get<ExecutableObjectIF>(
|
||||||
object);
|
object);
|
||||||
if (newObject == nullptr) {
|
if (newObject == nullptr) {
|
||||||
return HasReturnvaluesIF::RETURN_FAILED;
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||||||
}
|
}
|
||||||
objectList.push_back(newObject);
|
objectList.push_back(newObject);
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t PeriodicTask::getPeriodMs() const {
|
uint32_t PeriodicTask::getPeriodMs() const {
|
||||||
return period * 1000;
|
return period * 1000;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool PeriodicTask::delayForInterval(chron_ms* previousWakeTimeMs,
|
bool PeriodicTask::delayForInterval(chron_ms* previousWakeTimeMs,
|
||||||
const chron_ms interval) {
|
const chron_ms interval) {
|
||||||
bool shouldDelay = false;
|
bool shouldDelay = false;
|
||||||
//Get current wakeup time
|
//Get current wakeup time
|
||||||
auto currentStartTime =
|
auto currentStartTime =
|
||||||
std::chrono::duration_cast<std::chrono::milliseconds>(
|
std::chrono::duration_cast<std::chrono::milliseconds>(
|
||||||
std::chrono::system_clock::now().time_since_epoch());
|
std::chrono::system_clock::now().time_since_epoch());
|
||||||
/* Generate the tick time at which the task wants to wake. */
|
/* Generate the tick time at which the task wants to wake. */
|
||||||
auto nextTimeToWake_ms = (*previousWakeTimeMs) + interval;
|
auto nextTimeToWake_ms = (*previousWakeTimeMs) + interval;
|
||||||
|
|
||||||
if (currentStartTime < *previousWakeTimeMs) {
|
if (currentStartTime < *previousWakeTimeMs) {
|
||||||
/* The tick count has overflowed since this function was
|
/* The tick count has overflowed since this function was
|
||||||
lasted called. In this case the only time we should ever
|
lasted called. In this case the only time we should ever
|
||||||
actually delay is if the wake time has also overflowed,
|
actually delay is if the wake time has also overflowed,
|
||||||
and the wake time is greater than the tick time. When this
|
and the wake time is greater than the tick time. When this
|
||||||
is the case it is as if neither time had overflowed. */
|
is the case it is as if neither time had overflowed. */
|
||||||
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|
||||||
&& (nextTimeToWake_ms > currentStartTime)) {
|
&& (nextTimeToWake_ms > currentStartTime)) {
|
||||||
shouldDelay = true;
|
shouldDelay = true;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
/* The tick time has not overflowed. In this case we will
|
/* The tick time has not overflowed. In this case we will
|
||||||
delay if either the wake time has overflowed, and/or the
|
delay if either the wake time has overflowed, and/or the
|
||||||
tick time is less than the wake time. */
|
tick time is less than the wake time. */
|
||||||
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|
||||||
|| (nextTimeToWake_ms > currentStartTime)) {
|
|| (nextTimeToWake_ms > currentStartTime)) {
|
||||||
shouldDelay = true;
|
shouldDelay = true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Update the wake time ready for the next call. */
|
/* Update the wake time ready for the next call. */
|
||||||
|
|
||||||
(*previousWakeTimeMs) = nextTimeToWake_ms;
|
(*previousWakeTimeMs) = nextTimeToWake_ms;
|
||||||
|
|
||||||
if (shouldDelay) {
|
if (shouldDelay) {
|
||||||
auto sleepTime = std::chrono::duration_cast<std::chrono::milliseconds>(
|
auto sleepTime = std::chrono::duration_cast<std::chrono::milliseconds>(
|
||||||
nextTimeToWake_ms - currentStartTime);
|
nextTimeToWake_ms - currentStartTime);
|
||||||
std::this_thread::sleep_for(sleepTime);
|
std::this_thread::sleep_for(sleepTime);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
//We are shifting the time in case the deadline was missed like rtems
|
//We are shifting the time in case the deadline was missed like rtems
|
||||||
(*previousWakeTimeMs) = currentStartTime;
|
(*previousWakeTimeMs) = currentStartTime;
|
||||||
return false;
|
return false;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -1,123 +1,123 @@
|
|||||||
#ifndef FRAMEWORK_OSAL_HOST_PERIODICTASK_H_
|
#ifndef FRAMEWORK_OSAL_HOST_PERIODICTASK_H_
|
||||||
#define FRAMEWORK_OSAL_HOST_PERIODICTASK_H_
|
#define FRAMEWORK_OSAL_HOST_PERIODICTASK_H_
|
||||||
|
|
||||||
#include <framework/objectmanager/ObjectManagerIF.h>
|
#include "../../objectmanager/ObjectManagerIF.h"
|
||||||
#include <framework/tasks/PeriodicTaskIF.h>
|
#include "../../tasks/PeriodicTaskIF.h"
|
||||||
#include <framework/tasks/Typedef.h>
|
#include "../../tasks/Typedef.h"
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <thread>
|
#include <thread>
|
||||||
#include <condition_variable>
|
#include <condition_variable>
|
||||||
#include <atomic>
|
#include <atomic>
|
||||||
|
|
||||||
class ExecutableObjectIF;
|
class ExecutableObjectIF;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief This class represents a specialized task for
|
* @brief This class represents a specialized task for
|
||||||
* periodic activities of multiple objects.
|
* periodic activities of multiple objects.
|
||||||
* @details
|
* @details
|
||||||
*
|
*
|
||||||
* @ingroup task_handling
|
* @ingroup task_handling
|
||||||
*/
|
*/
|
||||||
class PeriodicTask: public PeriodicTaskIF {
|
class PeriodicTask: public PeriodicTaskIF {
|
||||||
public:
|
public:
|
||||||
/**
|
/**
|
||||||
* @brief Standard constructor of the class.
|
* @brief Standard constructor of the class.
|
||||||
* @details
|
* @details
|
||||||
* The class is initialized without allocated objects. These need to be
|
* The class is initialized without allocated objects. These need to be
|
||||||
* added with #addComponent.
|
* added with #addComponent.
|
||||||
* @param priority
|
* @param priority
|
||||||
* @param stack_size
|
* @param stack_size
|
||||||
* @param setPeriod
|
* @param setPeriod
|
||||||
* @param setDeadlineMissedFunc
|
* @param setDeadlineMissedFunc
|
||||||
* The function pointer to the deadline missed function that shall be
|
* The function pointer to the deadline missed function that shall be
|
||||||
* assigned.
|
* assigned.
|
||||||
*/
|
*/
|
||||||
PeriodicTask(const char *name, TaskPriority setPriority, TaskStackSize setStack,
|
PeriodicTask(const char *name, TaskPriority setPriority, TaskStackSize setStack,
|
||||||
TaskPeriod setPeriod,void (*setDeadlineMissedFunc)());
|
TaskPeriod setPeriod,void (*setDeadlineMissedFunc)());
|
||||||
/**
|
/**
|
||||||
* @brief Currently, the executed object's lifetime is not coupled with
|
* @brief Currently, the executed object's lifetime is not coupled with
|
||||||
* the task object's lifetime, so the destructor is empty.
|
* the task object's lifetime, so the destructor is empty.
|
||||||
*/
|
*/
|
||||||
virtual ~PeriodicTask(void);
|
virtual ~PeriodicTask(void);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief The method to start the task.
|
* @brief The method to start the task.
|
||||||
* @details The method starts the task with the respective system call.
|
* @details The method starts the task with the respective system call.
|
||||||
* Entry point is the taskEntryPoint method described below.
|
* Entry point is the taskEntryPoint method described below.
|
||||||
* The address of the task object is passed as an argument
|
* The address of the task object is passed as an argument
|
||||||
* to the system call.
|
* to the system call.
|
||||||
*/
|
*/
|
||||||
ReturnValue_t startTask(void);
|
ReturnValue_t startTask(void);
|
||||||
/**
|
/**
|
||||||
* Adds an object to the list of objects to be executed.
|
* Adds an object to the list of objects to be executed.
|
||||||
* The objects are executed in the order added.
|
* The objects are executed in the order added.
|
||||||
* @param object Id of the object to add.
|
* @param object Id of the object to add.
|
||||||
* @return
|
* @return
|
||||||
* -@c RETURN_OK on success
|
* -@c RETURN_OK on success
|
||||||
* -@c RETURN_FAILED if the object could not be added.
|
* -@c RETURN_FAILED if the object could not be added.
|
||||||
*/
|
*/
|
||||||
ReturnValue_t addComponent(object_id_t object);
|
ReturnValue_t addComponent(object_id_t object);
|
||||||
|
|
||||||
uint32_t getPeriodMs() const;
|
uint32_t getPeriodMs() const;
|
||||||
|
|
||||||
ReturnValue_t sleepFor(uint32_t ms);
|
ReturnValue_t sleepFor(uint32_t ms);
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
using chron_ms = std::chrono::milliseconds;
|
using chron_ms = std::chrono::milliseconds;
|
||||||
bool started;
|
bool started;
|
||||||
//!< Typedef for the List of objects.
|
//!< Typedef for the List of objects.
|
||||||
typedef std::vector<ExecutableObjectIF*> ObjectList;
|
typedef std::vector<ExecutableObjectIF*> ObjectList;
|
||||||
std::thread mainThread;
|
std::thread mainThread;
|
||||||
std::atomic<bool> terminateThread = false;
|
std::atomic<bool> terminateThread = false;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief This attribute holds a list of objects to be executed.
|
* @brief This attribute holds a list of objects to be executed.
|
||||||
*/
|
*/
|
||||||
ObjectList objectList;
|
ObjectList objectList;
|
||||||
|
|
||||||
std::condition_variable initCondition;
|
std::condition_variable initCondition;
|
||||||
std::mutex initMutex;
|
std::mutex initMutex;
|
||||||
std::string taskName;
|
std::string taskName;
|
||||||
/**
|
/**
|
||||||
* @brief The period of the task.
|
* @brief The period of the task.
|
||||||
* @details
|
* @details
|
||||||
* The period determines the frequency of the task's execution.
|
* The period determines the frequency of the task's execution.
|
||||||
* It is expressed in clock ticks.
|
* It is expressed in clock ticks.
|
||||||
*/
|
*/
|
||||||
TaskPeriod period;
|
TaskPeriod period;
|
||||||
/**
|
/**
|
||||||
* @brief The pointer to the deadline-missed function.
|
* @brief The pointer to the deadline-missed function.
|
||||||
* @details
|
* @details
|
||||||
* This pointer stores the function that is executed if the task's deadline
|
* This pointer stores the function that is executed if the task's deadline
|
||||||
* is missed. So, each may react individually on a timing failure.
|
* is missed. So, each may react individually on a timing failure.
|
||||||
* The pointer may be NULL, then nothing happens on missing the deadline.
|
* The pointer may be NULL, then nothing happens on missing the deadline.
|
||||||
* The deadline is equal to the next execution of the periodic task.
|
* The deadline is equal to the next execution of the periodic task.
|
||||||
*/
|
*/
|
||||||
void (*deadlineMissedFunc)(void);
|
void (*deadlineMissedFunc)(void);
|
||||||
/**
|
/**
|
||||||
* @brief This is the function executed in the new task's context.
|
* @brief This is the function executed in the new task's context.
|
||||||
* @details
|
* @details
|
||||||
* It converts the argument back to the thread object type and copies the
|
* It converts the argument back to the thread object type and copies the
|
||||||
* class instance to the task context.
|
* class instance to the task context.
|
||||||
* The taskFunctionality method is called afterwards.
|
* The taskFunctionality method is called afterwards.
|
||||||
* @param A pointer to the task object itself is passed as argument.
|
* @param A pointer to the task object itself is passed as argument.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
void taskEntryPoint(void* argument);
|
void taskEntryPoint(void* argument);
|
||||||
/**
|
/**
|
||||||
* @brief The function containing the actual functionality of the task.
|
* @brief The function containing the actual functionality of the task.
|
||||||
* @details
|
* @details
|
||||||
* The method sets and starts the task's period, then enters a loop that is
|
* The method sets and starts the task's period, then enters a loop that is
|
||||||
* repeated as long as the isRunning attribute is true. Within the loop,
|
* repeated as long as the isRunning attribute is true. Within the loop,
|
||||||
* all performOperation methods of the added objects are called. Afterwards
|
* all performOperation methods of the added objects are called. Afterwards
|
||||||
* the checkAndRestartPeriod system call blocks the task until the next
|
* the checkAndRestartPeriod system call blocks the task until the next
|
||||||
* period. On missing the deadline, the deadlineMissedFunction is executed.
|
* period. On missing the deadline, the deadlineMissedFunction is executed.
|
||||||
*/
|
*/
|
||||||
void taskFunctionality(void);
|
void taskFunctionality(void);
|
||||||
|
|
||||||
bool delayForInterval(chron_ms * previousWakeTimeMs,
|
bool delayForInterval(chron_ms * previousWakeTimeMs,
|
||||||
const chron_ms interval);
|
const chron_ms interval);
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif /* PERIODICTASK_H_ */
|
#endif /* PERIODICTASK_H_ */
|
||||||
|
@ -1,41 +1,41 @@
|
|||||||
#include <framework/ipc/QueueFactory.h>
|
#include "../../ipc/QueueFactory.h"
|
||||||
#include <framework/osal/host/MessageQueue.h>
|
#include "../../osal/host/MessageQueue.h"
|
||||||
#include <framework/serviceinterface/ServiceInterfaceStream.h>
|
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
||||||
#include <cstring>
|
#include <cstring>
|
||||||
|
|
||||||
QueueFactory* QueueFactory::factoryInstance = nullptr;
|
QueueFactory* QueueFactory::factoryInstance = nullptr;
|
||||||
|
|
||||||
|
|
||||||
ReturnValue_t MessageQueueSenderIF::sendMessage(MessageQueueId_t sendTo,
|
ReturnValue_t MessageQueueSenderIF::sendMessage(MessageQueueId_t sendTo,
|
||||||
MessageQueueMessageIF* message, MessageQueueId_t sentFrom,
|
MessageQueueMessageIF* message, MessageQueueId_t sentFrom,
|
||||||
bool ignoreFault) {
|
bool ignoreFault) {
|
||||||
return MessageQueue::sendMessageFromMessageQueue(sendTo,message,
|
return MessageQueue::sendMessageFromMessageQueue(sendTo,message,
|
||||||
sentFrom,ignoreFault);
|
sentFrom,ignoreFault);
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
QueueFactory* QueueFactory::instance() {
|
QueueFactory* QueueFactory::instance() {
|
||||||
if (factoryInstance == nullptr) {
|
if (factoryInstance == nullptr) {
|
||||||
factoryInstance = new QueueFactory;
|
factoryInstance = new QueueFactory;
|
||||||
}
|
}
|
||||||
return factoryInstance;
|
return factoryInstance;
|
||||||
}
|
}
|
||||||
|
|
||||||
QueueFactory::QueueFactory() {
|
QueueFactory::QueueFactory() {
|
||||||
}
|
}
|
||||||
|
|
||||||
QueueFactory::~QueueFactory() {
|
QueueFactory::~QueueFactory() {
|
||||||
}
|
}
|
||||||
|
|
||||||
MessageQueueIF* QueueFactory::createMessageQueue(uint32_t messageDepth,
|
MessageQueueIF* QueueFactory::createMessageQueue(uint32_t messageDepth,
|
||||||
size_t maxMessageSize) {
|
size_t maxMessageSize) {
|
||||||
// A thread-safe queue can be implemented by using a combination
|
// A thread-safe queue can be implemented by using a combination
|
||||||
// of std::queue and std::mutex. This uses dynamic memory allocation
|
// of std::queue and std::mutex. This uses dynamic memory allocation
|
||||||
// which could be alleviated by using a custom allocator, external library
|
// which could be alleviated by using a custom allocator, external library
|
||||||
// (etl::queue) or simply using std::queue, we're on a host machine anyway.
|
// (etl::queue) or simply using std::queue, we're on a host machine anyway.
|
||||||
return new MessageQueue(messageDepth, maxMessageSize);
|
return new MessageQueue(messageDepth, maxMessageSize);
|
||||||
}
|
}
|
||||||
|
|
||||||
void QueueFactory::deleteMessageQueue(MessageQueueIF* queue) {
|
void QueueFactory::deleteMessageQueue(MessageQueueIF* queue) {
|
||||||
delete queue;
|
delete queue;
|
||||||
}
|
}
|
||||||
|
@ -1,51 +1,51 @@
|
|||||||
#include <framework/ipc/MutexFactory.h>
|
#include "../../ipc/MutexFactory.h"
|
||||||
#include <framework/ipc/MutexHelper.h>
|
#include "../../ipc/MutexHelper.h"
|
||||||
#include <framework/osal/host/QueueMapManager.h>
|
#include "../../osal/host/QueueMapManager.h"
|
||||||
|
|
||||||
QueueMapManager* QueueMapManager::mqManagerInstance = nullptr;
|
QueueMapManager* QueueMapManager::mqManagerInstance = nullptr;
|
||||||
|
|
||||||
QueueMapManager::QueueMapManager() {
|
QueueMapManager::QueueMapManager() {
|
||||||
mapLock = MutexFactory::instance()->createMutex();
|
mapLock = MutexFactory::instance()->createMutex();
|
||||||
}
|
}
|
||||||
|
|
||||||
QueueMapManager* QueueMapManager::instance() {
|
QueueMapManager* QueueMapManager::instance() {
|
||||||
if (mqManagerInstance == nullptr){
|
if (mqManagerInstance == nullptr){
|
||||||
mqManagerInstance = new QueueMapManager();
|
mqManagerInstance = new QueueMapManager();
|
||||||
}
|
}
|
||||||
return QueueMapManager::mqManagerInstance;
|
return QueueMapManager::mqManagerInstance;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t QueueMapManager::addMessageQueue(
|
ReturnValue_t QueueMapManager::addMessageQueue(
|
||||||
MessageQueueIF* queueToInsert, MessageQueueId_t* id) {
|
MessageQueueIF* queueToInsert, MessageQueueId_t* id) {
|
||||||
// Not thread-safe, but it is assumed all message queues are created
|
// Not thread-safe, but it is assumed all message queues are created
|
||||||
// at software initialization now. If this is to be made thread-safe in
|
// at software initialization now. If this is to be made thread-safe in
|
||||||
// the future, it propably would be sufficient to lock the increment
|
// the future, it propably would be sufficient to lock the increment
|
||||||
// operation here
|
// operation here
|
||||||
uint32_t currentId = queueCounter++;
|
uint32_t currentId = queueCounter++;
|
||||||
auto returnPair = queueMap.emplace(currentId, queueToInsert);
|
auto returnPair = queueMap.emplace(currentId, queueToInsert);
|
||||||
if(not returnPair.second) {
|
if(not returnPair.second) {
|
||||||
// this should never happen for the atomic variable.
|
// this should never happen for the atomic variable.
|
||||||
sif::error << "QueueMapManager: This ID is already inside the map!"
|
sif::error << "QueueMapManager: This ID is already inside the map!"
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
return HasReturnvaluesIF::RETURN_FAILED;
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||||||
}
|
}
|
||||||
if (id != nullptr) {
|
if (id != nullptr) {
|
||||||
*id = currentId;
|
*id = currentId;
|
||||||
}
|
}
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
MessageQueueIF* QueueMapManager::getMessageQueue(
|
MessageQueueIF* QueueMapManager::getMessageQueue(
|
||||||
MessageQueueId_t messageQueueId) const {
|
MessageQueueId_t messageQueueId) const {
|
||||||
MutexHelper(mapLock, 50);
|
MutexHelper(mapLock, 50);
|
||||||
auto queueIter = queueMap.find(messageQueueId);
|
auto queueIter = queueMap.find(messageQueueId);
|
||||||
if(queueIter != queueMap.end()) {
|
if(queueIter != queueMap.end()) {
|
||||||
return queueIter->second;
|
return queueIter->second;
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
sif::warning << "QueueMapManager::getQueueHandle: The ID" <<
|
sif::warning << "QueueMapManager::getQueueHandle: The ID" <<
|
||||||
messageQueueId << " does not exists in the map" << std::endl;
|
messageQueueId << " does not exists in the map" << std::endl;
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1,47 +1,47 @@
|
|||||||
#ifndef FRAMEWORK_OSAL_HOST_QUEUEMAP_H_
|
#ifndef FRAMEWORK_OSAL_HOST_QUEUEMAP_H_
|
||||||
#define FRAMEWORK_OSAL_HOST_QUEUEMAP_H_
|
#define FRAMEWORK_OSAL_HOST_QUEUEMAP_H_
|
||||||
|
|
||||||
#include <framework/ipc/MessageQueueSenderIF.h>
|
#include "../../ipc/MessageQueueSenderIF.h"
|
||||||
#include <framework/osal/host/MessageQueue.h>
|
#include "../../osal/host/MessageQueue.h"
|
||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
#include <atomic>
|
#include <atomic>
|
||||||
|
|
||||||
using QueueMap = std::unordered_map<MessageQueueId_t, MessageQueueIF*>;
|
using QueueMap = std::unordered_map<MessageQueueId_t, MessageQueueIF*>;
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* An internal map to map message queue IDs to message queues.
|
* An internal map to map message queue IDs to message queues.
|
||||||
* This propably should be a singleton..
|
* This propably should be a singleton..
|
||||||
*/
|
*/
|
||||||
class QueueMapManager {
|
class QueueMapManager {
|
||||||
public:
|
public:
|
||||||
//! Returns the single instance of SemaphoreFactory.
|
//! Returns the single instance of SemaphoreFactory.
|
||||||
static QueueMapManager* instance();
|
static QueueMapManager* instance();
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Insert a message queue into the map and returns a message queue ID
|
* Insert a message queue into the map and returns a message queue ID
|
||||||
* @param queue The message queue to insert.
|
* @param queue The message queue to insert.
|
||||||
* @param id The passed value will be set unless a nullptr is passed
|
* @param id The passed value will be set unless a nullptr is passed
|
||||||
* @return
|
* @return
|
||||||
*/
|
*/
|
||||||
ReturnValue_t addMessageQueue(MessageQueueIF* queue, MessageQueueId_t*
|
ReturnValue_t addMessageQueue(MessageQueueIF* queue, MessageQueueId_t*
|
||||||
id = nullptr);
|
id = nullptr);
|
||||||
/**
|
/**
|
||||||
* Get the message queue handle by providing a message queue ID.
|
* Get the message queue handle by providing a message queue ID.
|
||||||
* @param messageQueueId
|
* @param messageQueueId
|
||||||
* @return
|
* @return
|
||||||
*/
|
*/
|
||||||
MessageQueueIF* getMessageQueue(MessageQueueId_t messageQueueId) const;
|
MessageQueueIF* getMessageQueue(MessageQueueId_t messageQueueId) const;
|
||||||
|
|
||||||
private:
|
private:
|
||||||
//! External instantiation is forbidden.
|
//! External instantiation is forbidden.
|
||||||
QueueMapManager();
|
QueueMapManager();
|
||||||
uint32_t queueCounter = 1;
|
uint32_t queueCounter = 1;
|
||||||
MutexIF* mapLock;
|
MutexIF* mapLock;
|
||||||
QueueMap queueMap;
|
QueueMap queueMap;
|
||||||
static QueueMapManager* mqManagerInstance;
|
static QueueMapManager* mqManagerInstance;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#endif /* FRAMEWORK_OSAL_HOST_QUEUEMAP_H_ */
|
#endif /* FRAMEWORK_OSAL_HOST_QUEUEMAP_H_ */
|
||||||
|
@ -1,42 +1,42 @@
|
|||||||
#include <framework/tasks/SemaphoreFactory.h>
|
#include "../../tasks/SemaphoreFactory.h"
|
||||||
#include <framework/osal/linux/BinarySemaphore.h>
|
#include "../../osal/linux/BinarySemaphore.h"
|
||||||
#include <framework/osal/linux/CountingSemaphore.h>
|
#include "../../osal/linux/CountingSemaphore.h"
|
||||||
#include <framework/serviceinterface/ServiceInterfaceStream.h>
|
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
||||||
|
|
||||||
const uint32_t SemaphoreIF::POLLING = 0;
|
const uint32_t SemaphoreIF::POLLING = 0;
|
||||||
const uint32_t SemaphoreIF::BLOCKING = 0xFFFFFFFF;
|
const uint32_t SemaphoreIF::BLOCKING = 0xFFFFFFFF;
|
||||||
|
|
||||||
SemaphoreFactory* SemaphoreFactory::factoryInstance = nullptr;
|
SemaphoreFactory* SemaphoreFactory::factoryInstance = nullptr;
|
||||||
|
|
||||||
SemaphoreFactory::SemaphoreFactory() {
|
SemaphoreFactory::SemaphoreFactory() {
|
||||||
}
|
}
|
||||||
|
|
||||||
SemaphoreFactory::~SemaphoreFactory() {
|
SemaphoreFactory::~SemaphoreFactory() {
|
||||||
delete factoryInstance;
|
delete factoryInstance;
|
||||||
}
|
}
|
||||||
|
|
||||||
SemaphoreFactory* SemaphoreFactory::instance() {
|
SemaphoreFactory* SemaphoreFactory::instance() {
|
||||||
if (factoryInstance == nullptr){
|
if (factoryInstance == nullptr){
|
||||||
factoryInstance = new SemaphoreFactory();
|
factoryInstance = new SemaphoreFactory();
|
||||||
}
|
}
|
||||||
return SemaphoreFactory::factoryInstance;
|
return SemaphoreFactory::factoryInstance;
|
||||||
}
|
}
|
||||||
|
|
||||||
SemaphoreIF* SemaphoreFactory::createBinarySemaphore(uint32_t arguments) {
|
SemaphoreIF* SemaphoreFactory::createBinarySemaphore(uint32_t arguments) {
|
||||||
// Just gonna wait for full C++20 for now.
|
// Just gonna wait for full C++20 for now.
|
||||||
sif::error << "SemaphoreFactory: Binary Semaphore not implemented yet."
|
sif::error << "SemaphoreFactory: Binary Semaphore not implemented yet."
|
||||||
" Returning nullptr!\n" << std::flush;
|
" Returning nullptr!\n" << std::flush;
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
SemaphoreIF* SemaphoreFactory::createCountingSemaphore(const uint8_t maxCount,
|
SemaphoreIF* SemaphoreFactory::createCountingSemaphore(const uint8_t maxCount,
|
||||||
uint8_t initCount, uint32_t arguments) {
|
uint8_t initCount, uint32_t arguments) {
|
||||||
// Just gonna wait for full C++20 for now.
|
// Just gonna wait for full C++20 for now.
|
||||||
sif::error << "SemaphoreFactory: Counting Semaphore not implemented yet."
|
sif::error << "SemaphoreFactory: Counting Semaphore not implemented yet."
|
||||||
" Returning nullptr!\n" << std::flush;
|
" Returning nullptr!\n" << std::flush;
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
void SemaphoreFactory::deleteSemaphore(SemaphoreIF* semaphore) {
|
void SemaphoreFactory::deleteSemaphore(SemaphoreIF* semaphore) {
|
||||||
delete semaphore;
|
delete semaphore;
|
||||||
}
|
}
|
||||||
|
@ -1,55 +1,55 @@
|
|||||||
#include <framework/osal/host/FixedTimeslotTask.h>
|
#include "../../osal/host/FixedTimeslotTask.h"
|
||||||
#include <framework/osal/host/PeriodicTask.h>
|
#include "../../osal/host/PeriodicTask.h"
|
||||||
#include <framework/tasks/TaskFactory.h>
|
#include "../../tasks/TaskFactory.h"
|
||||||
#include <framework/returnvalues/HasReturnvaluesIF.h>
|
#include "../../returnvalues/HasReturnvaluesIF.h"
|
||||||
#include <framework/tasks/PeriodicTaskIF.h>
|
#include "../../tasks/PeriodicTaskIF.h"
|
||||||
|
|
||||||
#include <chrono>
|
#include <chrono>
|
||||||
|
|
||||||
TaskFactory* TaskFactory::factoryInstance = new TaskFactory();
|
TaskFactory* TaskFactory::factoryInstance = new TaskFactory();
|
||||||
|
|
||||||
// Will propably not be used for hosted implementation
|
// Will propably not be used for hosted implementation
|
||||||
const size_t PeriodicTaskIF::MINIMUM_STACK_SIZE = 0;
|
const size_t PeriodicTaskIF::MINIMUM_STACK_SIZE = 0;
|
||||||
|
|
||||||
TaskFactory::TaskFactory() {
|
TaskFactory::TaskFactory() {
|
||||||
}
|
}
|
||||||
|
|
||||||
TaskFactory::~TaskFactory() {
|
TaskFactory::~TaskFactory() {
|
||||||
}
|
}
|
||||||
|
|
||||||
TaskFactory* TaskFactory::instance() {
|
TaskFactory* TaskFactory::instance() {
|
||||||
return TaskFactory::factoryInstance;
|
return TaskFactory::factoryInstance;
|
||||||
}
|
}
|
||||||
|
|
||||||
PeriodicTaskIF* TaskFactory::createPeriodicTask(TaskName name_,
|
PeriodicTaskIF* TaskFactory::createPeriodicTask(TaskName name_,
|
||||||
TaskPriority taskPriority_,TaskStackSize stackSize_,
|
TaskPriority taskPriority_,TaskStackSize stackSize_,
|
||||||
TaskPeriod periodInSeconds_,
|
TaskPeriod periodInSeconds_,
|
||||||
TaskDeadlineMissedFunction deadLineMissedFunction_) {
|
TaskDeadlineMissedFunction deadLineMissedFunction_) {
|
||||||
// This is going to be interesting. Time now learn the C++ threading library
|
// This is going to be interesting. Time now learn the C++ threading library
|
||||||
// :-)
|
// :-)
|
||||||
return new PeriodicTask(name_, taskPriority_, stackSize_, periodInSeconds_,
|
return new PeriodicTask(name_, taskPriority_, stackSize_, periodInSeconds_,
|
||||||
deadLineMissedFunction_);
|
deadLineMissedFunction_);
|
||||||
}
|
}
|
||||||
|
|
||||||
FixedTimeslotTaskIF* TaskFactory::createFixedTimeslotTask(TaskName name_,
|
FixedTimeslotTaskIF* TaskFactory::createFixedTimeslotTask(TaskName name_,
|
||||||
TaskPriority taskPriority_,TaskStackSize stackSize_,
|
TaskPriority taskPriority_,TaskStackSize stackSize_,
|
||||||
TaskPeriod periodInSeconds_,
|
TaskPeriod periodInSeconds_,
|
||||||
TaskDeadlineMissedFunction deadLineMissedFunction_) {
|
TaskDeadlineMissedFunction deadLineMissedFunction_) {
|
||||||
// This is going to be interesting. Time now learn the C++ threading library
|
// This is going to be interesting. Time now learn the C++ threading library
|
||||||
// :-)
|
// :-)
|
||||||
return new FixedTimeslotTask(name_, taskPriority_, stackSize_,
|
return new FixedTimeslotTask(name_, taskPriority_, stackSize_,
|
||||||
periodInSeconds_, deadLineMissedFunction_);
|
periodInSeconds_, deadLineMissedFunction_);
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t TaskFactory::deleteTask(PeriodicTaskIF* task) {
|
ReturnValue_t TaskFactory::deleteTask(PeriodicTaskIF* task) {
|
||||||
// This might block for some time!
|
// This might block for some time!
|
||||||
delete task;
|
delete task;
|
||||||
return HasReturnvaluesIF::RETURN_FAILED;
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||||||
}
|
}
|
||||||
|
|
||||||
ReturnValue_t TaskFactory::delayTask(uint32_t delayMs){
|
ReturnValue_t TaskFactory::delayTask(uint32_t delayMs){
|
||||||
std::this_thread::sleep_for(std::chrono::milliseconds(delayMs));
|
std::this_thread::sleep_for(std::chrono::milliseconds(delayMs));
|
||||||
return HasReturnvaluesIF::RETURN_OK;
|
return HasReturnvaluesIF::RETURN_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user