fsfw/test/UnitTestClass.cpp

303 lines
11 KiB
C++

/**
* @file UnitTestClass.cpp
*
* @date 11.04.2020
* @author R. Mueller
*/
#include <framework/test/UnitTestClass.h>
#include <framework/serviceinterface/ServiceInterfaceStream.h>
#include <framework/serialize/SerializeElement.h>
#include <framework/serialize/SerialBufferAdapter.h>
#include <cstdlib>
#if defined(UNIT_TEST)
#include "catch.hpp"
#define CATCH_CONFIG_MAIN
TEST_CASE( "Serialization Size tests", "[single-file]") {
//REQUIRE(UnitTestClass::test_serialization == RETURN_OK );
}
#endif
UnitTestClass::UnitTestClass() {}
UnitTestClass::~UnitTestClass() {}
ReturnValue_t UnitTestClass::perform_tests() {
ReturnValue_t result = test_serialization();
if(result != RETURN_OK) {
return result;
}
return RETURN_OK;
}
ReturnValue_t UnitTestClass::test_serialization() {
// Here, we test all serialization tools. First test basic cases.
ReturnValue_t result = test_endianness_tools();
if(result != RETURN_OK) {
return result;
}
result = test_autoserialization();
if(result != RETURN_OK) {
return result;
}
result = test_serial_buffer_adapter();
if(result != RETURN_OK) {
return result;
}
return RETURN_OK;
}
ReturnValue_t UnitTestClass::test_endianness_tools() {
test_array[0] = 0;
test_array[1] = 0;
uint16_t two_byte_value = 1;
size_t size = 0;
uint8_t* p_array = test_array.data();
AutoSerializeAdapter::serialize(&two_byte_value, &p_array, &size, 2, false);
// Little endian: Value one on first byte
if(test_array[0] != 1 and test_array[1] != 0) {
return put_error(TestIds::ENDIANNESS_TOOLS);
}
p_array = test_array.data();
size = 0;
AutoSerializeAdapter::serialize(&two_byte_value, &p_array, &size, 2, true);
// Big endian: Value one on second byte
if(test_array[0] != 0 and test_array[1] != 1) {
return put_error(TestIds::ENDIANNESS_TOOLS);
}
// Endianness paameter will be changed later.
// p_array = test_array.data();
// ssize_t ssize = size;
// // Resulting parameter should be big endian
// AutoSerializeAdapter::deSerialize(&two_byte_value,
// const_cast<const uint8_t **>(&p_array), &ssize, true);
// if(two_byte_value != 1) {
// return put_error(TestIds::ENDIANNESS_TOOLS);
// }
//
// ssize = size;
// p_array = test_array.data();
// // Resulting parameter should be little endian
// AutoSerializeAdapter::deSerialize(&two_byte_value,
// const_cast<const uint8_t **>(&p_array), &ssize, false);
// if(two_byte_value != 256) {
// return put_error(TestIds::ENDIANNESS_TOOLS);
// }
return RETURN_OK;
}
ReturnValue_t UnitTestClass::test_autoserialization() {
current_id = TestIds::AUTO_SERIALIZATION_SIZE;
// Unit Test getSerializedSize
if(AutoSerializeAdapter::
getSerializedSize(&test_value_bool) != sizeof(test_value_bool) or
AutoSerializeAdapter::
getSerializedSize(&tv_uint8) != sizeof(tv_uint8) or
AutoSerializeAdapter::
getSerializedSize(&tv_uint16) != sizeof(tv_uint16) or
AutoSerializeAdapter::
getSerializedSize(&tv_uint32) != sizeof(tv_uint32) or
AutoSerializeAdapter::
getSerializedSize(&tv_uint64) != sizeof(tv_uint64) or
AutoSerializeAdapter::
getSerializedSize(&tv_int8) != sizeof(tv_int8) or
AutoSerializeAdapter::
getSerializedSize(&tv_double) != sizeof(tv_double) or
AutoSerializeAdapter::
getSerializedSize(&tv_int16) != sizeof(tv_int16) or
AutoSerializeAdapter::
getSerializedSize(&tv_int32) != sizeof(tv_int32) or
AutoSerializeAdapter::
getSerializedSize(&tv_float) != sizeof(tv_float))
{
return put_error(current_id);
}
// Unit Test AutoSerializeAdapter deserialize
current_id = TestIds::AUTO_SERIALIZATION_SERIALIZE;
size_t serialized_size = 0;
uint8_t * p_array = test_array.data();
AutoSerializeAdapter::serialize(&test_value_bool, &p_array,
&serialized_size, test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_uint8, &p_array,
&serialized_size, test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_uint16, &p_array,
&serialized_size, test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_uint32, &p_array,
&serialized_size, test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_int8, &p_array,
&serialized_size, test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_int16, &p_array,
&serialized_size, test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_int32, &p_array,
&serialized_size, test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_uint64, &p_array,
&serialized_size, test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_float, &p_array,
&serialized_size, test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_double, &p_array,
&serialized_size, test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_sfloat, &p_array,
&serialized_size, test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_sdouble, &p_array,
&serialized_size, test_array.size(), false);
// expected size is 1 + 1 + 2 + 4 + 1 + 2 + 4 + 8 + 4 + 8 + 4 + 8
if(serialized_size != 47) {
return put_error(current_id);
}
// Unit Test AutoSerializeAdapter serialize
current_id = TestIds::AUTO_SERIALIZATION_DESERIALIZE;
p_array = test_array.data();
size_t remaining_size = serialized_size;
AutoSerializeAdapter::deSerialize(&test_value_bool,
const_cast<const uint8_t**>(&p_array), &remaining_size, false);
AutoSerializeAdapter::deSerialize(&tv_uint8,
const_cast<const uint8_t**>(&p_array), &remaining_size, false);
AutoSerializeAdapter::deSerialize(&tv_uint16,
const_cast<const uint8_t**>(&p_array), &remaining_size, false);
AutoSerializeAdapter::deSerialize(&tv_uint32,
const_cast<const uint8_t**>(&p_array), &remaining_size, false);
AutoSerializeAdapter::deSerialize(&tv_int8,
const_cast<const uint8_t**>(&p_array), &remaining_size, false);
AutoSerializeAdapter::deSerialize(&tv_int16,
const_cast<const uint8_t**>(&p_array), &remaining_size, false);
AutoSerializeAdapter::deSerialize(&tv_int32,
const_cast<const uint8_t**>(&p_array), &remaining_size, false);
AutoSerializeAdapter::deSerialize(&tv_uint64,
const_cast<const uint8_t**>(&p_array), &remaining_size, false);
AutoSerializeAdapter::deSerialize(&tv_float,
const_cast<const uint8_t**>(&p_array), &remaining_size, false);
AutoSerializeAdapter::deSerialize(&tv_double,
const_cast<const uint8_t**>(&p_array), &remaining_size, false);
AutoSerializeAdapter::deSerialize(&tv_sfloat,
const_cast<const uint8_t**>(&p_array), &remaining_size, false);
AutoSerializeAdapter::deSerialize(&tv_sdouble,
const_cast<const uint8_t**>(&p_array), &remaining_size, false);
if(test_value_bool != true or tv_uint8 != 5 or tv_uint16 != 283 or
tv_uint32 != 929221 or tv_uint64 != 2929329429 or tv_int8 != -16 or
tv_int16 != -829 or tv_int32 != -2312)
{
return put_error(current_id);
}
// These epsilon values were just guessed.. It appears to work though.
if(abs(tv_float - 8.214921) > 0.0001 or
abs(tv_double - 9.2132142141e8) > 0.01 or
abs(tv_sfloat - (-922.2321321)) > 0.0001 or
abs(tv_sdouble - (-2.2421e19)) > 0.01) {
return put_error(current_id);
}
// Check overflow
return RETURN_OK;
}
// TODO: Also test for constant buffers.
ReturnValue_t UnitTestClass::test_serial_buffer_adapter() {
current_id = TestIds::SERIALIZATION_BUFFER_ADAPTER;
// I will skip endian swapper testing, its going to be changed anyway..
// uint8_t tv_uint8_swapped = EndianSwapper::swap(tv_uint8);
size_t serialized_size = 0;
test_value_bool = true;
uint8_t * p_array = test_array.data();
std::array<uint8_t, 5> test_serial_buffer {5, 4, 3, 2, 1};
SerialBufferAdapter<uint8_t> tv_serial_buffer_adapter =
SerialBufferAdapter<uint8_t>(test_serial_buffer.data(),
test_serial_buffer.size(), false);
tv_uint16 = 16;
AutoSerializeAdapter::serialize(&test_value_bool, &p_array,&serialized_size,
test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_serial_buffer_adapter, &p_array,
&serialized_size, test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_uint16, &p_array, &serialized_size,
test_array.size(), false);
if(serialized_size != 8 or test_array[0] != true or test_array[1] != 5
or test_array[2] != 4 or test_array[3] != 3 or test_array[4] != 2
or test_array[5] != 1)
{
return put_error(current_id);
}
memcpy(&tv_uint16, test_array.data() + 6, sizeof(tv_uint16));
if(tv_uint16 != 16) {
return put_error(current_id);
}
// Serialize with size field
SerialBufferAdapter<uint8_t> tv_serial_buffer_adapter2 =
SerialBufferAdapter<uint8_t>(test_serial_buffer.data(),
test_serial_buffer.size(), true);
serialized_size = 0;
p_array = test_array.data();
AutoSerializeAdapter::serialize(&test_value_bool, &p_array,&serialized_size,
test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_serial_buffer_adapter2, &p_array,
&serialized_size, test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_uint16, &p_array, &serialized_size,
test_array.size(), false);
if(serialized_size != 9 or test_array[0] != true or test_array[1] != 5
or test_array[2] != 5 or test_array[3] != 4 or test_array[4] != 3
or test_array[5] != 2 or test_array[6] != 1)
{
return put_error(current_id);
}
memcpy(&tv_uint16, test_array.data() + 7, sizeof(tv_uint16));
if(tv_uint16 != 16) {
return put_error(current_id);
}
// Serialize with size field
SerialBufferAdapter<uint8_t> tv_serial_buffer_adapter3 =
SerialBufferAdapter<uint8_t>(
const_cast<const uint8_t*>(test_serial_buffer.data()),
test_serial_buffer.size(), false);
serialized_size = 0;
p_array = test_array.data();
AutoSerializeAdapter::serialize(&test_value_bool, &p_array,&serialized_size,
test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_serial_buffer_adapter3, &p_array,
&serialized_size, test_array.size(), false);
AutoSerializeAdapter::serialize(&tv_uint16, &p_array, &serialized_size,
test_array.size(), false);
if(serialized_size != 8 or test_array[0] != true or test_array[1] != 5
or test_array[2] != 4 or test_array[3] != 3 or test_array[4] != 2
or test_array[5] != 1)
{
return put_error(current_id);
}
memcpy(&tv_uint16, test_array.data() + 6, sizeof(tv_uint16));
if(tv_uint16 != 16) {
return put_error(current_id);
}
return RETURN_OK;
}
ReturnValue_t UnitTestClass::put_error(TestIds currentId) {
auto errorIter = testResultMap.find(currentId);
if(errorIter != testResultMap.end()) {
testResultMap.emplace(currentId, 1);
}
else {
errorIter->second ++;
}
error << "Unit Tester failed at test ID "
<< static_cast<uint32_t>(currentId) << "\r\n" << std::flush;
return RETURN_FAILED;
}