241 lines
7.2 KiB
C++
241 lines
7.2 KiB
C++
#include "../../serviceinterface/ServiceInterface.h"
|
|
#include "../../timemanager/Clock.h"
|
|
|
|
#include <chrono>
|
|
#if defined(WIN32)
|
|
#include <sysinfoapi.h>
|
|
#elif defined(LINUX)
|
|
#include <fstream>
|
|
#endif
|
|
|
|
uint16_t Clock::leapSeconds = 0;
|
|
MutexIF* Clock::timeMutex = NULL;
|
|
|
|
using SystemClock = std::chrono::system_clock;
|
|
|
|
uint32_t Clock::getTicksPerSecond(void){
|
|
#if FSFW_CPP_OSTREAM_ENABLED == 1
|
|
sif::warning << "Clock::getTicksPerSecond: Not implemented for host OSAL" << std::endl;
|
|
#else
|
|
sif::printWarning("Clock::getTicksPerSecond: Not implemented for host OSAL\n");
|
|
#endif
|
|
/* To avoid division by zero */
|
|
return 1;
|
|
}
|
|
|
|
ReturnValue_t Clock::setClock(const TimeOfDay_t* time) {
|
|
/* I don't know why someone would need to set a clock which is probably perfectly fine on a
|
|
host system with internet access so this is not implemented for now. */
|
|
#if FSFW_CPP_OSTREAM_ENABLED == 1
|
|
sif::warning << "Clock::setClock: Not implemented for host OSAL" << std::endl;
|
|
#else
|
|
sif::printWarning("Clock::setClock: Not implemented for host OSAL\n");
|
|
#endif
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
ReturnValue_t Clock::setClock(const timeval* time) {
|
|
/* I don't know why someone would need to set a clock which is probably perfectly fine on a
|
|
host system with internet access so this is not implemented for now. */
|
|
#if FSFW_CPP_OSTREAM_ENABLED == 1
|
|
sif::warning << "Clock::setClock: Not implemented for host OSAL" << std::endl;
|
|
#else
|
|
sif::printWarning("Clock::setClock: Not implemented for host OSAL\n");
|
|
#endif
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
ReturnValue_t Clock::getClock_timeval(timeval* time) {
|
|
#if defined(WIN32)
|
|
auto now = std::chrono::system_clock::now();
|
|
auto secondsChrono = std::chrono::time_point_cast<std::chrono::seconds>(now);
|
|
auto epoch = now.time_since_epoch();
|
|
time->tv_sec = std::chrono::duration_cast<std::chrono::seconds>(epoch).count();
|
|
auto fraction = now - secondsChrono;
|
|
time->tv_usec = std::chrono::duration_cast<std::chrono::microseconds>(fraction).count();
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
#elif defined(LINUX)
|
|
timespec timeUnix;
|
|
int status = clock_gettime(CLOCK_REALTIME,&timeUnix);
|
|
if(status!=0){
|
|
return HasReturnvaluesIF::RETURN_FAILED;
|
|
}
|
|
time->tv_sec = timeUnix.tv_sec;
|
|
time->tv_usec = timeUnix.tv_nsec / 1000.0;
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
#else
|
|
#if FSFW_CPP_OSTREAM_ENABLED == 1
|
|
sif::warning << "Clock::getUptime: Not implemented for found OS!" << std::endl;
|
|
#else
|
|
sif::printWarning("Clock::getUptime: Not implemented for found OS!\n");
|
|
#endif
|
|
return HasReturnvaluesIF::RETURN_FAILED;
|
|
#endif
|
|
|
|
}
|
|
|
|
ReturnValue_t Clock::getClock_usecs(uint64_t* time) {
|
|
if(time == nullptr) {
|
|
return HasReturnvaluesIF::RETURN_FAILED;
|
|
}
|
|
using namespace std::chrono;
|
|
*time = duration_cast<microseconds>(system_clock::now().time_since_epoch()).count();
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
timeval Clock::getUptime() {
|
|
timeval timeval;
|
|
#if defined(WIN32)
|
|
auto uptime = std::chrono::milliseconds(GetTickCount64());
|
|
auto secondsChrono = std::chrono::duration_cast<std::chrono::seconds>(uptime);
|
|
timeval.tv_sec = secondsChrono.count();
|
|
auto fraction = uptime - secondsChrono;
|
|
timeval.tv_usec = std::chrono::duration_cast<std::chrono::microseconds>(
|
|
fraction).count();
|
|
#elif defined(LINUX)
|
|
double uptimeSeconds;
|
|
if (std::ifstream("/proc/uptime", std::ios::in) >> uptimeSeconds)
|
|
{
|
|
// value is rounded down automatically
|
|
timeval.tv_sec = uptimeSeconds;
|
|
timeval.tv_usec = uptimeSeconds *(double) 1e6 - (timeval.tv_sec *1e6);
|
|
}
|
|
#else
|
|
#if FSFW_CPP_OSTREAM_ENABLED == 1
|
|
sif::warning << "Clock::getUptime: Not implemented for found OS" << std::endl;
|
|
#endif
|
|
#endif
|
|
return timeval;
|
|
}
|
|
|
|
ReturnValue_t Clock::getUptime(timeval* uptime) {
|
|
*uptime = getUptime();
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
ReturnValue_t Clock::getUptime(uint32_t* uptimeMs) {
|
|
timeval uptime = getUptime();
|
|
*uptimeMs = uptime.tv_sec * 1000 + uptime.tv_usec / 1000;
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
|
|
ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) {
|
|
/* Do some magic with chrono (C++20!) */
|
|
/* Right now, the library doesn't have the new features to get the required values yet.
|
|
so we work around that for now. */
|
|
auto now = SystemClock::now();
|
|
auto seconds = std::chrono::time_point_cast<std::chrono::seconds>(now);
|
|
auto fraction = now - seconds;
|
|
time_t tt = SystemClock::to_time_t(now);
|
|
struct tm* timeInfo;
|
|
timeInfo = gmtime(&tt);
|
|
time->year = timeInfo->tm_year + 1900;
|
|
time->month = timeInfo->tm_mon+1;
|
|
time->day = timeInfo->tm_mday;
|
|
time->hour = timeInfo->tm_hour;
|
|
time->minute = timeInfo->tm_min;
|
|
time->second = timeInfo->tm_sec;
|
|
auto usecond = std::chrono::duration_cast<std::chrono::microseconds>(fraction);
|
|
time->usecond = usecond.count();
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
ReturnValue_t Clock::convertTimeOfDayToTimeval(const TimeOfDay_t* from,
|
|
timeval* to) {
|
|
struct tm time_tm;
|
|
|
|
time_tm.tm_year = from->year - 1900;
|
|
time_tm.tm_mon = from->month - 1;
|
|
time_tm.tm_mday = from->day;
|
|
|
|
time_tm.tm_hour = from->hour;
|
|
time_tm.tm_min = from->minute;
|
|
time_tm.tm_sec = from->second;
|
|
|
|
time_t seconds = mktime(&time_tm);
|
|
|
|
to->tv_sec = seconds;
|
|
to->tv_usec = from->usecond;
|
|
//Fails in 2038..
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
#if FSFW_CPP_OSTREAM_ENABLED == 1
|
|
sif::warning << "Clock::convertTimeBla: not implemented yet" << std::endl;
|
|
#endif
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
ReturnValue_t Clock::convertTimevalToJD2000(timeval time, double* JD2000) {
|
|
*JD2000 = (time.tv_sec - 946728000. + time.tv_usec / 1000000.) / 24.
|
|
/ 3600.;
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
ReturnValue_t Clock::convertUTCToTT(timeval utc, timeval* tt) {
|
|
//SHOULDDO: works not for dates in the past (might have less leap seconds)
|
|
if (timeMutex == NULL) {
|
|
return HasReturnvaluesIF::RETURN_FAILED;
|
|
}
|
|
|
|
uint16_t leapSeconds;
|
|
ReturnValue_t result = getLeapSeconds(&leapSeconds);
|
|
if (result != HasReturnvaluesIF::RETURN_OK) {
|
|
return result;
|
|
}
|
|
timeval leapSeconds_timeval = { 0, 0 };
|
|
leapSeconds_timeval.tv_sec = leapSeconds;
|
|
|
|
//initial offset between UTC and TAI
|
|
timeval UTCtoTAI1972 = { 10, 0 };
|
|
|
|
timeval TAItoTT = { 32, 184000 };
|
|
|
|
*tt = utc + leapSeconds_timeval + UTCtoTAI1972 + TAItoTT;
|
|
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) {
|
|
if(checkOrCreateClockMutex()!=HasReturnvaluesIF::RETURN_OK){
|
|
return HasReturnvaluesIF::RETURN_FAILED;
|
|
}
|
|
ReturnValue_t result = timeMutex->lockMutex();
|
|
if (result != HasReturnvaluesIF::RETURN_OK) {
|
|
return result;
|
|
}
|
|
|
|
leapSeconds = leapSeconds_;
|
|
|
|
result = timeMutex->unlockMutex();
|
|
return result;
|
|
}
|
|
|
|
ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) {
|
|
if(timeMutex == nullptr){
|
|
return HasReturnvaluesIF::RETURN_FAILED;
|
|
}
|
|
ReturnValue_t result = timeMutex->lockMutex();
|
|
if (result != HasReturnvaluesIF::RETURN_OK) {
|
|
return result;
|
|
}
|
|
|
|
*leapSeconds_ = leapSeconds;
|
|
|
|
result = timeMutex->unlockMutex();
|
|
return result;
|
|
}
|
|
|
|
ReturnValue_t Clock::checkOrCreateClockMutex(){
|
|
if(timeMutex == nullptr){
|
|
MutexFactory* mutexFactory = MutexFactory::instance();
|
|
if (mutexFactory == nullptr) {
|
|
return HasReturnvaluesIF::RETURN_FAILED;
|
|
}
|
|
timeMutex = mutexFactory->createMutex();
|
|
if (timeMutex == nullptr) {
|
|
return HasReturnvaluesIF::RETURN_FAILED;
|
|
}
|
|
}
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|