177 lines
5.7 KiB
C++
177 lines
5.7 KiB
C++
#include <framework/ipc/MutexFactory.h>
|
|
#include <framework/osal/host/Mutex.h>
|
|
#include <framework/osal/host/PeriodicTask.h>
|
|
|
|
#include <framework/serviceinterface/ServiceInterfaceStream.h>
|
|
#include <framework/tasks/ExecutableObjectIF.h>
|
|
|
|
#include <thread>
|
|
#include <chrono>
|
|
|
|
#if defined(WIN32)
|
|
#include <windows.h>
|
|
#elif defined(LINUX)
|
|
#include <pthread.h>
|
|
#endif
|
|
|
|
PeriodicTask::PeriodicTask(const char *name, TaskPriority setPriority,
|
|
TaskStackSize setStack, TaskPeriod setPeriod,
|
|
void (*setDeadlineMissedFunc)()) :
|
|
started(false), taskName(name), period(setPeriod),
|
|
deadlineMissedFunc(setDeadlineMissedFunc) {
|
|
// It is propably possible to set task priorities by using the native
|
|
// task handles for Windows / Linux
|
|
mainThread = std::thread(&PeriodicTask::taskEntryPoint, this, this);
|
|
#if defined(WIN32)
|
|
/* List of possible priority classes:
|
|
* https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/
|
|
* nf-processthreadsapi-setpriorityclass
|
|
* And respective thread priority numbers:
|
|
* https://docs.microsoft.com/en-us/windows/
|
|
* win32/procthread/scheduling-priorities */
|
|
int result = SetPriorityClass(
|
|
reinterpret_cast<HANDLE>(mainThread.native_handle()),
|
|
ABOVE_NORMAL_PRIORITY_CLASS);
|
|
if(result != 0) {
|
|
sif::error << "PeriodicTask: Windows SetPriorityClass failed with code "
|
|
<< GetLastError() << std::endl;
|
|
}
|
|
result = SetThreadPriority(
|
|
reinterpret_cast<HANDLE>(mainThread.native_handle()),
|
|
THREAD_PRIORITY_NORMAL);
|
|
if(result != 0) {
|
|
sif::error << "PeriodicTask: Windows SetPriorityClass failed with code "
|
|
<< GetLastError() << std::endl;
|
|
}
|
|
#elif defined(LINUX)
|
|
// we can just copy and paste the code from linux here.
|
|
#endif
|
|
}
|
|
|
|
PeriodicTask::~PeriodicTask(void) {
|
|
//Do not delete objects, we were responsible for ptrs only.
|
|
terminateThread = true;
|
|
if(mainThread.joinable()) {
|
|
mainThread.join();
|
|
}
|
|
delete this;
|
|
}
|
|
|
|
void PeriodicTask::taskEntryPoint(void* argument) {
|
|
PeriodicTask *originalTask(reinterpret_cast<PeriodicTask*>(argument));
|
|
|
|
|
|
if (not originalTask->started) {
|
|
// we have to suspend/block here until the task is started.
|
|
// if semaphores are implemented, use them here.
|
|
std::unique_lock<std::mutex> lock(initMutex);
|
|
initCondition.wait(lock);
|
|
}
|
|
|
|
this->taskFunctionality();
|
|
sif::debug << "PeriodicTask::taskEntryPoint: "
|
|
"Returned from taskFunctionality." << std::endl;
|
|
}
|
|
|
|
ReturnValue_t PeriodicTask::startTask() {
|
|
started = true;
|
|
|
|
// Notify task to start.
|
|
std::lock_guard<std::mutex> lock(initMutex);
|
|
initCondition.notify_one();
|
|
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
ReturnValue_t PeriodicTask::sleepFor(uint32_t ms) {
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
void PeriodicTask::taskFunctionality() {
|
|
std::chrono::milliseconds periodChrono(static_cast<uint32_t>(period*1000));
|
|
auto currentStartTime {
|
|
std::chrono::duration_cast<std::chrono::milliseconds>(
|
|
std::chrono::system_clock::now().time_since_epoch())
|
|
};
|
|
auto nextStartTime{ currentStartTime };
|
|
|
|
/* Enter the loop that defines the task behavior. */
|
|
for (;;) {
|
|
if(terminateThread.load()) {
|
|
break;
|
|
}
|
|
for (ObjectList::iterator it = objectList.begin();
|
|
it != objectList.end(); ++it) {
|
|
(*it)->performOperation();
|
|
}
|
|
if(not delayForInterval(¤tStartTime, periodChrono)) {
|
|
sif::warning << "PeriodicTask: " << taskName <<
|
|
" missed deadline!\n" << std::flush;
|
|
if(deadlineMissedFunc != nullptr) {
|
|
this->deadlineMissedFunc();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ReturnValue_t PeriodicTask::addComponent(object_id_t object) {
|
|
ExecutableObjectIF* newObject = objectManager->get<ExecutableObjectIF>(
|
|
object);
|
|
if (newObject == nullptr) {
|
|
return HasReturnvaluesIF::RETURN_FAILED;
|
|
}
|
|
objectList.push_back(newObject);
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
uint32_t PeriodicTask::getPeriodMs() const {
|
|
return period * 1000;
|
|
}
|
|
|
|
bool PeriodicTask::delayForInterval(chron_ms* previousWakeTimeMs,
|
|
const chron_ms interval) {
|
|
bool shouldDelay = false;
|
|
//Get current wakeup time
|
|
auto currentStartTime =
|
|
std::chrono::duration_cast<std::chrono::milliseconds>(
|
|
std::chrono::system_clock::now().time_since_epoch());
|
|
/* Generate the tick time at which the task wants to wake. */
|
|
auto nextTimeToWake_ms = (*previousWakeTimeMs) + interval;
|
|
|
|
if (currentStartTime < *previousWakeTimeMs) {
|
|
/* The tick count has overflowed since this function was
|
|
lasted called. In this case the only time we should ever
|
|
actually delay is if the wake time has also overflowed,
|
|
and the wake time is greater than the tick time. When this
|
|
is the case it is as if neither time had overflowed. */
|
|
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|
|
&& (nextTimeToWake_ms > currentStartTime)) {
|
|
shouldDelay = true;
|
|
}
|
|
} else {
|
|
/* The tick time has not overflowed. In this case we will
|
|
delay if either the wake time has overflowed, and/or the
|
|
tick time is less than the wake time. */
|
|
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|
|
|| (nextTimeToWake_ms > currentStartTime)) {
|
|
shouldDelay = true;
|
|
}
|
|
}
|
|
|
|
/* Update the wake time ready for the next call. */
|
|
|
|
(*previousWakeTimeMs) = nextTimeToWake_ms;
|
|
|
|
if (shouldDelay) {
|
|
auto sleepTime = std::chrono::duration_cast<std::chrono::milliseconds>(
|
|
nextTimeToWake_ms - currentStartTime);
|
|
std::this_thread::sleep_for(sleepTime);
|
|
return true;
|
|
}
|
|
//We are shifting the time in case the deadline was missed like rtems
|
|
(*previousWakeTimeMs) = currentStartTime;
|
|
return false;
|
|
|
|
}
|