#include "SpiComIF.h" #include "SpiCookie.h" #include "../utility.h" #include "../UnixFileGuard.h" #include #include #include #include #include #include #include #include #include /* Can be used for low-level debugging of the SPI bus */ #ifndef FSFW_HAL_LINUX_SPI_WIRETAPPING #define FSFW_HAL_LINUX_SPI_WIRETAPPING 1 #endif SpiComIF::SpiComIF(object_id_t objectId, GpioIF* gpioComIF): SystemObject(objectId), gpioComIF(gpioComIF) { if(gpioComIF == nullptr) { #if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::error << "SpiComIF::SpiComIF: GPIO communication interface invalid!" << std::endl; #else sif::printError("SpiComIF::SpiComIF: GPIO communication interface invalid!\n"); #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */ } spiMutex = MutexFactory::instance()->createMutex(); } ReturnValue_t SpiComIF::initializeInterface(CookieIF *cookie) { int retval = 0; SpiCookie* spiCookie = dynamic_cast(cookie); if(spiCookie == nullptr) { return NULLPOINTER; } address_t spiAddress = spiCookie->getSpiAddress(); auto iter = spiDeviceMap.find(spiAddress); if(iter == spiDeviceMap.end()) { size_t bufferSize = spiCookie->getMaxBufferSize(); SpiInstance spiInstance = {std::vector(bufferSize)}; auto statusPair = spiDeviceMap.emplace(spiAddress, spiInstance); if (not statusPair.second) { #if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::error << "SpiComIF::initializeInterface: Failed to insert device with address " << spiAddress << "to SPI device map" << std::endl; #else sif::printError("SpiComIF::initializeInterface: Failed to insert device with address " "%lu to SPI device map\n", static_cast(spiAddress)); #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */ return HasReturnvaluesIF::RETURN_FAILED; } /* Now we emplaced the read buffer in the map, we still need to assign that location to the SPI driver transfer struct */ spiCookie->assignReadBuffer(statusPair.first->second.replyBuffer.data()); } else { #if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::error << "SpiComIF::initializeInterface: SPI address already exists!" << std::endl; #else sif::printError("SpiComIF::initializeInterface: SPI address already exists!\n"); #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */ return HasReturnvaluesIF::RETURN_FAILED; } /* Pull CS high in any case to be sure that device is inactive */ gpioId_t gpioId = spiCookie->getChipSelectPin(); if(gpioId != gpio::NO_GPIO) { gpioComIF->pullHigh(gpioId); } size_t spiSpeed = 0; spi::SpiModes spiMode = spi::SpiModes::MODE_0; SpiCookie::UncommonParameters params; spiCookie->getSpiParameters(spiMode, spiSpeed, ¶ms); int fileDescriptor = 0; UnixFileGuard fileHelper(spiCookie->getSpiDevice(), &fileDescriptor, O_RDWR, "SpiComIF::initializeInterface: "); if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) { return fileHelper.getOpenResult(); } /* These flags are rather uncommon */ if(params.threeWireSpi or params.noCs or params.csHigh) { uint32_t currentMode = 0; retval = ioctl(fileDescriptor, SPI_IOC_RD_MODE32, ¤tMode); if(retval != 0) { utility::handleIoctlError("SpiComIF::initialiezInterface: Could not read full mode!"); } if(params.threeWireSpi) { currentMode |= SPI_3WIRE; } if(params.noCs) { /* Some drivers like the Raspberry Pi ignore this flag in any case */ currentMode |= SPI_NO_CS; } if(params.csHigh) { currentMode |= SPI_CS_HIGH; } /* Write adapted mode */ retval = ioctl(fileDescriptor, SPI_IOC_WR_MODE32, ¤tMode); if(retval != 0) { utility::handleIoctlError("SpiComIF::initialiezInterface: Could not write full mode!"); } } if(params.lsbFirst) { retval = ioctl(fileDescriptor, SPI_IOC_WR_LSB_FIRST, ¶ms.lsbFirst); if(retval != 0) { utility::handleIoctlError("SpiComIF::initializeInterface: Setting LSB first failed"); } } if(params.bitsPerWord != 8) { retval = ioctl(fileDescriptor, SPI_IOC_WR_BITS_PER_WORD, ¶ms.bitsPerWord); if(retval != 0) { utility::handleIoctlError("SpiComIF::initializeInterface: " "Could not write bits per word!"); } } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t SpiComIF::sendMessage(CookieIF *cookie, const uint8_t *sendData, size_t sendLen) { SpiCookie* spiCookie = dynamic_cast(cookie); ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; if(spiCookie == nullptr) { return NULLPOINTER; } if(sendLen > spiCookie->getMaxBufferSize()) { #if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::warning << "SpiComIF::sendMessage: Too much data sent, send length" << sendLen << "larger than maximum buffer length" << spiCookie->getMaxBufferSize() << std::endl; #else sif::printWarning("SpiComIF::sendMessage: Too much data sent, send length %lu larger " "than maximum buffer length %lu!\n", static_cast(sendLen), static_cast(spiCookie->getMaxBufferSize())); #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */ return DeviceCommunicationIF::TOO_MUCH_DATA; } if(spiCookie->getComIfMode() == spi::SpiComIfModes::REGULAR) { result = performRegularSendOperation(spiCookie, sendData, sendLen); } else if(spiCookie->getComIfMode() == spi::SpiComIfModes::CALLBACK) { spi::send_callback_function_t sendFunc = nullptr; void* funcArgs = nullptr; spiCookie->getCallback(&sendFunc, &funcArgs); if(sendFunc != nullptr) { result = sendFunc(this, spiCookie, sendData, sendLen, funcArgs); } } return result; } ReturnValue_t SpiComIF::performRegularSendOperation(SpiCookie *spiCookie, const uint8_t *sendData, size_t sendLen) { ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; int retval = 0; /* Prepare transfer */ int fileDescriptor = 0; std::string device = spiCookie->getSpiDevice(); UnixFileGuard fileHelper(device, &fileDescriptor, O_RDWR, "SpiComIF::sendMessage: "); if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) { return OPENING_FILE_FAILED; } spi::SpiModes spiMode = spi::SpiModes::MODE_0; uint32_t spiSpeed = 0; spiCookie->getSpiParameters(spiMode, spiSpeed, nullptr); setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed); spiCookie->assignWriteBuffer(sendData); spiCookie->assignTransferSize(sendLen); bool fullDuplex = spiCookie->isFullDuplex(); gpioId_t gpioId = spiCookie->getChipSelectPin(); /* Pull SPI CS low. For now, no support for active high given */ if(gpioId != gpio::NO_GPIO) { result = spiMutex->lockMutex(timeoutType, timeoutMs); if (result != RETURN_OK) { #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::error << "SpiComIF::sendMessage: Failed to lock mutex" << std::endl; #endif return result; } gpioComIF->pullLow(gpioId); } /* Execute transfer */ if(fullDuplex) { /* Initiate a full duplex SPI transfer. */ retval = ioctl(fileDescriptor, SPI_IOC_MESSAGE(1), spiCookie->getTransferStructHandle()); if(retval < 0) { utility::handleIoctlError("SpiComIF::sendMessage: ioctl error."); result = FULL_DUPLEX_TRANSFER_FAILED; } #if FSFW_HAL_LINUX_SPI_WIRETAPPING == 1 size_t dataLen = spiCookie->getTransferStructHandle()->len; uint8_t* dataPtr = reinterpret_cast(spiCookie->getTransferStructHandle()->tx_buf); #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::info << "Sent SPI data: " << std::endl; arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false); sif::info << "Received SPI data: " << std::endl; #else sif::printInfo("Sent SPI data: \n"); arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false); sif::printInfo("Received SPI data: \n"); #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ dataPtr = reinterpret_cast(spiCookie->getTransferStructHandle()->rx_buf); arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false); #endif /* FSFW_LINUX_SPI_WIRETAPPING == 1 */ } else { /* We write with a blocking half-duplex transfer here */ if (write(fileDescriptor, sendData, sendLen) != static_cast(sendLen)) { #if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::warning << "SpiComIF::sendMessage: Half-Duplex write operation failed!" << std::endl; #else sif::printWarning("SpiComIF::sendMessage: Half-Duplex write operation failed!\n"); #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */ result = HALF_DUPLEX_TRANSFER_FAILED; } } if(gpioId != gpio::NO_GPIO) { gpioComIF->pullHigh(gpioId); result = spiMutex->unlockMutex(); if (result != RETURN_OK) { #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::error << "SpiComIF::sendMessage: Failed to unlock mutex" << std::endl; #endif return result; } } return result; } ReturnValue_t SpiComIF::getSendSuccess(CookieIF *cookie) { return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t SpiComIF::requestReceiveMessage(CookieIF *cookie, size_t requestLen) { SpiCookie* spiCookie = dynamic_cast(cookie); if(spiCookie == nullptr) { return NULLPOINTER; } if(spiCookie->isFullDuplex()) { return HasReturnvaluesIF::RETURN_OK; } return performHalfDuplexReception(spiCookie); } ReturnValue_t SpiComIF::performHalfDuplexReception(SpiCookie* spiCookie) { ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; std::string device = spiCookie->getSpiDevice(); int fileDescriptor = 0; UnixFileGuard fileHelper(device, &fileDescriptor, O_RDWR, "SpiComIF::requestReceiveMessage: "); if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) { return OPENING_FILE_FAILED; } uint8_t* rxBuf = nullptr; size_t readSize = spiCookie->getCurrentTransferSize(); result = getReadBuffer(spiCookie->getSpiAddress(), &rxBuf); if(result != HasReturnvaluesIF::RETURN_OK) { return result; } gpioId_t gpioId = spiCookie->getChipSelectPin(); if(gpioId != gpio::NO_GPIO) { result = spiMutex->lockMutex(timeoutType, timeoutMs); if (result != RETURN_OK) { #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::error << "SpiComIF::getSendSuccess: Failed to lock mutex" << std::endl; #endif return result; } gpioComIF->pullLow(gpioId); } if(read(fileDescriptor, rxBuf, readSize) != static_cast(readSize)) { #if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::warning << "SpiComIF::sendMessage: Half-Duplex read operation failed!" << std::endl; #else sif::printWarning("SpiComIF::sendMessage: Half-Duplex read operation failed!\n"); #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */ result = HALF_DUPLEX_TRANSFER_FAILED; } if(gpioId != gpio::NO_GPIO) { gpioComIF->pullHigh(gpioId); result = spiMutex->unlockMutex(); if (result != RETURN_OK) { #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::error << "SpiComIF::getSendSuccess: Failed to unlock mutex" << std::endl; #endif return result; } } return result; } ReturnValue_t SpiComIF::readReceivedMessage(CookieIF *cookie, uint8_t **buffer, size_t *size) { SpiCookie* spiCookie = dynamic_cast(cookie); if(spiCookie == nullptr) { return HasReturnvaluesIF::RETURN_FAILED; } uint8_t* rxBuf = nullptr; ReturnValue_t result = getReadBuffer(spiCookie->getSpiAddress(), &rxBuf); if(result != HasReturnvaluesIF::RETURN_OK) { return result; } *buffer = rxBuf; *size = spiCookie->getCurrentTransferSize(); return HasReturnvaluesIF::RETURN_OK; } MutexIF* SpiComIF::getMutex() { return spiMutex; } ReturnValue_t SpiComIF::getReadBuffer(address_t spiAddress, uint8_t** buffer) { if(buffer == nullptr) { return HasReturnvaluesIF::RETURN_FAILED; } auto iter = spiDeviceMap.find(spiAddress); if(iter == spiDeviceMap.end()) { return HasReturnvaluesIF::RETURN_FAILED; } *buffer = iter->second.replyBuffer.data(); return HasReturnvaluesIF::RETURN_OK; } void SpiComIF::setSpiSpeedAndMode(int spiFd, spi::SpiModes mode, uint32_t speed) { int retval = ioctl(spiFd, SPI_IOC_WR_MODE, reinterpret_cast(&mode)); if(retval != 0) { utility::handleIoctlError("SpiTestClass::performRm3100Test: Setting SPI mode failed!"); } retval = ioctl(spiFd, SPI_IOC_WR_MAX_SPEED_HZ, &speed); if(retval != 0) { utility::handleIoctlError("SpiTestClass::performRm3100Test: Setting SPI speed failed!"); } }