1
0
forked from fsfw/fsfw

renormalized line endings

This commit is contained in:
2020-08-28 18:33:29 +02:00
parent 9abd796e6f
commit 1b9c8446b7
381 changed files with 38723 additions and 38723 deletions

View File

@ -1,53 +1,53 @@
#ifndef FRAMEWORK_TASKS_EXECUTABLEOBJECTIF_H_
#define FRAMEWORK_TASKS_EXECUTABLEOBJECTIF_H_
class PeriodicTaskIF;
#include "../returnvalues/HasReturnvaluesIF.h"
#include <cstring>
/**
* @brief The interface provides a method to execute objects within a task.
* @details The performOperation method, that is required by the interface is
* executed cyclically within a task context.
* @author Bastian Baetz
*/
class ExecutableObjectIF {
public:
/**
* @brief This is the empty virtual destructor as required for C++ interfaces.
*/
virtual ~ExecutableObjectIF() { }
/**
* @brief The performOperation method is executed in a task.
* @details There are no restrictions for calls within this method, so any
* other member of the class can be used.
* @return Currently, the return value is ignored.
*/
virtual ReturnValue_t performOperation(uint8_t operationCode = 0) = 0;
/**
* @brief Function called during setup assignment of object to task
* @details
* Has to be called from the function that assigns the object to a task and
* enables the object implementation to overwrite this function and get
* a reference to the executing task
* @param task_ Pointer to the taskIF of this task
*/
virtual void setTaskIF(PeriodicTaskIF* task_) {};
/**
* This function should be called after the object was assigned to a
* specific task.
*
* Example: Can be used to get task execution frequency.
* The task is created after initialize() and the object ctors have been
* called so the execution frequency can't be cached in initialize()
* @return
*/
virtual ReturnValue_t initializeAfterTaskCreation() {
return HasReturnvaluesIF::RETURN_OK;
}
};
#endif /* FRAMEWORK_TASKS_EXECUTABLEOBJECTIF_H_ */
#ifndef FRAMEWORK_TASKS_EXECUTABLEOBJECTIF_H_
#define FRAMEWORK_TASKS_EXECUTABLEOBJECTIF_H_
class PeriodicTaskIF;
#include "../returnvalues/HasReturnvaluesIF.h"
#include <cstring>
/**
* @brief The interface provides a method to execute objects within a task.
* @details The performOperation method, that is required by the interface is
* executed cyclically within a task context.
* @author Bastian Baetz
*/
class ExecutableObjectIF {
public:
/**
* @brief This is the empty virtual destructor as required for C++ interfaces.
*/
virtual ~ExecutableObjectIF() { }
/**
* @brief The performOperation method is executed in a task.
* @details There are no restrictions for calls within this method, so any
* other member of the class can be used.
* @return Currently, the return value is ignored.
*/
virtual ReturnValue_t performOperation(uint8_t operationCode = 0) = 0;
/**
* @brief Function called during setup assignment of object to task
* @details
* Has to be called from the function that assigns the object to a task and
* enables the object implementation to overwrite this function and get
* a reference to the executing task
* @param task_ Pointer to the taskIF of this task
*/
virtual void setTaskIF(PeriodicTaskIF* task_) {};
/**
* This function should be called after the object was assigned to a
* specific task.
*
* Example: Can be used to get task execution frequency.
* The task is created after initialize() and the object ctors have been
* called so the execution frequency can't be cached in initialize()
* @return
*/
virtual ReturnValue_t initializeAfterTaskCreation() {
return HasReturnvaluesIF::RETURN_OK;
}
};
#endif /* FRAMEWORK_TASKS_EXECUTABLEOBJECTIF_H_ */

View File

@ -1,17 +1,17 @@
#include "../objectmanager/SystemObjectIF.h"
#include "../tasks/FixedSequenceSlot.h"
#include <cstddef>
FixedSequenceSlot::FixedSequenceSlot(object_id_t handlerId, uint32_t setTime,
int8_t setSequenceId, ExecutableObjectIF* executableObject,
PeriodicTaskIF* executingTask) :
pollingTimeMs(setTime), opcode(setSequenceId) {
if(executableObject == nullptr) {
return;
}
this->executableObject = executableObject;
this->executableObject->setTaskIF(executingTask);
}
FixedSequenceSlot::~FixedSequenceSlot() {}
#include "../objectmanager/SystemObjectIF.h"
#include "../tasks/FixedSequenceSlot.h"
#include <cstddef>
FixedSequenceSlot::FixedSequenceSlot(object_id_t handlerId, uint32_t setTime,
int8_t setSequenceId, ExecutableObjectIF* executableObject,
PeriodicTaskIF* executingTask) :
pollingTimeMs(setTime), opcode(setSequenceId) {
if(executableObject == nullptr) {
return;
}
this->executableObject = executableObject;
this->executableObject->setTaskIF(executingTask);
}
FixedSequenceSlot::~FixedSequenceSlot() {}

View File

@ -1,57 +1,57 @@
#ifndef FRAMEWORK_TASKS_FIXEDSEQUENCESLOT_H_
#define FRAMEWORK_TASKS_FIXEDSEQUENCESLOT_H_
#include "../objectmanager/ObjectManagerIF.h"
#include "../tasks/ExecutableObjectIF.h"
class PeriodicTaskIF;
/**
* @brief This class is the representation of a single polling sequence
* table entry.
* @details
* The PollingSlot class is the representation of a single polling
* sequence table entry.
* @author baetz
*/
class FixedSequenceSlot {
public:
FixedSequenceSlot( object_id_t handlerId, uint32_t setTimeMs,
int8_t setSequenceId, ExecutableObjectIF* executableObject,
PeriodicTaskIF* executingTask);
virtual ~FixedSequenceSlot();
/**
* @brief Handler identifies which object is executed in this slot.
*/
ExecutableObjectIF* executableObject = nullptr;
/**
* @brief This attribute defines when a device handler object is executed.
* @details
* The pollingTime attribute identifies the time the handler is
* executed in ms. It must be smaller than the period length of the
* polling sequence.
*/
uint32_t pollingTimeMs;
/**
* @brief This value defines the type of device communication.
*
* @details The state of this value decides what communication routine is
* called in the PST executable or the device handler object.
*/
uint8_t opcode;
/**
* @brief Operator overload for the comparison operator to
* allow sorting by polling time.
* @param fixedSequenceSlot
* @return
*/
bool operator <(const FixedSequenceSlot & fixedSequenceSlot) const {
return pollingTimeMs < fixedSequenceSlot.pollingTimeMs;
}
};
#endif /* FIXEDSEQUENCESLOT_H_ */
#ifndef FRAMEWORK_TASKS_FIXEDSEQUENCESLOT_H_
#define FRAMEWORK_TASKS_FIXEDSEQUENCESLOT_H_
#include "../objectmanager/ObjectManagerIF.h"
#include "../tasks/ExecutableObjectIF.h"
class PeriodicTaskIF;
/**
* @brief This class is the representation of a single polling sequence
* table entry.
* @details
* The PollingSlot class is the representation of a single polling
* sequence table entry.
* @author baetz
*/
class FixedSequenceSlot {
public:
FixedSequenceSlot( object_id_t handlerId, uint32_t setTimeMs,
int8_t setSequenceId, ExecutableObjectIF* executableObject,
PeriodicTaskIF* executingTask);
virtual ~FixedSequenceSlot();
/**
* @brief Handler identifies which object is executed in this slot.
*/
ExecutableObjectIF* executableObject = nullptr;
/**
* @brief This attribute defines when a device handler object is executed.
* @details
* The pollingTime attribute identifies the time the handler is
* executed in ms. It must be smaller than the period length of the
* polling sequence.
*/
uint32_t pollingTimeMs;
/**
* @brief This value defines the type of device communication.
*
* @details The state of this value decides what communication routine is
* called in the PST executable or the device handler object.
*/
uint8_t opcode;
/**
* @brief Operator overload for the comparison operator to
* allow sorting by polling time.
* @param fixedSequenceSlot
* @return
*/
bool operator <(const FixedSequenceSlot & fixedSequenceSlot) const {
return pollingTimeMs < fixedSequenceSlot.pollingTimeMs;
}
};
#endif /* FIXEDSEQUENCESLOT_H_ */

View File

@ -1,147 +1,147 @@
#include "../serviceinterface/ServiceInterfaceStream.h"
#include "../tasks/FixedSlotSequence.h"
#include <cstdlib>
FixedSlotSequence::FixedSlotSequence(uint32_t setLengthMs) :
lengthMs(setLengthMs) {
current = slotList.begin();
}
FixedSlotSequence::~FixedSlotSequence() {
// Call the destructor on each list entry.
slotList.clear();
}
void FixedSlotSequence::executeAndAdvance() {
current->executableObject->performOperation(current->opcode);
// if (returnValue != RETURN_OK) {
// this->sendErrorMessage( returnValue );
// }
//Increment the polling Sequence iterator
this->current++;
//Set it to the beginning, if the list's end is reached.
if (this->current == this->slotList.end()) {
this->current = this->slotList.begin();
}
}
uint32_t FixedSlotSequence::getIntervalToNextSlotMs() {
uint32_t oldTime;
SlotListIter slotListIter = current;
// Get the pollingTimeMs of the current slot object.
oldTime = slotListIter->pollingTimeMs;
// Advance to the next object.
slotListIter++;
// Find the next interval which is not 0.
while (slotListIter != slotList.end()) {
if (oldTime != slotListIter->pollingTimeMs) {
return slotListIter->pollingTimeMs - oldTime;
} else {
slotListIter++;
}
}
// If the list end is reached (this is definitely an interval != 0),
// the interval is calculated by subtracting the remaining time of the PST
// and adding the start time of the first handler in the list.
slotListIter = slotList.begin();
return lengthMs - oldTime + slotListIter->pollingTimeMs;
}
uint32_t FixedSlotSequence::getIntervalToPreviousSlotMs() {
uint32_t currentTime;
SlotListIter slotListIter = current;
// Get the pollingTimeMs of the current slot object.
currentTime = slotListIter->pollingTimeMs;
//if it is the first slot, calculate difference to last slot
if (slotListIter == slotList.begin()){
return lengthMs - (--slotList.end())->pollingTimeMs + currentTime;
}
// get previous slot
slotListIter--;
return currentTime - slotListIter->pollingTimeMs;
}
bool FixedSlotSequence::slotFollowsImmediately() {
uint32_t currentTime = current->pollingTimeMs;
SlotListIter fixedSequenceIter = this->current;
// Get the pollingTimeMs of the current slot object.
if (fixedSequenceIter == slotList.begin())
return false;
fixedSequenceIter--;
if (fixedSequenceIter->pollingTimeMs == currentTime) {
return true;
} else {
return false;
}
}
uint32_t FixedSlotSequence::getLengthMs() const {
return this->lengthMs;
}
void FixedSlotSequence::addSlot(object_id_t componentId, uint32_t slotTimeMs,
int8_t executionStep, ExecutableObjectIF* executableObject,
PeriodicTaskIF* executingTask) {
this->slotList.insert(FixedSequenceSlot(componentId, slotTimeMs,
executionStep, executableObject, executingTask));
this->current = slotList.begin();
}
ReturnValue_t FixedSlotSequence::checkSequence() const {
if(slotList.empty()) {
sif::error << "Fixed Slot Sequence: Slot list is empty!" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
uint32_t count = 0;
uint32_t time = 0;
for(const auto& slot: slotList) {
if (slot.executableObject == nullptr) {
count++;
}
else if (slot.pollingTimeMs < time) {
sif::error << "FixedSlotSequence::initialize: Time: "
<< slot.pollingTimeMs << " is smaller than previous with "
<< time << std::endl;
count++;
}
else {
// All ok, print slot.
//sif::info << "Current slot polling time: " << std::endl;
//sif::info << std::dec << slotIt->pollingTimeMs << std::endl;
}
time = slot.pollingTimeMs;
}
//sif::info << "Number of elements in slot list: "
// << slotList.size() << std::endl;
if (count > 0) {
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t FixedSlotSequence::intializeSequenceAfterTaskCreation() const {
std::set<ExecutableObjectIF*> uniqueObjects;
uint32_t count = 0;
for(const auto& slot: slotList) {
// Ensure that each unique object is initialized once.
if(uniqueObjects.find(slot.executableObject) == uniqueObjects.end()) {
ReturnValue_t result =
slot.executableObject->initializeAfterTaskCreation();
if(result != HasReturnvaluesIF::RETURN_OK) {
count++;
}
uniqueObjects.emplace(slot.executableObject);
}
}
if (count > 0) {
sif::error << "FixedSlotSequence::intializeSequenceAfterTaskCreation:"
"Counted " << count << " failed initializations!" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
#include "../serviceinterface/ServiceInterfaceStream.h"
#include "../tasks/FixedSlotSequence.h"
#include <cstdlib>
FixedSlotSequence::FixedSlotSequence(uint32_t setLengthMs) :
lengthMs(setLengthMs) {
current = slotList.begin();
}
FixedSlotSequence::~FixedSlotSequence() {
// Call the destructor on each list entry.
slotList.clear();
}
void FixedSlotSequence::executeAndAdvance() {
current->executableObject->performOperation(current->opcode);
// if (returnValue != RETURN_OK) {
// this->sendErrorMessage( returnValue );
// }
//Increment the polling Sequence iterator
this->current++;
//Set it to the beginning, if the list's end is reached.
if (this->current == this->slotList.end()) {
this->current = this->slotList.begin();
}
}
uint32_t FixedSlotSequence::getIntervalToNextSlotMs() {
uint32_t oldTime;
SlotListIter slotListIter = current;
// Get the pollingTimeMs of the current slot object.
oldTime = slotListIter->pollingTimeMs;
// Advance to the next object.
slotListIter++;
// Find the next interval which is not 0.
while (slotListIter != slotList.end()) {
if (oldTime != slotListIter->pollingTimeMs) {
return slotListIter->pollingTimeMs - oldTime;
} else {
slotListIter++;
}
}
// If the list end is reached (this is definitely an interval != 0),
// the interval is calculated by subtracting the remaining time of the PST
// and adding the start time of the first handler in the list.
slotListIter = slotList.begin();
return lengthMs - oldTime + slotListIter->pollingTimeMs;
}
uint32_t FixedSlotSequence::getIntervalToPreviousSlotMs() {
uint32_t currentTime;
SlotListIter slotListIter = current;
// Get the pollingTimeMs of the current slot object.
currentTime = slotListIter->pollingTimeMs;
//if it is the first slot, calculate difference to last slot
if (slotListIter == slotList.begin()){
return lengthMs - (--slotList.end())->pollingTimeMs + currentTime;
}
// get previous slot
slotListIter--;
return currentTime - slotListIter->pollingTimeMs;
}
bool FixedSlotSequence::slotFollowsImmediately() {
uint32_t currentTime = current->pollingTimeMs;
SlotListIter fixedSequenceIter = this->current;
// Get the pollingTimeMs of the current slot object.
if (fixedSequenceIter == slotList.begin())
return false;
fixedSequenceIter--;
if (fixedSequenceIter->pollingTimeMs == currentTime) {
return true;
} else {
return false;
}
}
uint32_t FixedSlotSequence::getLengthMs() const {
return this->lengthMs;
}
void FixedSlotSequence::addSlot(object_id_t componentId, uint32_t slotTimeMs,
int8_t executionStep, ExecutableObjectIF* executableObject,
PeriodicTaskIF* executingTask) {
this->slotList.insert(FixedSequenceSlot(componentId, slotTimeMs,
executionStep, executableObject, executingTask));
this->current = slotList.begin();
}
ReturnValue_t FixedSlotSequence::checkSequence() const {
if(slotList.empty()) {
sif::error << "Fixed Slot Sequence: Slot list is empty!" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
uint32_t count = 0;
uint32_t time = 0;
for(const auto& slot: slotList) {
if (slot.executableObject == nullptr) {
count++;
}
else if (slot.pollingTimeMs < time) {
sif::error << "FixedSlotSequence::initialize: Time: "
<< slot.pollingTimeMs << " is smaller than previous with "
<< time << std::endl;
count++;
}
else {
// All ok, print slot.
//sif::info << "Current slot polling time: " << std::endl;
//sif::info << std::dec << slotIt->pollingTimeMs << std::endl;
}
time = slot.pollingTimeMs;
}
//sif::info << "Number of elements in slot list: "
// << slotList.size() << std::endl;
if (count > 0) {
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t FixedSlotSequence::intializeSequenceAfterTaskCreation() const {
std::set<ExecutableObjectIF*> uniqueObjects;
uint32_t count = 0;
for(const auto& slot: slotList) {
// Ensure that each unique object is initialized once.
if(uniqueObjects.find(slot.executableObject) == uniqueObjects.end()) {
ReturnValue_t result =
slot.executableObject->initializeAfterTaskCreation();
if(result != HasReturnvaluesIF::RETURN_OK) {
count++;
}
uniqueObjects.emplace(slot.executableObject);
}
}
if (count > 0) {
sif::error << "FixedSlotSequence::intializeSequenceAfterTaskCreation:"
"Counted " << count << " failed initializations!" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -1,159 +1,159 @@
#ifndef FRAMEWORK_TASKS_FIXEDSLOTSEQUENCE_H_
#define FRAMEWORK_TASKS_FIXEDSLOTSEQUENCE_H_
#include "../objectmanager/SystemObject.h"
#include "../tasks/FixedSequenceSlot.h"
#include <set>
/**
* @brief This class is the representation of a Polling Sequence Table in software.
* @details
* The FixedSlotSequence object maintains the dynamic execution of
* device handler objects.
*
* The main idea is to create a list of device handlers, to announce all
* handlers to thepolling sequence and to maintain a list of
* polling slot objects. This slot list represents the Polling Sequence Table
* in software.
*
* Each polling slot contains information to indicate when and
* which device handler shall be executed within a given polling period.
* The sequence is then executed by iterating through this slot list.
* Handlers are invoking by calling a certain function stored in the handler list.
*/
class FixedSlotSequence {
public:
using SlotList = std::multiset<FixedSequenceSlot>;
using SlotListIter = std::multiset<FixedSequenceSlot>::iterator;
/**
* @brief The constructor of the FixedSlotSequence object.
*
* @details The constructor takes two arguments, the period length and the init function.
*
* @param setLength The period length, expressed in ms.
*/
FixedSlotSequence(uint32_t setLengthMs);
/**
* @brief The destructor of the FixedSlotSequence object.
*
* @details The destructor frees all allocated memory by iterating through the slotList
* and deleting all allocated resources.
*/
virtual ~FixedSlotSequence();
/**
* @brief This is a method to add an PollingSlot object to slotList.
*
* @details Here, a polling slot object is added to the slot list. It is appended
* to the end of the list. The list is currently NOT reordered.
* Afterwards, the iterator current is set to the beginning of the list.
* @param Object ID of the object to add
* @param setTime Value between (0 to 1) * slotLengthMs, when a FixedTimeslotTask
* will be called inside the slot period.
* @param setSequenceId ID which can be used to distinguish
* different task operations
* @param
* @param
*/
void addSlot(object_id_t handlerId, uint32_t setTime, int8_t setSequenceId,
ExecutableObjectIF* executableObject, PeriodicTaskIF* executingTask);
/**
* Checks if the current slot shall be executed immediately after the one before.
* This allows to distinguish between grouped and not grouped handlers.
* @return - @c true if the slot has the same polling time as the previous
* - @c false else
*/
bool slotFollowsImmediately();
/**
* @brief This method returns the time until the next software
* component is invoked.
*
* @details
* This method is vitally important for the operation of the PST.
* By fetching the polling time of the current slot and that of the
* next one (or the first one, if the list end is reached)
* it calculates and returns the interval in milliseconds within
* which the handler execution shall take place.
* If the next slot has the same time as the current one, it is ignored
* until a slot with different time or the end of the PST is found.
*/
uint32_t getIntervalToNextSlotMs();
/**
* @brief This method returns the time difference between the current
* slot and the previous slot
*
* @details
* This method is vitally important for the operation of the PST.
* By fetching the polling time of the current slot and that of the previous
* one (or the last one, if the slot is the first one) it calculates and
* returns the interval in milliseconds that the handler execution shall
* be delayed.
*/
uint32_t getIntervalToPreviousSlotMs();
/**
* @brief This method returns the length of this FixedSlotSequence instance.
*/
uint32_t getLengthMs() const;
/**
* @brief The method to execute the device handler entered in the current
* PollingSlot object.
*
* @details
* Within this method the device handler object to be executed is chosen by
* looking up the handler address of the current slot in the handlerMap.
* Either the device handler's talkToInterface or its listenToInterface
* method is invoked, depending on the isTalking flag of the polling slot.
* After execution the iterator current is increased or, by reaching the
* end of slotList, reset to the beginning.
*/
void executeAndAdvance();
/**
* @brief An iterator that indicates the current polling slot to execute.
*
* @details This is an iterator for slotList and always points to the
* polling slot which is executed next.
*/
SlotListIter current;
/**
* @brief Check and initialize slot list.
* @details
* Checks if timing is ok (must be ascending) and if all handlers were found.
* Also calls any initialization steps which are required after task
* creation.
* @return
*/
ReturnValue_t checkSequence() const;
ReturnValue_t intializeSequenceAfterTaskCreation() const;
protected:
/**
* @brief This list contains all PollingSlot objects, defining order and
* execution time of the device handler objects.
*
* @details
* The slot list is a std:list object that contains all created
* PollingSlot instances. They are NOT ordered automatically, so by
* adding entries, the correct order needs to be ensured. By iterating
* through this list the polling sequence is executed. Two entries with
* identical polling times are executed immediately one after another.
*/
SlotList slotList;
uint32_t lengthMs;
bool isEmpty = false;
};
#endif /* FIXEDSLOTSEQUENCE_H_ */
#ifndef FRAMEWORK_TASKS_FIXEDSLOTSEQUENCE_H_
#define FRAMEWORK_TASKS_FIXEDSLOTSEQUENCE_H_
#include "../objectmanager/SystemObject.h"
#include "../tasks/FixedSequenceSlot.h"
#include <set>
/**
* @brief This class is the representation of a Polling Sequence Table in software.
* @details
* The FixedSlotSequence object maintains the dynamic execution of
* device handler objects.
*
* The main idea is to create a list of device handlers, to announce all
* handlers to thepolling sequence and to maintain a list of
* polling slot objects. This slot list represents the Polling Sequence Table
* in software.
*
* Each polling slot contains information to indicate when and
* which device handler shall be executed within a given polling period.
* The sequence is then executed by iterating through this slot list.
* Handlers are invoking by calling a certain function stored in the handler list.
*/
class FixedSlotSequence {
public:
using SlotList = std::multiset<FixedSequenceSlot>;
using SlotListIter = std::multiset<FixedSequenceSlot>::iterator;
/**
* @brief The constructor of the FixedSlotSequence object.
*
* @details The constructor takes two arguments, the period length and the init function.
*
* @param setLength The period length, expressed in ms.
*/
FixedSlotSequence(uint32_t setLengthMs);
/**
* @brief The destructor of the FixedSlotSequence object.
*
* @details The destructor frees all allocated memory by iterating through the slotList
* and deleting all allocated resources.
*/
virtual ~FixedSlotSequence();
/**
* @brief This is a method to add an PollingSlot object to slotList.
*
* @details Here, a polling slot object is added to the slot list. It is appended
* to the end of the list. The list is currently NOT reordered.
* Afterwards, the iterator current is set to the beginning of the list.
* @param Object ID of the object to add
* @param setTime Value between (0 to 1) * slotLengthMs, when a FixedTimeslotTask
* will be called inside the slot period.
* @param setSequenceId ID which can be used to distinguish
* different task operations
* @param
* @param
*/
void addSlot(object_id_t handlerId, uint32_t setTime, int8_t setSequenceId,
ExecutableObjectIF* executableObject, PeriodicTaskIF* executingTask);
/**
* Checks if the current slot shall be executed immediately after the one before.
* This allows to distinguish between grouped and not grouped handlers.
* @return - @c true if the slot has the same polling time as the previous
* - @c false else
*/
bool slotFollowsImmediately();
/**
* @brief This method returns the time until the next software
* component is invoked.
*
* @details
* This method is vitally important for the operation of the PST.
* By fetching the polling time of the current slot and that of the
* next one (or the first one, if the list end is reached)
* it calculates and returns the interval in milliseconds within
* which the handler execution shall take place.
* If the next slot has the same time as the current one, it is ignored
* until a slot with different time or the end of the PST is found.
*/
uint32_t getIntervalToNextSlotMs();
/**
* @brief This method returns the time difference between the current
* slot and the previous slot
*
* @details
* This method is vitally important for the operation of the PST.
* By fetching the polling time of the current slot and that of the previous
* one (or the last one, if the slot is the first one) it calculates and
* returns the interval in milliseconds that the handler execution shall
* be delayed.
*/
uint32_t getIntervalToPreviousSlotMs();
/**
* @brief This method returns the length of this FixedSlotSequence instance.
*/
uint32_t getLengthMs() const;
/**
* @brief The method to execute the device handler entered in the current
* PollingSlot object.
*
* @details
* Within this method the device handler object to be executed is chosen by
* looking up the handler address of the current slot in the handlerMap.
* Either the device handler's talkToInterface or its listenToInterface
* method is invoked, depending on the isTalking flag of the polling slot.
* After execution the iterator current is increased or, by reaching the
* end of slotList, reset to the beginning.
*/
void executeAndAdvance();
/**
* @brief An iterator that indicates the current polling slot to execute.
*
* @details This is an iterator for slotList and always points to the
* polling slot which is executed next.
*/
SlotListIter current;
/**
* @brief Check and initialize slot list.
* @details
* Checks if timing is ok (must be ascending) and if all handlers were found.
* Also calls any initialization steps which are required after task
* creation.
* @return
*/
ReturnValue_t checkSequence() const;
ReturnValue_t intializeSequenceAfterTaskCreation() const;
protected:
/**
* @brief This list contains all PollingSlot objects, defining order and
* execution time of the device handler objects.
*
* @details
* The slot list is a std:list object that contains all created
* PollingSlot instances. They are NOT ordered automatically, so by
* adding entries, the correct order needs to be ensured. By iterating
* through this list the polling sequence is executed. Two entries with
* identical polling times are executed immediately one after another.
*/
SlotList slotList;
uint32_t lengthMs;
bool isEmpty = false;
};
#endif /* FIXEDSLOTSEQUENCE_H_ */

View File

@ -1,33 +1,33 @@
#ifndef FRAMEWORK_TASKS_FIXEDTIMESLOTTASKIF_H_
#define FRAMEWORK_TASKS_FIXEDTIMESLOTTASKIF_H_
#include "../objectmanager/ObjectManagerIF.h"
#include "../tasks/PeriodicTaskIF.h"
/**
* @brief Following the same principle as the base class IF.
* This is the interface for a Fixed timeslot task
*/
class FixedTimeslotTaskIF : public PeriodicTaskIF {
public:
virtual ~FixedTimeslotTaskIF() {}
/**
* Add an object with a slot time and the execution step to the task.
* The execution step shall be passed to the object.
* @param componentId
* @param slotTimeMs
* @param executionStep
* @return
*/
virtual ReturnValue_t addSlot(object_id_t componentId,
uint32_t slotTimeMs, int8_t executionStep) = 0;
/**
* Check whether the sequence is valid and perform all other required
* initialization steps which are needed after task creation
*/
virtual ReturnValue_t checkSequence() const = 0;
};
#endif /* FRAMEWORK_TASKS_FIXEDTIMESLOTTASKIF_H_ */
#ifndef FRAMEWORK_TASKS_FIXEDTIMESLOTTASKIF_H_
#define FRAMEWORK_TASKS_FIXEDTIMESLOTTASKIF_H_
#include "../objectmanager/ObjectManagerIF.h"
#include "../tasks/PeriodicTaskIF.h"
/**
* @brief Following the same principle as the base class IF.
* This is the interface for a Fixed timeslot task
*/
class FixedTimeslotTaskIF : public PeriodicTaskIF {
public:
virtual ~FixedTimeslotTaskIF() {}
/**
* Add an object with a slot time and the execution step to the task.
* The execution step shall be passed to the object.
* @param componentId
* @param slotTimeMs
* @param executionStep
* @return
*/
virtual ReturnValue_t addSlot(object_id_t componentId,
uint32_t slotTimeMs, int8_t executionStep) = 0;
/**
* Check whether the sequence is valid and perform all other required
* initialization steps which are needed after task creation
*/
virtual ReturnValue_t checkSequence() const = 0;
};
#endif /* FRAMEWORK_TASKS_FIXEDTIMESLOTTASKIF_H_ */

View File

@ -1,49 +1,49 @@
#ifndef FRAMEWORK_TASK_PERIODICTASKIF_H_
#define FRAMEWORK_TASK_PERIODICTASKIF_H_
#include "../objectmanager/SystemObjectIF.h"
#include "../timemanager/Clock.h"
#include <cstddef>
class ExecutableObjectIF;
/**
* New version of TaskIF
* Follows RAII principles, i.e. there's no create or delete method.
* Minimalistic.
*/
class PeriodicTaskIF {
public:
static const size_t MINIMUM_STACK_SIZE;
/**
* @brief A virtual destructor as it is mandatory for interfaces.
*/
virtual ~PeriodicTaskIF() { }
/**
* @brief With the startTask method, a created task can be started
* for the first time.
*/
virtual ReturnValue_t startTask() = 0;
/**
* Add a component (object) to a periodic task. The pointer to the
* task can be set optionally
* @param object
* Add an object to the task. The most important case is to add an
* executable object with a function which will be called regularly
* (see ExecutableObjectIF)
* @param setTaskIF
* Can be used to specify whether the task object pointer is passed
* to the component.
* @return
*/
virtual ReturnValue_t addComponent(object_id_t object) {
return HasReturnvaluesIF::RETURN_FAILED;
};
virtual ReturnValue_t sleepFor(uint32_t ms) = 0;
virtual uint32_t getPeriodMs() const = 0;
};
#endif /* PERIODICTASKIF_H_ */
#ifndef FRAMEWORK_TASK_PERIODICTASKIF_H_
#define FRAMEWORK_TASK_PERIODICTASKIF_H_
#include "../objectmanager/SystemObjectIF.h"
#include "../timemanager/Clock.h"
#include <cstddef>
class ExecutableObjectIF;
/**
* New version of TaskIF
* Follows RAII principles, i.e. there's no create or delete method.
* Minimalistic.
*/
class PeriodicTaskIF {
public:
static const size_t MINIMUM_STACK_SIZE;
/**
* @brief A virtual destructor as it is mandatory for interfaces.
*/
virtual ~PeriodicTaskIF() { }
/**
* @brief With the startTask method, a created task can be started
* for the first time.
*/
virtual ReturnValue_t startTask() = 0;
/**
* Add a component (object) to a periodic task. The pointer to the
* task can be set optionally
* @param object
* Add an object to the task. The most important case is to add an
* executable object with a function which will be called regularly
* (see ExecutableObjectIF)
* @param setTaskIF
* Can be used to specify whether the task object pointer is passed
* to the component.
* @return
*/
virtual ReturnValue_t addComponent(object_id_t object) {
return HasReturnvaluesIF::RETURN_FAILED;
};
virtual ReturnValue_t sleepFor(uint32_t ms) = 0;
virtual uint32_t getPeriodMs() const = 0;
};
#endif /* PERIODICTASKIF_H_ */

View File

@ -1,50 +1,50 @@
#ifndef FSFW_TASKS_SEMAPHOREFACTORY_H_
#define FSFW_TASKS_SEMAPHOREFACTORY_H_
#include "../tasks/SemaphoreIF.h"
/**
* Creates Semaphore.
* This class is a "singleton" interface, i.e. it provides an
* interface, but also is the base class for a singleton.
*/
class SemaphoreFactory {
public:
virtual ~SemaphoreFactory();
/**
* Returns the single instance of SemaphoreFactory.
* The implementation of #instance is found in its subclasses.
* Thus, we choose link-time variability of the instance.
*/
static SemaphoreFactory* instance();
/**
* Create a binary semaphore.
* Creator function for a binary semaphore which may only be acquired once
* @param argument Can be used to pass implementation specific information.
* @return Pointer to newly created semaphore class instance.
*/
SemaphoreIF* createBinarySemaphore(uint32_t arguments = 0);
/**
* Create a counting semaphore.
* Creator functons for a counting semaphore which may be acquired multiple
* times.
* @param count Semaphore can be taken count times.
* @param initCount Initial count value.
* @param argument Can be used to pass implementation specific information.
* @return
*/
SemaphoreIF* createCountingSemaphore(const uint8_t maxCount,
uint8_t initCount, uint32_t arguments = 0);
void deleteSemaphore(SemaphoreIF* semaphore);
private:
/**
* External instantiation is not allowed.
*/
SemaphoreFactory();
static SemaphoreFactory* factoryInstance;
};
#endif /* FSFW_TASKS_SEMAPHOREFACTORY_H_ */
#ifndef FSFW_TASKS_SEMAPHOREFACTORY_H_
#define FSFW_TASKS_SEMAPHOREFACTORY_H_
#include "../tasks/SemaphoreIF.h"
/**
* Creates Semaphore.
* This class is a "singleton" interface, i.e. it provides an
* interface, but also is the base class for a singleton.
*/
class SemaphoreFactory {
public:
virtual ~SemaphoreFactory();
/**
* Returns the single instance of SemaphoreFactory.
* The implementation of #instance is found in its subclasses.
* Thus, we choose link-time variability of the instance.
*/
static SemaphoreFactory* instance();
/**
* Create a binary semaphore.
* Creator function for a binary semaphore which may only be acquired once
* @param argument Can be used to pass implementation specific information.
* @return Pointer to newly created semaphore class instance.
*/
SemaphoreIF* createBinarySemaphore(uint32_t arguments = 0);
/**
* Create a counting semaphore.
* Creator functons for a counting semaphore which may be acquired multiple
* times.
* @param count Semaphore can be taken count times.
* @param initCount Initial count value.
* @param argument Can be used to pass implementation specific information.
* @return
*/
SemaphoreIF* createCountingSemaphore(const uint8_t maxCount,
uint8_t initCount, uint32_t arguments = 0);
void deleteSemaphore(SemaphoreIF* semaphore);
private:
/**
* External instantiation is not allowed.
*/
SemaphoreFactory();
static SemaphoreFactory* factoryInstance;
};
#endif /* FSFW_TASKS_SEMAPHOREFACTORY_H_ */

View File

@ -1,68 +1,68 @@
#ifndef FRAMEWORK_TASKS_SEMAPHOREIF_H_
#define FRAMEWORK_TASKS_SEMAPHOREIF_H_
#include "../returnvalues/FwClassIds.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include <cstdint>
/**
* @brief Generic interface for semaphores, which can be used to achieve
* task synchronization. This is a generic interface which can be
* used for both binary semaphores and counting semaphores.
* @details
* A semaphore is a synchronization primitive.
* See: https://en.wikipedia.org/wiki/Semaphore_(programming)
* A semaphore can be used to achieve task synchonization and track the
* availability of resources by using either the binary or the counting
* semaphore types.
*
* If mutual exlcusion of a resource is desired, a mutex should be used,
* which is a special form of a semaphore and has an own interface.
*/
class SemaphoreIF {
public:
/**
* Different types of timeout for the mutex lock.
*/
enum TimeoutType {
POLLING, //!< If mutex is not available, return immediately
WAITING, //!< Wait a specified time for the mutex to become available
BLOCKING //!< Block indefinitely until the mutex becomes available.
};
virtual~ SemaphoreIF() {};
static const uint8_t INTERFACE_ID = CLASS_ID::SEMAPHORE_IF;
//! Semaphore timeout
static constexpr ReturnValue_t SEMAPHORE_TIMEOUT = MAKE_RETURN_CODE(1);
//! The current semaphore can not be given, because it is not owned
static constexpr ReturnValue_t SEMAPHORE_NOT_OWNED = MAKE_RETURN_CODE(2);
static constexpr ReturnValue_t SEMAPHORE_INVALID = MAKE_RETURN_CODE(3);
/**
* Generic call to acquire a semaphore.
* If there are no more semaphores to be taken (for a counting semaphore,
* a semaphore may be taken more than once), the taks will block
* for a maximum of timeoutMs while trying to acquire the semaphore.
* This can be used to achieve task synchrnization.
* @param timeoutMs
* @return - c RETURN_OK for successfull acquisition
*/
virtual ReturnValue_t acquire(TimeoutType timeoutType =
TimeoutType::BLOCKING, uint32_t timeoutMs = 0) = 0;
/**
* Corrensponding call to release a semaphore.
* @return -@c RETURN_OK for successfull release
*/
virtual ReturnValue_t release() = 0;
/**
* If the semaphore is a counting semaphore then the semaphores current
* count value is returned. If the semaphore is a binary semaphore then 1
* is returned if the semaphore is available, and 0 is returned if the
* semaphore is not available.
*/
virtual uint8_t getSemaphoreCounter() const = 0;
};
#endif /* FRAMEWORK_TASKS_SEMAPHOREIF_H_ */
#ifndef FRAMEWORK_TASKS_SEMAPHOREIF_H_
#define FRAMEWORK_TASKS_SEMAPHOREIF_H_
#include "../returnvalues/FwClassIds.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include <cstdint>
/**
* @brief Generic interface for semaphores, which can be used to achieve
* task synchronization. This is a generic interface which can be
* used for both binary semaphores and counting semaphores.
* @details
* A semaphore is a synchronization primitive.
* See: https://en.wikipedia.org/wiki/Semaphore_(programming)
* A semaphore can be used to achieve task synchonization and track the
* availability of resources by using either the binary or the counting
* semaphore types.
*
* If mutual exlcusion of a resource is desired, a mutex should be used,
* which is a special form of a semaphore and has an own interface.
*/
class SemaphoreIF {
public:
/**
* Different types of timeout for the mutex lock.
*/
enum TimeoutType {
POLLING, //!< If mutex is not available, return immediately
WAITING, //!< Wait a specified time for the mutex to become available
BLOCKING //!< Block indefinitely until the mutex becomes available.
};
virtual~ SemaphoreIF() {};
static const uint8_t INTERFACE_ID = CLASS_ID::SEMAPHORE_IF;
//! Semaphore timeout
static constexpr ReturnValue_t SEMAPHORE_TIMEOUT = MAKE_RETURN_CODE(1);
//! The current semaphore can not be given, because it is not owned
static constexpr ReturnValue_t SEMAPHORE_NOT_OWNED = MAKE_RETURN_CODE(2);
static constexpr ReturnValue_t SEMAPHORE_INVALID = MAKE_RETURN_CODE(3);
/**
* Generic call to acquire a semaphore.
* If there are no more semaphores to be taken (for a counting semaphore,
* a semaphore may be taken more than once), the taks will block
* for a maximum of timeoutMs while trying to acquire the semaphore.
* This can be used to achieve task synchrnization.
* @param timeoutMs
* @return - c RETURN_OK for successfull acquisition
*/
virtual ReturnValue_t acquire(TimeoutType timeoutType =
TimeoutType::BLOCKING, uint32_t timeoutMs = 0) = 0;
/**
* Corrensponding call to release a semaphore.
* @return -@c RETURN_OK for successfull release
*/
virtual ReturnValue_t release() = 0;
/**
* If the semaphore is a counting semaphore then the semaphores current
* count value is returned. If the semaphore is a binary semaphore then 1
* is returned if the semaphore is available, and 0 is returned if the
* semaphore is not available.
*/
virtual uint8_t getSemaphoreCounter() const = 0;
};
#endif /* FRAMEWORK_TASKS_SEMAPHOREIF_H_ */

View File

@ -1,73 +1,73 @@
#ifndef FRAMEWORK_TASKS_TASKFACTORY_H_
#define FRAMEWORK_TASKS_TASKFACTORY_H_
#include <cstdlib>
#include "../tasks/FixedTimeslotTaskIF.h"
#include "../tasks/Typedef.h"
/**
* Singleton Class that produces Tasks.
*/
class TaskFactory {
public:
virtual ~TaskFactory();
/**
* Returns the single instance of TaskFactory.
* The implementation of #instance is found in its subclasses.
* Thus, we choose link-time variability of the instance.
*/
static TaskFactory* instance();
/**
* Generic interface to create a periodic task
* @param name_ Name of the task
* @param taskPriority_ Priority of the task
* @param stackSize_ Stack size if the task
* @param periodInSeconds_ Period in seconds
* @param deadLineMissedFunction_ This function is called if a deadline was
* missed
* @return Pointer to the created periodic task class
*/
PeriodicTaskIF* createPeriodicTask(TaskName name_,
TaskPriority taskPriority_, TaskStackSize stackSize_,
TaskPeriod periodInSeconds_,
TaskDeadlineMissedFunction deadLineMissedFunction_);
/**
* Generic interface to create a fixed timeslot task
* @param name_ Name of the task
* @param taskPriority_ Priority of the task
* @param stackSize_ Stack size if the task
* @param periodInSeconds_ Period in seconds
* @param deadLineMissedFunction_ This function is called if a deadline was
* missed
* @return Pointer to the created periodic task class
*/
FixedTimeslotTaskIF* createFixedTimeslotTask(TaskName name_,
TaskPriority taskPriority_, TaskStackSize stackSize_,
TaskPeriod periodInSeconds_,
TaskDeadlineMissedFunction deadLineMissedFunction_);
/**
* Function to be called to delete a task
* @param task The pointer to the task that shall be deleted,
* NULL specifies current Task
* @return Success of deletion
*/
static ReturnValue_t deleteTask(PeriodicTaskIF* task = NULL);
/**
* Function to be called to delay current task
* @param delay The delay in milliseconds
* @return Success of deletion
*/
static ReturnValue_t delayTask(uint32_t delayMs);
private:
/**
* External instantiation is not allowed.
*/
TaskFactory();
static TaskFactory* factoryInstance;
};
#endif /* FRAMEWORK_TASKS_TASKFACTORY_H_ */
#ifndef FRAMEWORK_TASKS_TASKFACTORY_H_
#define FRAMEWORK_TASKS_TASKFACTORY_H_
#include <cstdlib>
#include "../tasks/FixedTimeslotTaskIF.h"
#include "../tasks/Typedef.h"
/**
* Singleton Class that produces Tasks.
*/
class TaskFactory {
public:
virtual ~TaskFactory();
/**
* Returns the single instance of TaskFactory.
* The implementation of #instance is found in its subclasses.
* Thus, we choose link-time variability of the instance.
*/
static TaskFactory* instance();
/**
* Generic interface to create a periodic task
* @param name_ Name of the task
* @param taskPriority_ Priority of the task
* @param stackSize_ Stack size if the task
* @param periodInSeconds_ Period in seconds
* @param deadLineMissedFunction_ This function is called if a deadline was
* missed
* @return Pointer to the created periodic task class
*/
PeriodicTaskIF* createPeriodicTask(TaskName name_,
TaskPriority taskPriority_, TaskStackSize stackSize_,
TaskPeriod periodInSeconds_,
TaskDeadlineMissedFunction deadLineMissedFunction_);
/**
* Generic interface to create a fixed timeslot task
* @param name_ Name of the task
* @param taskPriority_ Priority of the task
* @param stackSize_ Stack size if the task
* @param periodInSeconds_ Period in seconds
* @param deadLineMissedFunction_ This function is called if a deadline was
* missed
* @return Pointer to the created periodic task class
*/
FixedTimeslotTaskIF* createFixedTimeslotTask(TaskName name_,
TaskPriority taskPriority_, TaskStackSize stackSize_,
TaskPeriod periodInSeconds_,
TaskDeadlineMissedFunction deadLineMissedFunction_);
/**
* Function to be called to delete a task
* @param task The pointer to the task that shall be deleted,
* NULL specifies current Task
* @return Success of deletion
*/
static ReturnValue_t deleteTask(PeriodicTaskIF* task = NULL);
/**
* Function to be called to delay current task
* @param delay The delay in milliseconds
* @return Success of deletion
*/
static ReturnValue_t delayTask(uint32_t delayMs);
private:
/**
* External instantiation is not allowed.
*/
TaskFactory();
static TaskFactory* factoryInstance;
};
#endif /* FRAMEWORK_TASKS_TASKFACTORY_H_ */