1
0
forked from fsfw/fsfw

renormalized line endings

This commit is contained in:
2020-08-28 18:33:29 +02:00
parent 9abd796e6f
commit 1b9c8446b7
381 changed files with 38723 additions and 38723 deletions

View File

@ -1,70 +1,70 @@
#include "AbstractTemperatureSensor.h"
#include "../ipc/QueueFactory.h"
AbstractTemperatureSensor::AbstractTemperatureSensor(object_id_t setObjectid,
ThermalModuleIF *thermalModule) :
SystemObject(setObjectid), commandQueue(NULL), healthHelper(this,
setObjectid), parameterHelper(this) {
if (thermalModule != NULL) {
thermalModule->registerSensor(this);
}
commandQueue = QueueFactory::instance()->createMessageQueue();
}
AbstractTemperatureSensor::~AbstractTemperatureSensor() {
QueueFactory::instance()->deleteMessageQueue(commandQueue);
}
MessageQueueId_t AbstractTemperatureSensor::getCommandQueue() const {
return commandQueue->getId();
}
ReturnValue_t AbstractTemperatureSensor::initialize() {
ReturnValue_t result = SystemObject::initialize();
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = healthHelper.initialize();
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = parameterHelper.initialize();
return result;
}
ReturnValue_t AbstractTemperatureSensor::performOperation(uint8_t opCode) {
handleCommandQueue();
doChildOperation();
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t AbstractTemperatureSensor::performHealthOp() {
handleCommandQueue();
return HasReturnvaluesIF::RETURN_OK;
}
void AbstractTemperatureSensor::handleCommandQueue() {
CommandMessage command;
ReturnValue_t result = commandQueue->receiveMessage(&command);
if (result == HasReturnvaluesIF::RETURN_OK) {
result = healthHelper.handleHealthCommand(&command);
if (result == HasReturnvaluesIF::RETURN_OK) {
return;
}
result = parameterHelper.handleParameterMessage(&command);
if (result == HasReturnvaluesIF::RETURN_OK) {
return;
}
command.setToUnknownCommand();
commandQueue->reply(&command);
}
}
ReturnValue_t AbstractTemperatureSensor::setHealth(HealthState health) {
healthHelper.setHealth(health);
return HasReturnvaluesIF::RETURN_OK;
}
HasHealthIF::HealthState AbstractTemperatureSensor::getHealth() {
return healthHelper.getHealth();
}
#include "AbstractTemperatureSensor.h"
#include "../ipc/QueueFactory.h"
AbstractTemperatureSensor::AbstractTemperatureSensor(object_id_t setObjectid,
ThermalModuleIF *thermalModule) :
SystemObject(setObjectid), commandQueue(NULL), healthHelper(this,
setObjectid), parameterHelper(this) {
if (thermalModule != NULL) {
thermalModule->registerSensor(this);
}
commandQueue = QueueFactory::instance()->createMessageQueue();
}
AbstractTemperatureSensor::~AbstractTemperatureSensor() {
QueueFactory::instance()->deleteMessageQueue(commandQueue);
}
MessageQueueId_t AbstractTemperatureSensor::getCommandQueue() const {
return commandQueue->getId();
}
ReturnValue_t AbstractTemperatureSensor::initialize() {
ReturnValue_t result = SystemObject::initialize();
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = healthHelper.initialize();
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = parameterHelper.initialize();
return result;
}
ReturnValue_t AbstractTemperatureSensor::performOperation(uint8_t opCode) {
handleCommandQueue();
doChildOperation();
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t AbstractTemperatureSensor::performHealthOp() {
handleCommandQueue();
return HasReturnvaluesIF::RETURN_OK;
}
void AbstractTemperatureSensor::handleCommandQueue() {
CommandMessage command;
ReturnValue_t result = commandQueue->receiveMessage(&command);
if (result == HasReturnvaluesIF::RETURN_OK) {
result = healthHelper.handleHealthCommand(&command);
if (result == HasReturnvaluesIF::RETURN_OK) {
return;
}
result = parameterHelper.handleParameterMessage(&command);
if (result == HasReturnvaluesIF::RETURN_OK) {
return;
}
command.setToUnknownCommand();
commandQueue->reply(&command);
}
}
ReturnValue_t AbstractTemperatureSensor::setHealth(HealthState health) {
healthHelper.setHealth(health);
return HasReturnvaluesIF::RETURN_OK;
}
HasHealthIF::HealthState AbstractTemperatureSensor::getHealth() {
return healthHelper.getHealth();
}

View File

@ -1,64 +1,64 @@
#ifndef ABSTRACTSENSOR_H_
#define ABSTRACTSENSOR_H_
#include "../health/HasHealthIF.h"
#include "../health/HealthHelper.h"
#include "../objectmanager/SystemObject.h"
#include "../tasks/ExecutableObjectIF.h"
#include "../parameters/ParameterHelper.h"
#include "../ipc/MessageQueueIF.h"
#include "ThermalModuleIF.h"
#include "tcsDefinitions.h"
/**
* @defgroup thermal Thermal Components
* @brief Contains all components related to thermal tasks (sensors, heaters)
*/
/**
* @brief Base class for Temperature Sensor, implements all important interfaces.
* Please use the TemperatureSensor class to implement the actual sensors.
* @ingroup thermal
*/
class AbstractTemperatureSensor: public HasHealthIF,
public SystemObject,
public ExecutableObjectIF,
public ReceivesParameterMessagesIF {
public:
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::T_SENSORS;
static const Event TEMP_SENSOR_HIGH = MAKE_EVENT(0, SEVERITY::LOW);
static const Event TEMP_SENSOR_LOW = MAKE_EVENT(1, SEVERITY::LOW);
static const Event TEMP_SENSOR_GRADIENT = MAKE_EVENT(2, SEVERITY::LOW);
static constexpr float ZERO_KELVIN_C = -273.15;
AbstractTemperatureSensor(object_id_t setObjectid,
ThermalModuleIF *thermalModule);
virtual ~AbstractTemperatureSensor();
virtual MessageQueueId_t getCommandQueue() const;
ReturnValue_t initialize();
ReturnValue_t performHealthOp();
ReturnValue_t performOperation(uint8_t opCode);
virtual float getTemperature() = 0;
virtual bool isValid() = 0;
virtual void resetOldState() = 0;
ReturnValue_t setHealth(HealthState health);
HasHealthIF::HealthState getHealth();
protected:
MessageQueueIF* commandQueue;
HealthHelper healthHelper;
ParameterHelper parameterHelper;
virtual void doChildOperation() = 0;
void handleCommandQueue();
};
#endif /* ABSTRACTSENSOR_H_ */
#ifndef ABSTRACTSENSOR_H_
#define ABSTRACTSENSOR_H_
#include "../health/HasHealthIF.h"
#include "../health/HealthHelper.h"
#include "../objectmanager/SystemObject.h"
#include "../tasks/ExecutableObjectIF.h"
#include "../parameters/ParameterHelper.h"
#include "../ipc/MessageQueueIF.h"
#include "ThermalModuleIF.h"
#include "tcsDefinitions.h"
/**
* @defgroup thermal Thermal Components
* @brief Contains all components related to thermal tasks (sensors, heaters)
*/
/**
* @brief Base class for Temperature Sensor, implements all important interfaces.
* Please use the TemperatureSensor class to implement the actual sensors.
* @ingroup thermal
*/
class AbstractTemperatureSensor: public HasHealthIF,
public SystemObject,
public ExecutableObjectIF,
public ReceivesParameterMessagesIF {
public:
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::T_SENSORS;
static const Event TEMP_SENSOR_HIGH = MAKE_EVENT(0, SEVERITY::LOW);
static const Event TEMP_SENSOR_LOW = MAKE_EVENT(1, SEVERITY::LOW);
static const Event TEMP_SENSOR_GRADIENT = MAKE_EVENT(2, SEVERITY::LOW);
static constexpr float ZERO_KELVIN_C = -273.15;
AbstractTemperatureSensor(object_id_t setObjectid,
ThermalModuleIF *thermalModule);
virtual ~AbstractTemperatureSensor();
virtual MessageQueueId_t getCommandQueue() const;
ReturnValue_t initialize();
ReturnValue_t performHealthOp();
ReturnValue_t performOperation(uint8_t opCode);
virtual float getTemperature() = 0;
virtual bool isValid() = 0;
virtual void resetOldState() = 0;
ReturnValue_t setHealth(HealthState health);
HasHealthIF::HealthState getHealth();
protected:
MessageQueueIF* commandQueue;
HealthHelper healthHelper;
ParameterHelper parameterHelper;
virtual void doChildOperation() = 0;
void handleCommandQueue();
};
#endif /* ABSTRACTSENSOR_H_ */

View File

@ -1,22 +1,22 @@
/**
* \file AcceptsThermalMessagesIF.h
*
* \date 16.02.2020
*/
#ifndef FRAMEWORK_THERMAL_ACCEPTSTHERMALMESSAGESIF_H_
#define FRAMEWORK_THERMAL_ACCEPTSTHERMALMESSAGESIF_H_
#include "../ipc/MessageQueueSenderIF.h"
class AcceptsThermalMessagesIF {
public:
/**
* @brief This is the empty virtual destructor as required for C++ interfaces.
*/
virtual ~AcceptsThermalMessagesIF() { }
virtual MessageQueueId_t getReceptionQueue() const = 0;
};
#endif /* FRAMEWORK_THERMAL_ACCEPTSTHERMALMESSAGESIF_H_ */
/**
* \file AcceptsThermalMessagesIF.h
*
* \date 16.02.2020
*/
#ifndef FRAMEWORK_THERMAL_ACCEPTSTHERMALMESSAGESIF_H_
#define FRAMEWORK_THERMAL_ACCEPTSTHERMALMESSAGESIF_H_
#include "../ipc/MessageQueueSenderIF.h"
class AcceptsThermalMessagesIF {
public:
/**
* @brief This is the empty virtual destructor as required for C++ interfaces.
*/
virtual ~AcceptsThermalMessagesIF() { }
virtual MessageQueueId_t getReceptionQueue() const = 0;
};
#endif /* FRAMEWORK_THERMAL_ACCEPTSTHERMALMESSAGESIF_H_ */

View File

@ -1,96 +1,96 @@
#ifndef MISSION_CONTROLLERS_TCS_CORECOMPONENT_H_
#define MISSION_CONTROLLERS_TCS_CORECOMPONENT_H_
#include "../datapoolglob/GlobalDataSet.h"
#include "../datapoolglob/GlobalPoolVariable.h"
#include "../thermal/ThermalComponentIF.h"
#include "../thermal/AbstractTemperatureSensor.h"
#include "../thermal/ThermalModule.h"
#include "../thermal/ThermalMonitor.h"
// TODO: Documentaiton, how to use this? only use Thermal Component, which inherits core component?
class CoreComponent: public ThermalComponentIF {
public:
struct Parameters {
float lowerOpLimit;
float upperOpLimit;
float heaterOn;
float hysteresis;
float heaterSwitchoff;
};
static const uint16_t COMPONENT_TEMP_CONFIRMATION = 5;
CoreComponent(object_id_t reportingObjectId, uint8_t domainId, uint32_t temperaturePoolId,
uint32_t targetStatePoolId, uint32_t currentStatePoolId,
uint32_t requestPoolId, GlobDataSet *dataSet,
AbstractTemperatureSensor *sensor,
AbstractTemperatureSensor *firstRedundantSensor,
AbstractTemperatureSensor *secondRedundantSensor,
ThermalModuleIF *thermalModule, Parameters parameters,
Priority priority, StateRequest initialTargetState =
ThermalComponentIF::STATE_REQUEST_OPERATIONAL);
virtual ~CoreComponent();
virtual HeaterRequest performOperation(uint8_t opCode);
void markStateIgnored();
object_id_t getObjectId();
uint8_t getDomainId() const;
virtual float getLowerOpLimit();
ReturnValue_t setTargetState(int8_t newState);
virtual void setOutputInvalid();
virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId,
ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex);
protected:
AbstractTemperatureSensor *sensor;
AbstractTemperatureSensor *firstRedundantSensor;
AbstractTemperatureSensor *secondRedundantSensor;
ThermalModuleIF *thermalModule;
gp_float_t temperature;
gp_int8_t targetState;
gp_int8_t currentState;
gp_uint8_t heaterRequest;
bool isHeating;
bool isSafeComponent;
float minTemp;
float maxTemp;
Parameters parameters;
ThermalMonitor temperatureMonitor;
const uint8_t domainId;
virtual float getTemperature();
virtual State getState(float temperature, Parameters parameters,
int8_t targetState);
virtual void checkLimits(State state);
virtual HeaterRequest getHeaterRequest(int8_t targetState,
float temperature, Parameters parameters);
virtual State getIgnoredState(int8_t state);
void updateMinMaxTemp();
virtual Parameters getParameters();
};
#endif /* MISSION_CONTROLLERS_TCS_CORECOMPONENT_H_ */
#ifndef MISSION_CONTROLLERS_TCS_CORECOMPONENT_H_
#define MISSION_CONTROLLERS_TCS_CORECOMPONENT_H_
#include "../datapoolglob/GlobalDataSet.h"
#include "../datapoolglob/GlobalPoolVariable.h"
#include "../thermal/ThermalComponentIF.h"
#include "../thermal/AbstractTemperatureSensor.h"
#include "../thermal/ThermalModule.h"
#include "../thermal/ThermalMonitor.h"
// TODO: Documentaiton, how to use this? only use Thermal Component, which inherits core component?
class CoreComponent: public ThermalComponentIF {
public:
struct Parameters {
float lowerOpLimit;
float upperOpLimit;
float heaterOn;
float hysteresis;
float heaterSwitchoff;
};
static const uint16_t COMPONENT_TEMP_CONFIRMATION = 5;
CoreComponent(object_id_t reportingObjectId, uint8_t domainId, uint32_t temperaturePoolId,
uint32_t targetStatePoolId, uint32_t currentStatePoolId,
uint32_t requestPoolId, GlobDataSet *dataSet,
AbstractTemperatureSensor *sensor,
AbstractTemperatureSensor *firstRedundantSensor,
AbstractTemperatureSensor *secondRedundantSensor,
ThermalModuleIF *thermalModule, Parameters parameters,
Priority priority, StateRequest initialTargetState =
ThermalComponentIF::STATE_REQUEST_OPERATIONAL);
virtual ~CoreComponent();
virtual HeaterRequest performOperation(uint8_t opCode);
void markStateIgnored();
object_id_t getObjectId();
uint8_t getDomainId() const;
virtual float getLowerOpLimit();
ReturnValue_t setTargetState(int8_t newState);
virtual void setOutputInvalid();
virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId,
ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex);
protected:
AbstractTemperatureSensor *sensor;
AbstractTemperatureSensor *firstRedundantSensor;
AbstractTemperatureSensor *secondRedundantSensor;
ThermalModuleIF *thermalModule;
gp_float_t temperature;
gp_int8_t targetState;
gp_int8_t currentState;
gp_uint8_t heaterRequest;
bool isHeating;
bool isSafeComponent;
float minTemp;
float maxTemp;
Parameters parameters;
ThermalMonitor temperatureMonitor;
const uint8_t domainId;
virtual float getTemperature();
virtual State getState(float temperature, Parameters parameters,
int8_t targetState);
virtual void checkLimits(State state);
virtual HeaterRequest getHeaterRequest(int8_t targetState,
float temperature, Parameters parameters);
virtual State getIgnoredState(int8_t state);
void updateMinMaxTemp();
virtual Parameters getParameters();
};
#endif /* MISSION_CONTROLLERS_TCS_CORECOMPONENT_H_ */

View File

@ -1,350 +1,350 @@
#include "../devicehandlers/DeviceHandlerFailureIsolation.h"
#include "Heater.h"
#include "../power/Fuse.h"
#include "../ipc/QueueFactory.h"
Heater::Heater(uint32_t objectId, uint8_t switch0, uint8_t switch1) :
HealthDevice(objectId, 0), internalState(STATE_OFF), powerSwitcher(
NULL), pcduQueueId(0), switch0(switch0), switch1(switch1), wasOn(
false), timedOut(false), reactedToBeingFaulty(false), passive(
false), eventQueue(NULL), heaterOnCountdown(10800000)/*about two orbits*/, parameterHelper(
this), lastAction(CLEAR) {
eventQueue = QueueFactory::instance()->createMessageQueue();
}
Heater::~Heater() {
QueueFactory::instance()->deleteMessageQueue(eventQueue);
}
ReturnValue_t Heater::set() {
passive = false;
//wait for clear before doing anything
if (internalState == STATE_WAIT) {
return HasReturnvaluesIF::RETURN_OK;
}
if (healthHelper.healthTable->isHealthy(getObjectId())) {
doAction(SET);
if ((internalState == STATE_OFF) || (internalState == STATE_PASSIVE)){
return HasReturnvaluesIF::RETURN_FAILED;
} else {
return HasReturnvaluesIF::RETURN_OK;
}
} else {
if (healthHelper.healthTable->isFaulty(getObjectId())) {
if (!reactedToBeingFaulty) {
reactedToBeingFaulty = true;
doAction(CLEAR);
}
}
return HasReturnvaluesIF::RETURN_FAILED;
}
}
void Heater::clear(bool passive) {
this->passive = passive;
//Force switching off
if (internalState == STATE_WAIT) {
internalState = STATE_ON;
}
if (healthHelper.healthTable->isHealthy(getObjectId())) {
doAction(CLEAR);
} else if (healthHelper.healthTable->isFaulty(getObjectId())) {
if (!reactedToBeingFaulty) {
reactedToBeingFaulty = true;
doAction(CLEAR);
}
}
}
void Heater::doAction(Action action) {
//only act if we are not in the right state or in a transition
if (action == SET) {
if ((internalState == STATE_OFF) || (internalState == STATE_PASSIVE)
|| (internalState == STATE_EXTERNAL_CONTROL)) {
switchCountdown.setTimeout(powerSwitcher->getSwitchDelayMs());
internalState = STATE_WAIT_FOR_SWITCHES_ON;
powerSwitcher->sendSwitchCommand(switch0, PowerSwitchIF::SWITCH_ON);
powerSwitcher->sendSwitchCommand(switch1, PowerSwitchIF::SWITCH_ON);
}
} else { //clear
if ((internalState == STATE_ON) || (internalState == STATE_FAULTY)
|| (internalState == STATE_EXTERNAL_CONTROL)) {
internalState = STATE_WAIT_FOR_SWITCHES_OFF;
switchCountdown.setTimeout(powerSwitcher->getSwitchDelayMs());
powerSwitcher->sendSwitchCommand(switch0,
PowerSwitchIF::SWITCH_OFF);
powerSwitcher->sendSwitchCommand(switch1,
PowerSwitchIF::SWITCH_OFF);
}
}
}
void Heater::setPowerSwitcher(PowerSwitchIF* powerSwitch) {
this->powerSwitcher = powerSwitch;
}
ReturnValue_t Heater::performOperation(uint8_t opCode) {
handleQueue();
handleEventQueue();
if (!healthHelper.healthTable->isFaulty(getObjectId())) {
reactedToBeingFaulty = false;
}
switch (internalState) {
case STATE_ON:
if ((powerSwitcher->getSwitchState(switch0) == PowerSwitchIF::SWITCH_OFF)
|| (powerSwitcher->getSwitchState(switch1)
== PowerSwitchIF::SWITCH_OFF)) {
//switch went off on its own
//trigger event. FDIR can confirm if it is caused by MniOps and decide on the action
//do not trigger FD events when under external control
if (healthHelper.getHealth() != EXTERNAL_CONTROL) {
triggerEvent(PowerSwitchIF::SWITCH_WENT_OFF);
} else {
internalState = STATE_EXTERNAL_CONTROL;
}
}
break;
case STATE_OFF:
//check if heater is on, ie both switches are on
//if so, just command it to off, to resolve the situation or force a switch stayed on event
//But, only do anything if not already faulty (state off is the stable point for being faulty)
if ((!healthHelper.healthTable->isFaulty(getObjectId()))
&& (powerSwitcher->getSwitchState(switch0)
== PowerSwitchIF::SWITCH_ON)
&& (powerSwitcher->getSwitchState(switch1)
== PowerSwitchIF::SWITCH_ON)) {
//do not trigger FD events when under external control
if (healthHelper.getHealth() != EXTERNAL_CONTROL) {
internalState = STATE_WAIT_FOR_SWITCHES_OFF;
switchCountdown.setTimeout(powerSwitcher->getSwitchDelayMs());
powerSwitcher->sendSwitchCommand(switch0,
PowerSwitchIF::SWITCH_OFF);
powerSwitcher->sendSwitchCommand(switch1,
PowerSwitchIF::SWITCH_OFF);
} else {
internalState = STATE_EXTERNAL_CONTROL;
}
}
break;
case STATE_PASSIVE:
break;
case STATE_WAIT_FOR_SWITCHES_ON:
if (switchCountdown.hasTimedOut()) {
if ((powerSwitcher->getSwitchState(switch0)
== PowerSwitchIF::SWITCH_OFF)
|| (powerSwitcher->getSwitchState(switch1)
== PowerSwitchIF::SWITCH_OFF)) {
triggerEvent(HEATER_STAYED_OFF);
internalState = STATE_WAIT_FOR_FDIR; //wait before retrying or anything
} else {
triggerEvent(HEATER_ON);
internalState = STATE_ON;
}
}
break;
case STATE_WAIT_FOR_SWITCHES_OFF:
if (switchCountdown.hasTimedOut()) {
//only check for both being on (ie heater still on)
if ((powerSwitcher->getSwitchState(switch0)
== PowerSwitchIF::SWITCH_ON)
&& (powerSwitcher->getSwitchState(switch1)
== PowerSwitchIF::SWITCH_ON)) {
if (healthHelper.healthTable->isFaulty(getObjectId())) {
if (passive) {
internalState = STATE_PASSIVE;
} else {
internalState = STATE_OFF; //just accept it
}
triggerEvent(HEATER_ON); //but throw an event to make it more visible
break;
}
triggerEvent(HEATER_STAYED_ON);
internalState = STATE_WAIT_FOR_FDIR; //wait before retrying or anything
} else {
triggerEvent(HEATER_OFF);
if (passive) {
internalState = STATE_PASSIVE;
} else {
internalState = STATE_OFF;
}
}
}
break;
default:
break;
}
if ((powerSwitcher->getSwitchState(switch0) == PowerSwitchIF::SWITCH_ON)
&& (powerSwitcher->getSwitchState(switch1)
== PowerSwitchIF::SWITCH_ON)) {
if (wasOn) {
if (heaterOnCountdown.hasTimedOut()) {
//SHOULDDO this means if a heater fails in single mode, the timeout will start again
//I am not sure if this is a bug, but atm I have no idea how to fix this and think
//it will be ok. whatcouldpossiblygowrong™
if (!timedOut) {
triggerEvent(HEATER_TIMEOUT);
timedOut = true;
}
}
} else {
wasOn = true;
heaterOnCountdown.resetTimer();
timedOut = false;
}
} else {
wasOn = false;
}
return HasReturnvaluesIF::RETURN_OK;
}
void Heater::setSwitch(uint8_t number, ReturnValue_t state,
uint32_t* uptimeOfSwitching) {
if (powerSwitcher == NULL) {
return;
}
if (powerSwitcher->getSwitchState(number) == state) {
*uptimeOfSwitching = INVALID_UPTIME;
} else {
if ((*uptimeOfSwitching == INVALID_UPTIME)) {
powerSwitcher->sendSwitchCommand(number, state);
Clock::getUptime(uptimeOfSwitching);
} else {
uint32_t currentUptime;
Clock::getUptime(&currentUptime);
if (currentUptime - *uptimeOfSwitching
> powerSwitcher->getSwitchDelayMs()) {
*uptimeOfSwitching = INVALID_UPTIME;
if (healthHelper.healthTable->isHealthy(getObjectId())) {
if (state == PowerSwitchIF::SWITCH_ON) {
triggerEvent(HEATER_STAYED_OFF);
} else {
triggerEvent(HEATER_STAYED_ON);
}
}
//SHOULDDO MiniOps during switch timeout leads to a faulty switch
}
}
}
}
MessageQueueId_t Heater::getCommandQueue() const {
return commandQueue->getId();
}
ReturnValue_t Heater::initialize() {
ReturnValue_t result = SystemObject::initialize();
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
EventManagerIF* manager = objectManager->get<EventManagerIF>(
objects::EVENT_MANAGER);
if (manager == NULL) {
return HasReturnvaluesIF::RETURN_FAILED;
}
result = manager->registerListener(eventQueue->getId());
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
ConfirmsFailuresIF* pcdu = objectManager->get<ConfirmsFailuresIF>(
DeviceHandlerFailureIsolation::powerConfirmationId);
if (pcdu == NULL) {
return HasReturnvaluesIF::RETURN_FAILED;
}
pcduQueueId = pcdu->getEventReceptionQueue();
result = manager->subscribeToAllEventsFrom(eventQueue->getId(),
getObjectId());
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = parameterHelper.initialize();
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = healthHelper.initialize();
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
return HasReturnvaluesIF::RETURN_OK;
}
void Heater::handleQueue() {
CommandMessage command;
ReturnValue_t result = commandQueue->receiveMessage(&command);
if (result == HasReturnvaluesIF::RETURN_OK) {
result = healthHelper.handleHealthCommand(&command);
if (result == HasReturnvaluesIF::RETURN_OK) {
return;
}
parameterHelper.handleParameterMessage(&command);
}
}
ReturnValue_t Heater::getParameter(uint8_t domainId, uint16_t parameterId,
ParameterWrapper* parameterWrapper, const ParameterWrapper* newValues,
uint16_t startAtIndex) {
if (domainId != DOMAIN_ID_BASE) {
return INVALID_DOMAIN_ID;
}
switch (parameterId) {
case 0:
parameterWrapper->set(heaterOnCountdown.timeout);
break;
default:
return INVALID_MATRIX_ID;
}
return HasReturnvaluesIF::RETURN_OK;
}
void Heater::handleEventQueue() {
EventMessage event;
for (ReturnValue_t result = eventQueue->receiveMessage(&event);
result == HasReturnvaluesIF::RETURN_OK;
result = eventQueue->receiveMessage(&event)) {
switch (event.getMessageId()) {
case EventMessage::EVENT_MESSAGE:
switch (event.getEvent()) {
case Fuse::FUSE_WENT_OFF:
case HEATER_STAYED_OFF:
case HEATER_STAYED_ON://Setting it faulty does not help, but we need to reach a stable state and can check for being faulty before throwing this event again.
if (healthHelper.healthTable->isCommandable(getObjectId())) {
healthHelper.setHealth(HasHealthIF::FAULTY);
internalState = STATE_FAULTY;
}
break;
case PowerSwitchIF::SWITCH_WENT_OFF:
internalState = STATE_WAIT;
event.setMessageId(EventMessage::CONFIRMATION_REQUEST);
if (pcduQueueId != 0) {
eventQueue->sendMessage(pcduQueueId, &event);
} else {
healthHelper.setHealth(HasHealthIF::FAULTY);
internalState = STATE_FAULTY;
}
break;
default:
return;
}
break;
case EventMessage::YOUR_FAULT:
healthHelper.setHealth(HasHealthIF::FAULTY);
internalState = STATE_FAULTY;
break;
case EventMessage::MY_FAULT:
//do nothing, we are already in STATE_WAIT and wait for a clear()
break;
default:
return;
}
}
}
#include "../devicehandlers/DeviceHandlerFailureIsolation.h"
#include "Heater.h"
#include "../power/Fuse.h"
#include "../ipc/QueueFactory.h"
Heater::Heater(uint32_t objectId, uint8_t switch0, uint8_t switch1) :
HealthDevice(objectId, 0), internalState(STATE_OFF), powerSwitcher(
NULL), pcduQueueId(0), switch0(switch0), switch1(switch1), wasOn(
false), timedOut(false), reactedToBeingFaulty(false), passive(
false), eventQueue(NULL), heaterOnCountdown(10800000)/*about two orbits*/, parameterHelper(
this), lastAction(CLEAR) {
eventQueue = QueueFactory::instance()->createMessageQueue();
}
Heater::~Heater() {
QueueFactory::instance()->deleteMessageQueue(eventQueue);
}
ReturnValue_t Heater::set() {
passive = false;
//wait for clear before doing anything
if (internalState == STATE_WAIT) {
return HasReturnvaluesIF::RETURN_OK;
}
if (healthHelper.healthTable->isHealthy(getObjectId())) {
doAction(SET);
if ((internalState == STATE_OFF) || (internalState == STATE_PASSIVE)){
return HasReturnvaluesIF::RETURN_FAILED;
} else {
return HasReturnvaluesIF::RETURN_OK;
}
} else {
if (healthHelper.healthTable->isFaulty(getObjectId())) {
if (!reactedToBeingFaulty) {
reactedToBeingFaulty = true;
doAction(CLEAR);
}
}
return HasReturnvaluesIF::RETURN_FAILED;
}
}
void Heater::clear(bool passive) {
this->passive = passive;
//Force switching off
if (internalState == STATE_WAIT) {
internalState = STATE_ON;
}
if (healthHelper.healthTable->isHealthy(getObjectId())) {
doAction(CLEAR);
} else if (healthHelper.healthTable->isFaulty(getObjectId())) {
if (!reactedToBeingFaulty) {
reactedToBeingFaulty = true;
doAction(CLEAR);
}
}
}
void Heater::doAction(Action action) {
//only act if we are not in the right state or in a transition
if (action == SET) {
if ((internalState == STATE_OFF) || (internalState == STATE_PASSIVE)
|| (internalState == STATE_EXTERNAL_CONTROL)) {
switchCountdown.setTimeout(powerSwitcher->getSwitchDelayMs());
internalState = STATE_WAIT_FOR_SWITCHES_ON;
powerSwitcher->sendSwitchCommand(switch0, PowerSwitchIF::SWITCH_ON);
powerSwitcher->sendSwitchCommand(switch1, PowerSwitchIF::SWITCH_ON);
}
} else { //clear
if ((internalState == STATE_ON) || (internalState == STATE_FAULTY)
|| (internalState == STATE_EXTERNAL_CONTROL)) {
internalState = STATE_WAIT_FOR_SWITCHES_OFF;
switchCountdown.setTimeout(powerSwitcher->getSwitchDelayMs());
powerSwitcher->sendSwitchCommand(switch0,
PowerSwitchIF::SWITCH_OFF);
powerSwitcher->sendSwitchCommand(switch1,
PowerSwitchIF::SWITCH_OFF);
}
}
}
void Heater::setPowerSwitcher(PowerSwitchIF* powerSwitch) {
this->powerSwitcher = powerSwitch;
}
ReturnValue_t Heater::performOperation(uint8_t opCode) {
handleQueue();
handleEventQueue();
if (!healthHelper.healthTable->isFaulty(getObjectId())) {
reactedToBeingFaulty = false;
}
switch (internalState) {
case STATE_ON:
if ((powerSwitcher->getSwitchState(switch0) == PowerSwitchIF::SWITCH_OFF)
|| (powerSwitcher->getSwitchState(switch1)
== PowerSwitchIF::SWITCH_OFF)) {
//switch went off on its own
//trigger event. FDIR can confirm if it is caused by MniOps and decide on the action
//do not trigger FD events when under external control
if (healthHelper.getHealth() != EXTERNAL_CONTROL) {
triggerEvent(PowerSwitchIF::SWITCH_WENT_OFF);
} else {
internalState = STATE_EXTERNAL_CONTROL;
}
}
break;
case STATE_OFF:
//check if heater is on, ie both switches are on
//if so, just command it to off, to resolve the situation or force a switch stayed on event
//But, only do anything if not already faulty (state off is the stable point for being faulty)
if ((!healthHelper.healthTable->isFaulty(getObjectId()))
&& (powerSwitcher->getSwitchState(switch0)
== PowerSwitchIF::SWITCH_ON)
&& (powerSwitcher->getSwitchState(switch1)
== PowerSwitchIF::SWITCH_ON)) {
//do not trigger FD events when under external control
if (healthHelper.getHealth() != EXTERNAL_CONTROL) {
internalState = STATE_WAIT_FOR_SWITCHES_OFF;
switchCountdown.setTimeout(powerSwitcher->getSwitchDelayMs());
powerSwitcher->sendSwitchCommand(switch0,
PowerSwitchIF::SWITCH_OFF);
powerSwitcher->sendSwitchCommand(switch1,
PowerSwitchIF::SWITCH_OFF);
} else {
internalState = STATE_EXTERNAL_CONTROL;
}
}
break;
case STATE_PASSIVE:
break;
case STATE_WAIT_FOR_SWITCHES_ON:
if (switchCountdown.hasTimedOut()) {
if ((powerSwitcher->getSwitchState(switch0)
== PowerSwitchIF::SWITCH_OFF)
|| (powerSwitcher->getSwitchState(switch1)
== PowerSwitchIF::SWITCH_OFF)) {
triggerEvent(HEATER_STAYED_OFF);
internalState = STATE_WAIT_FOR_FDIR; //wait before retrying or anything
} else {
triggerEvent(HEATER_ON);
internalState = STATE_ON;
}
}
break;
case STATE_WAIT_FOR_SWITCHES_OFF:
if (switchCountdown.hasTimedOut()) {
//only check for both being on (ie heater still on)
if ((powerSwitcher->getSwitchState(switch0)
== PowerSwitchIF::SWITCH_ON)
&& (powerSwitcher->getSwitchState(switch1)
== PowerSwitchIF::SWITCH_ON)) {
if (healthHelper.healthTable->isFaulty(getObjectId())) {
if (passive) {
internalState = STATE_PASSIVE;
} else {
internalState = STATE_OFF; //just accept it
}
triggerEvent(HEATER_ON); //but throw an event to make it more visible
break;
}
triggerEvent(HEATER_STAYED_ON);
internalState = STATE_WAIT_FOR_FDIR; //wait before retrying or anything
} else {
triggerEvent(HEATER_OFF);
if (passive) {
internalState = STATE_PASSIVE;
} else {
internalState = STATE_OFF;
}
}
}
break;
default:
break;
}
if ((powerSwitcher->getSwitchState(switch0) == PowerSwitchIF::SWITCH_ON)
&& (powerSwitcher->getSwitchState(switch1)
== PowerSwitchIF::SWITCH_ON)) {
if (wasOn) {
if (heaterOnCountdown.hasTimedOut()) {
//SHOULDDO this means if a heater fails in single mode, the timeout will start again
//I am not sure if this is a bug, but atm I have no idea how to fix this and think
//it will be ok. whatcouldpossiblygowrong™
if (!timedOut) {
triggerEvent(HEATER_TIMEOUT);
timedOut = true;
}
}
} else {
wasOn = true;
heaterOnCountdown.resetTimer();
timedOut = false;
}
} else {
wasOn = false;
}
return HasReturnvaluesIF::RETURN_OK;
}
void Heater::setSwitch(uint8_t number, ReturnValue_t state,
uint32_t* uptimeOfSwitching) {
if (powerSwitcher == NULL) {
return;
}
if (powerSwitcher->getSwitchState(number) == state) {
*uptimeOfSwitching = INVALID_UPTIME;
} else {
if ((*uptimeOfSwitching == INVALID_UPTIME)) {
powerSwitcher->sendSwitchCommand(number, state);
Clock::getUptime(uptimeOfSwitching);
} else {
uint32_t currentUptime;
Clock::getUptime(&currentUptime);
if (currentUptime - *uptimeOfSwitching
> powerSwitcher->getSwitchDelayMs()) {
*uptimeOfSwitching = INVALID_UPTIME;
if (healthHelper.healthTable->isHealthy(getObjectId())) {
if (state == PowerSwitchIF::SWITCH_ON) {
triggerEvent(HEATER_STAYED_OFF);
} else {
triggerEvent(HEATER_STAYED_ON);
}
}
//SHOULDDO MiniOps during switch timeout leads to a faulty switch
}
}
}
}
MessageQueueId_t Heater::getCommandQueue() const {
return commandQueue->getId();
}
ReturnValue_t Heater::initialize() {
ReturnValue_t result = SystemObject::initialize();
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
EventManagerIF* manager = objectManager->get<EventManagerIF>(
objects::EVENT_MANAGER);
if (manager == NULL) {
return HasReturnvaluesIF::RETURN_FAILED;
}
result = manager->registerListener(eventQueue->getId());
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
ConfirmsFailuresIF* pcdu = objectManager->get<ConfirmsFailuresIF>(
DeviceHandlerFailureIsolation::powerConfirmationId);
if (pcdu == NULL) {
return HasReturnvaluesIF::RETURN_FAILED;
}
pcduQueueId = pcdu->getEventReceptionQueue();
result = manager->subscribeToAllEventsFrom(eventQueue->getId(),
getObjectId());
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = parameterHelper.initialize();
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = healthHelper.initialize();
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
return HasReturnvaluesIF::RETURN_OK;
}
void Heater::handleQueue() {
CommandMessage command;
ReturnValue_t result = commandQueue->receiveMessage(&command);
if (result == HasReturnvaluesIF::RETURN_OK) {
result = healthHelper.handleHealthCommand(&command);
if (result == HasReturnvaluesIF::RETURN_OK) {
return;
}
parameterHelper.handleParameterMessage(&command);
}
}
ReturnValue_t Heater::getParameter(uint8_t domainId, uint16_t parameterId,
ParameterWrapper* parameterWrapper, const ParameterWrapper* newValues,
uint16_t startAtIndex) {
if (domainId != DOMAIN_ID_BASE) {
return INVALID_DOMAIN_ID;
}
switch (parameterId) {
case 0:
parameterWrapper->set(heaterOnCountdown.timeout);
break;
default:
return INVALID_MATRIX_ID;
}
return HasReturnvaluesIF::RETURN_OK;
}
void Heater::handleEventQueue() {
EventMessage event;
for (ReturnValue_t result = eventQueue->receiveMessage(&event);
result == HasReturnvaluesIF::RETURN_OK;
result = eventQueue->receiveMessage(&event)) {
switch (event.getMessageId()) {
case EventMessage::EVENT_MESSAGE:
switch (event.getEvent()) {
case Fuse::FUSE_WENT_OFF:
case HEATER_STAYED_OFF:
case HEATER_STAYED_ON://Setting it faulty does not help, but we need to reach a stable state and can check for being faulty before throwing this event again.
if (healthHelper.healthTable->isCommandable(getObjectId())) {
healthHelper.setHealth(HasHealthIF::FAULTY);
internalState = STATE_FAULTY;
}
break;
case PowerSwitchIF::SWITCH_WENT_OFF:
internalState = STATE_WAIT;
event.setMessageId(EventMessage::CONFIRMATION_REQUEST);
if (pcduQueueId != 0) {
eventQueue->sendMessage(pcduQueueId, &event);
} else {
healthHelper.setHealth(HasHealthIF::FAULTY);
internalState = STATE_FAULTY;
}
break;
default:
return;
}
break;
case EventMessage::YOUR_FAULT:
healthHelper.setHealth(HasHealthIF::FAULTY);
internalState = STATE_FAULTY;
break;
case EventMessage::MY_FAULT:
//do nothing, we are already in STATE_WAIT and wait for a clear()
break;
default:
return;
}
}
}

View File

@ -1,90 +1,90 @@
#ifndef FRAMEWORK_THERMAL_HEATER_H_
#define FRAMEWORK_THERMAL_HEATER_H_
#include "../devicehandlers/HealthDevice.h"
#include "../parameters/ParameterHelper.h"
#include "../power/PowerSwitchIF.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include "../timemanager/Countdown.h"
#include <stdint.h>
//class RedundantHeater;
class Heater: public HealthDevice, public ReceivesParameterMessagesIF {
friend class RedundantHeater;
public:
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::HEATER;
static const Event HEATER_ON = MAKE_EVENT(0, SEVERITY::INFO);
static const Event HEATER_OFF = MAKE_EVENT(1, SEVERITY::INFO);
static const Event HEATER_TIMEOUT = MAKE_EVENT(2, SEVERITY::LOW);
static const Event HEATER_STAYED_ON = MAKE_EVENT(3, SEVERITY::LOW);
static const Event HEATER_STAYED_OFF = MAKE_EVENT(4, SEVERITY::LOW);
Heater(uint32_t objectId, uint8_t switch0, uint8_t switch1);
virtual ~Heater();
ReturnValue_t performOperation(uint8_t opCode);
ReturnValue_t initialize();
ReturnValue_t set();
void clear(bool passive);
void setPowerSwitcher(PowerSwitchIF *powerSwitch);
MessageQueueId_t getCommandQueue() const;
ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId,
ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex);
protected:
static const uint32_t INVALID_UPTIME = 0;
enum InternalState {
STATE_ON,
STATE_OFF,
STATE_PASSIVE,
STATE_WAIT_FOR_SWITCHES_ON,
STATE_WAIT_FOR_SWITCHES_OFF,
STATE_WAIT_FOR_FDIR, //used to avoid doing anything until fdir decided what to do
STATE_FAULTY,
STATE_WAIT, //used when waiting for system to recover from miniops
STATE_EXTERNAL_CONTROL //entered when under external control and a fdir reaction would be triggered. This is useful when leaving external control into an unknown state
//if no fdir reaction is triggered under external control the state is still ok and no need for any special treatment is needed
} internalState;
PowerSwitchIF *powerSwitcher;
MessageQueueId_t pcduQueueId;
uint8_t switch0;
uint8_t switch1;
bool wasOn;
bool timedOut;
bool reactedToBeingFaulty;
bool passive;
MessageQueueIF* eventQueue;
Countdown heaterOnCountdown;
Countdown switchCountdown;
ParameterHelper parameterHelper;
enum Action {
SET, CLEAR
} lastAction;
void doAction(Action action);
void setSwitch(uint8_t number, ReturnValue_t state,
uint32_t *upTimeOfSwitching);
void handleQueue();
void handleEventQueue();
};
#endif /* FRAMEWORK_THERMAL_HEATER_H_ */
#ifndef FRAMEWORK_THERMAL_HEATER_H_
#define FRAMEWORK_THERMAL_HEATER_H_
#include "../devicehandlers/HealthDevice.h"
#include "../parameters/ParameterHelper.h"
#include "../power/PowerSwitchIF.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include "../timemanager/Countdown.h"
#include <stdint.h>
//class RedundantHeater;
class Heater: public HealthDevice, public ReceivesParameterMessagesIF {
friend class RedundantHeater;
public:
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::HEATER;
static const Event HEATER_ON = MAKE_EVENT(0, SEVERITY::INFO);
static const Event HEATER_OFF = MAKE_EVENT(1, SEVERITY::INFO);
static const Event HEATER_TIMEOUT = MAKE_EVENT(2, SEVERITY::LOW);
static const Event HEATER_STAYED_ON = MAKE_EVENT(3, SEVERITY::LOW);
static const Event HEATER_STAYED_OFF = MAKE_EVENT(4, SEVERITY::LOW);
Heater(uint32_t objectId, uint8_t switch0, uint8_t switch1);
virtual ~Heater();
ReturnValue_t performOperation(uint8_t opCode);
ReturnValue_t initialize();
ReturnValue_t set();
void clear(bool passive);
void setPowerSwitcher(PowerSwitchIF *powerSwitch);
MessageQueueId_t getCommandQueue() const;
ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId,
ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex);
protected:
static const uint32_t INVALID_UPTIME = 0;
enum InternalState {
STATE_ON,
STATE_OFF,
STATE_PASSIVE,
STATE_WAIT_FOR_SWITCHES_ON,
STATE_WAIT_FOR_SWITCHES_OFF,
STATE_WAIT_FOR_FDIR, //used to avoid doing anything until fdir decided what to do
STATE_FAULTY,
STATE_WAIT, //used when waiting for system to recover from miniops
STATE_EXTERNAL_CONTROL //entered when under external control and a fdir reaction would be triggered. This is useful when leaving external control into an unknown state
//if no fdir reaction is triggered under external control the state is still ok and no need for any special treatment is needed
} internalState;
PowerSwitchIF *powerSwitcher;
MessageQueueId_t pcduQueueId;
uint8_t switch0;
uint8_t switch1;
bool wasOn;
bool timedOut;
bool reactedToBeingFaulty;
bool passive;
MessageQueueIF* eventQueue;
Countdown heaterOnCountdown;
Countdown switchCountdown;
ParameterHelper parameterHelper;
enum Action {
SET, CLEAR
} lastAction;
void doAction(Action action);
void setSwitch(uint8_t number, ReturnValue_t state,
uint32_t *upTimeOfSwitching);
void handleQueue();
void handleEventQueue();
};
#endif /* FRAMEWORK_THERMAL_HEATER_H_ */

View File

@ -1,50 +1,50 @@
#ifndef REDUNDANTHEATER_H_
#define REDUNDANTHEATER_H_
#include "../thermal/Heater.h"
class RedundantHeater {
public:
struct Parameters {
Parameters(uint32_t objectIdHeater0, uint32_t objectIdHeater1,
uint8_t switch0Heater0, uint8_t switch1Heater0,
uint8_t switch0Heater1, uint8_t switch1Heater1) :
objectIdHeater0(objectIdHeater0), objectIdHeater1(objectIdHeater1),
switch0Heater0(switch0Heater0),switch1Heater0(switch1Heater0),
switch0Heater1(switch0Heater1), switch1Heater1(switch1Heater1) {
}
Parameters() :
objectIdHeater0(0), objectIdHeater1(0), switch0Heater0(0),
switch1Heater0(0), switch0Heater1(0), switch1Heater1(0) {
}
uint32_t objectIdHeater0;
uint32_t objectIdHeater1;
uint8_t switch0Heater0;
uint8_t switch1Heater0;
uint8_t switch0Heater1;
uint8_t switch1Heater1;
};
RedundantHeater(Parameters parameters);
virtual ~RedundantHeater();
void performOperation(uint8_t opCode);
void triggerHeaterEvent(Event event);
void set(bool on, bool both, bool passive = false);
void setPowerSwitcher(PowerSwitchIF *powerSwitch);
protected:
Heater heater0;
Heater heater1;
};
#endif /* REDUNDANTHEATER_H_ */
#ifndef REDUNDANTHEATER_H_
#define REDUNDANTHEATER_H_
#include "../thermal/Heater.h"
class RedundantHeater {
public:
struct Parameters {
Parameters(uint32_t objectIdHeater0, uint32_t objectIdHeater1,
uint8_t switch0Heater0, uint8_t switch1Heater0,
uint8_t switch0Heater1, uint8_t switch1Heater1) :
objectIdHeater0(objectIdHeater0), objectIdHeater1(objectIdHeater1),
switch0Heater0(switch0Heater0),switch1Heater0(switch1Heater0),
switch0Heater1(switch0Heater1), switch1Heater1(switch1Heater1) {
}
Parameters() :
objectIdHeater0(0), objectIdHeater1(0), switch0Heater0(0),
switch1Heater0(0), switch0Heater1(0), switch1Heater1(0) {
}
uint32_t objectIdHeater0;
uint32_t objectIdHeater1;
uint8_t switch0Heater0;
uint8_t switch1Heater0;
uint8_t switch0Heater1;
uint8_t switch1Heater1;
};
RedundantHeater(Parameters parameters);
virtual ~RedundantHeater();
void performOperation(uint8_t opCode);
void triggerHeaterEvent(Event event);
void set(bool on, bool both, bool passive = false);
void setPowerSwitcher(PowerSwitchIF *powerSwitch);
protected:
Heater heater0;
Heater heater1;
};
#endif /* REDUNDANTHEATER_H_ */

View File

@ -1,222 +1,222 @@
#ifndef TEMPERATURESENSOR_H_
#define TEMPERATURESENSOR_H_
#include "../thermal/AbstractTemperatureSensor.h"
#include "../datapoolglob/GlobalDataSet.h"
#include "../datapoolglob/GlobalPoolVariable.h"
#include "../monitoring/LimitMonitor.h"
/**
* @brief This building block handles non-linear value conversion and
* range checks for analog temperature sensors.
* @details This class can be used to perform all necessary tasks for temperature sensors.
* A sensor can be instantiated by calling the constructor.
* The temperature is calculated from an input value with
* the calculateOutputTemperature() function. Range checking and
* limit monitoring is performed automatically.
* The inputType specifies the type of the raw input while the
* limitType specifies the type of the upper and lower limit to check against.
* @ingroup thermal
*/
template<typename inputType, typename limitType = inputType>
class TemperatureSensor: public AbstractTemperatureSensor {
public:
/**
* This structure contains parameters required for range checking
* and the conversion from the input value to the output temperature.
* a, b and c can be any parameters required to calculate the output
* temperature from the input value, depending on the formula used.
*
* The parameters a,b and c are used in the calculateOutputTemperature() call.
*
* The lower and upper limits can be specified in any type, for example float for C values
* or any other type for raw values.
*/
struct Parameters {
float a;
float b;
float c;
limitType lowerLimit;
limitType upperLimit;
float maxGradient;
};
/**
* Forward declaration for explicit instantiation of used parameters.
*/
struct UsedParameters {
UsedParameters(Parameters parameters) :
a(parameters.a), b(parameters.b), c(parameters.c),
gradient(parameters.maxGradient) {}
float a;
float b;
float c;
float gradient;
};
/**
* Instantiate Temperature Sensor Object.
* @param setObjectid objectId of the sensor object
* @param inputValue Input value which is converted to a temperature
* @param poolVariable Pool Variable to store the temperature value
* @param vectorIndex Vector Index for the sensor monitor
* @param parameters Calculation parameters, temperature limits, gradient limit
* @param datapoolId Datapool ID of the output temperature
* @param outputSet Output dataset for the output temperature to fetch it with read()
* @param thermalModule respective thermal module, if it has one
*/
TemperatureSensor(object_id_t setObjectid,
inputType *inputValue, PoolVariableIF *poolVariable,
uint8_t vectorIndex, uint32_t datapoolId, Parameters parameters = {0, 0, 0, 0, 0, 0},
GlobDataSet *outputSet = NULL, ThermalModuleIF *thermalModule = NULL) :
AbstractTemperatureSensor(setObjectid, thermalModule), parameters(parameters),
inputValue(inputValue), poolVariable(poolVariable),
outputTemperature(datapoolId, outputSet, PoolVariableIF::VAR_WRITE),
sensorMonitor(setObjectid, DOMAIN_ID_SENSOR,
GlobalDataPool::poolIdAndPositionToPid(poolVariable->getDataPoolId(), vectorIndex),
DEFAULT_CONFIRMATION_COUNT, parameters.lowerLimit, parameters.upperLimit,
TEMP_SENSOR_LOW, TEMP_SENSOR_HIGH),
oldTemperature(20), uptimeOfOldTemperature( { INVALID_TEMPERATURE, 0 }) {
}
protected:
/**
* This formula is used to calculate the temperature from an input value
* with an arbitrary type.
* A default implementation is provided but can be replaced depending
* on the required calculation.
* @param inputTemperature
* @return
*/
virtual float calculateOutputTemperature(inputType inputValue) {
return parameters.a * inputValue * inputValue
+ parameters.b * inputValue + parameters.c;
}
private:
void setInvalid() {
outputTemperature = INVALID_TEMPERATURE;
outputTemperature.setValid(false);
uptimeOfOldTemperature.tv_sec = INVALID_UPTIME;
sensorMonitor.setToInvalid();
}
protected:
static const int32_t INVALID_UPTIME = 0;
UsedParameters parameters;
inputType * inputValue;
PoolVariableIF *poolVariable;
gp_float_t outputTemperature;
LimitMonitor<limitType> sensorMonitor;
float oldTemperature;
timeval uptimeOfOldTemperature;
void doChildOperation() {
if (!poolVariable->isValid()
|| !healthHelper.healthTable->isHealthy(getObjectId())) {
setInvalid();
return;
}
outputTemperature = calculateOutputTemperature(*inputValue);
outputTemperature.setValid(PoolVariableIF::VALID);
timeval uptime;
Clock::getUptime(&uptime);
if (uptimeOfOldTemperature.tv_sec != INVALID_UPTIME) {
//In theory, we could use an AbsValueMonitor to monitor the gradient.
//But this would require storing the maxGradient in DP and quite some overhead.
//The concept of delta limits is a bit strange anyway.
float deltaTime;
float deltaTemp;
deltaTime = (uptime.tv_sec + uptime.tv_usec / 1000000.)
- (uptimeOfOldTemperature.tv_sec
+ uptimeOfOldTemperature.tv_usec / 1000000.);
deltaTemp = oldTemperature - outputTemperature;
if (deltaTemp < 0) {
deltaTemp = -deltaTemp;
}
if (parameters.gradient < deltaTemp / deltaTime) {
triggerEvent(TEMP_SENSOR_GRADIENT);
//Don't set invalid, as we did not recognize it as invalid with full authority, let FDIR handle it
}
}
//Check is done against raw limits. SHOULDDO: Why? Using <20>C would be more easy to handle.
sensorMonitor.doCheck(outputTemperature.value);
if (sensorMonitor.isOutOfLimits()) {
uptimeOfOldTemperature.tv_sec = INVALID_UPTIME;
outputTemperature.setValid(PoolVariableIF::INVALID);
outputTemperature = INVALID_TEMPERATURE;
} else {
oldTemperature = outputTemperature;
uptimeOfOldTemperature = uptime;
}
}
public:
float getTemperature() {
return outputTemperature;
}
bool isValid() {
return outputTemperature.isValid();
}
static const uint16_t ADDRESS_A = 0;
static const uint16_t ADDRESS_B = 1;
static const uint16_t ADDRESS_C = 2;
static const uint16_t ADDRESS_GRADIENT = 3;
static const uint16_t DEFAULT_CONFIRMATION_COUNT = 1; //!< Changed due to issue with later temperature checking even tough the sensor monitor was confirming already (Was 10 before with comment = Correlates to a 10s confirmation time. Chosen rather large, should not be so bad for components and helps survive glitches.)
static const uint8_t DOMAIN_ID_SENSOR = 1;
virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId,
ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex) {
ReturnValue_t result = sensorMonitor.getParameter(domainId, parameterId,
parameterWrapper, newValues, startAtIndex);
if (result != INVALID_DOMAIN_ID) {
return result;
}
if (domainId != this->DOMAIN_ID_BASE) {
return INVALID_DOMAIN_ID;
}
switch (parameterId) {
case ADDRESS_A:
parameterWrapper->set(parameters.a);
break;
case ADDRESS_B:
parameterWrapper->set(parameters.b);
break;
case ADDRESS_C:
parameterWrapper->set(parameters.c);
break;
case ADDRESS_GRADIENT:
parameterWrapper->set(parameters.gradient);
break;
default:
return INVALID_MATRIX_ID;
}
return HasReturnvaluesIF::RETURN_OK;
}
virtual void resetOldState() {
sensorMonitor.setToUnchecked();
}
};
#endif /* TEMPERATURESENSOR_H_ */
#ifndef TEMPERATURESENSOR_H_
#define TEMPERATURESENSOR_H_
#include "../thermal/AbstractTemperatureSensor.h"
#include "../datapoolglob/GlobalDataSet.h"
#include "../datapoolglob/GlobalPoolVariable.h"
#include "../monitoring/LimitMonitor.h"
/**
* @brief This building block handles non-linear value conversion and
* range checks for analog temperature sensors.
* @details This class can be used to perform all necessary tasks for temperature sensors.
* A sensor can be instantiated by calling the constructor.
* The temperature is calculated from an input value with
* the calculateOutputTemperature() function. Range checking and
* limit monitoring is performed automatically.
* The inputType specifies the type of the raw input while the
* limitType specifies the type of the upper and lower limit to check against.
* @ingroup thermal
*/
template<typename inputType, typename limitType = inputType>
class TemperatureSensor: public AbstractTemperatureSensor {
public:
/**
* This structure contains parameters required for range checking
* and the conversion from the input value to the output temperature.
* a, b and c can be any parameters required to calculate the output
* temperature from the input value, depending on the formula used.
*
* The parameters a,b and c are used in the calculateOutputTemperature() call.
*
* The lower and upper limits can be specified in any type, for example float for C values
* or any other type for raw values.
*/
struct Parameters {
float a;
float b;
float c;
limitType lowerLimit;
limitType upperLimit;
float maxGradient;
};
/**
* Forward declaration for explicit instantiation of used parameters.
*/
struct UsedParameters {
UsedParameters(Parameters parameters) :
a(parameters.a), b(parameters.b), c(parameters.c),
gradient(parameters.maxGradient) {}
float a;
float b;
float c;
float gradient;
};
/**
* Instantiate Temperature Sensor Object.
* @param setObjectid objectId of the sensor object
* @param inputValue Input value which is converted to a temperature
* @param poolVariable Pool Variable to store the temperature value
* @param vectorIndex Vector Index for the sensor monitor
* @param parameters Calculation parameters, temperature limits, gradient limit
* @param datapoolId Datapool ID of the output temperature
* @param outputSet Output dataset for the output temperature to fetch it with read()
* @param thermalModule respective thermal module, if it has one
*/
TemperatureSensor(object_id_t setObjectid,
inputType *inputValue, PoolVariableIF *poolVariable,
uint8_t vectorIndex, uint32_t datapoolId, Parameters parameters = {0, 0, 0, 0, 0, 0},
GlobDataSet *outputSet = NULL, ThermalModuleIF *thermalModule = NULL) :
AbstractTemperatureSensor(setObjectid, thermalModule), parameters(parameters),
inputValue(inputValue), poolVariable(poolVariable),
outputTemperature(datapoolId, outputSet, PoolVariableIF::VAR_WRITE),
sensorMonitor(setObjectid, DOMAIN_ID_SENSOR,
GlobalDataPool::poolIdAndPositionToPid(poolVariable->getDataPoolId(), vectorIndex),
DEFAULT_CONFIRMATION_COUNT, parameters.lowerLimit, parameters.upperLimit,
TEMP_SENSOR_LOW, TEMP_SENSOR_HIGH),
oldTemperature(20), uptimeOfOldTemperature( { INVALID_TEMPERATURE, 0 }) {
}
protected:
/**
* This formula is used to calculate the temperature from an input value
* with an arbitrary type.
* A default implementation is provided but can be replaced depending
* on the required calculation.
* @param inputTemperature
* @return
*/
virtual float calculateOutputTemperature(inputType inputValue) {
return parameters.a * inputValue * inputValue
+ parameters.b * inputValue + parameters.c;
}
private:
void setInvalid() {
outputTemperature = INVALID_TEMPERATURE;
outputTemperature.setValid(false);
uptimeOfOldTemperature.tv_sec = INVALID_UPTIME;
sensorMonitor.setToInvalid();
}
protected:
static const int32_t INVALID_UPTIME = 0;
UsedParameters parameters;
inputType * inputValue;
PoolVariableIF *poolVariable;
gp_float_t outputTemperature;
LimitMonitor<limitType> sensorMonitor;
float oldTemperature;
timeval uptimeOfOldTemperature;
void doChildOperation() {
if (!poolVariable->isValid()
|| !healthHelper.healthTable->isHealthy(getObjectId())) {
setInvalid();
return;
}
outputTemperature = calculateOutputTemperature(*inputValue);
outputTemperature.setValid(PoolVariableIF::VALID);
timeval uptime;
Clock::getUptime(&uptime);
if (uptimeOfOldTemperature.tv_sec != INVALID_UPTIME) {
//In theory, we could use an AbsValueMonitor to monitor the gradient.
//But this would require storing the maxGradient in DP and quite some overhead.
//The concept of delta limits is a bit strange anyway.
float deltaTime;
float deltaTemp;
deltaTime = (uptime.tv_sec + uptime.tv_usec / 1000000.)
- (uptimeOfOldTemperature.tv_sec
+ uptimeOfOldTemperature.tv_usec / 1000000.);
deltaTemp = oldTemperature - outputTemperature;
if (deltaTemp < 0) {
deltaTemp = -deltaTemp;
}
if (parameters.gradient < deltaTemp / deltaTime) {
triggerEvent(TEMP_SENSOR_GRADIENT);
//Don't set invalid, as we did not recognize it as invalid with full authority, let FDIR handle it
}
}
//Check is done against raw limits. SHOULDDO: Why? Using <20>C would be more easy to handle.
sensorMonitor.doCheck(outputTemperature.value);
if (sensorMonitor.isOutOfLimits()) {
uptimeOfOldTemperature.tv_sec = INVALID_UPTIME;
outputTemperature.setValid(PoolVariableIF::INVALID);
outputTemperature = INVALID_TEMPERATURE;
} else {
oldTemperature = outputTemperature;
uptimeOfOldTemperature = uptime;
}
}
public:
float getTemperature() {
return outputTemperature;
}
bool isValid() {
return outputTemperature.isValid();
}
static const uint16_t ADDRESS_A = 0;
static const uint16_t ADDRESS_B = 1;
static const uint16_t ADDRESS_C = 2;
static const uint16_t ADDRESS_GRADIENT = 3;
static const uint16_t DEFAULT_CONFIRMATION_COUNT = 1; //!< Changed due to issue with later temperature checking even tough the sensor monitor was confirming already (Was 10 before with comment = Correlates to a 10s confirmation time. Chosen rather large, should not be so bad for components and helps survive glitches.)
static const uint8_t DOMAIN_ID_SENSOR = 1;
virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId,
ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex) {
ReturnValue_t result = sensorMonitor.getParameter(domainId, parameterId,
parameterWrapper, newValues, startAtIndex);
if (result != INVALID_DOMAIN_ID) {
return result;
}
if (domainId != this->DOMAIN_ID_BASE) {
return INVALID_DOMAIN_ID;
}
switch (parameterId) {
case ADDRESS_A:
parameterWrapper->set(parameters.a);
break;
case ADDRESS_B:
parameterWrapper->set(parameters.b);
break;
case ADDRESS_C:
parameterWrapper->set(parameters.c);
break;
case ADDRESS_GRADIENT:
parameterWrapper->set(parameters.gradient);
break;
default:
return INVALID_MATRIX_ID;
}
return HasReturnvaluesIF::RETURN_OK;
}
virtual void resetOldState() {
sensorMonitor.setToUnchecked();
}
};
#endif /* TEMPERATURESENSOR_H_ */

View File

@ -1,114 +1,114 @@
#ifndef THERMALCOMPONENTIF_H_
#define THERMALCOMPONENTIF_H_
#include "../events/Event.h"
#include "../parameters/HasParametersIF.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include "../objectmanager/SystemObjectIF.h"
class ThermalComponentIF : public HasParametersIF {
public:
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::TCS_1;
static const Event COMPONENT_TEMP_LOW = MAKE_EVENT(1, SEVERITY::LOW);
static const Event COMPONENT_TEMP_HIGH = MAKE_EVENT(2, SEVERITY::LOW);
static const Event COMPONENT_TEMP_OOL_LOW = MAKE_EVENT(3, SEVERITY::LOW);
static const Event COMPONENT_TEMP_OOL_HIGH = MAKE_EVENT(4, SEVERITY::LOW);
static const Event TEMP_NOT_IN_OP_RANGE = MAKE_EVENT(5, SEVERITY::LOW); //!< Is thrown when a device should start-up, but the temperature is out of OP range. P1: thermalState of the component, P2: 0
static const uint8_t INTERFACE_ID = CLASS_ID::THERMAL_COMPONENT_IF;
static const ReturnValue_t INVALID_TARGET_STATE = MAKE_RETURN_CODE(1);
static const ReturnValue_t ABOVE_OPERATIONAL_LIMIT = MAKE_RETURN_CODE(0xF1);
static const ReturnValue_t BELOW_OPERATIONAL_LIMIT = MAKE_RETURN_CODE(0xF2);
enum State {
OUT_OF_RANGE_LOW = -2,
NON_OPERATIONAL_LOW = -1,
OPERATIONAL = 0,
NON_OPERATIONAL_HIGH = 1,
OUT_OF_RANGE_HIGH = 2,
OUT_OF_RANGE_LOW_IGNORED = OUT_OF_RANGE_LOW - 10,
NON_OPERATIONAL_LOW_IGNORED = NON_OPERATIONAL_LOW - 10,
OPERATIONAL_IGNORED = OPERATIONAL + 10,
NON_OPERATIONAL_HIGH_IGNORED = NON_OPERATIONAL_HIGH + 10,
OUT_OF_RANGE_HIGH_IGNORED = OUT_OF_RANGE_HIGH + 10,
UNKNOWN = 20
};
enum StateRequest {
STATE_REQUEST_HEATING = 4,
STATE_REQUEST_IGNORE = 3,
STATE_REQUEST_OPERATIONAL = 1,
STATE_REQUEST_NON_OPERATIONAL = 0
};
/**
* The elements are ordered by priority, lowest have highest priority
*/
enum Priority {
SAFE = 0, //!< SAFE
IDLE, //!< IDLE
PAYLOAD, //!< PAYLOAD
NUMBER_OF_PRIORITIES //!< MAX_PRIORITY
};
/**
* The elements are ordered by priority, lowest have highest priority
*/
enum HeaterRequest {
HEATER_REQUEST_EMERGENCY_OFF = 0, //!< REQUEST_EMERGENCY_OFF
HEATER_REQUEST_EMERGENCY_ON, //!< REQUEST_EMERGENCY_ON
HEATER_REQUEST_OFF, //!< REQUEST_OFF
HEATER_REQUEST_ON, //!< REQUEST_ON
HEATER_DONT_CARE //!< DONT_CARE
};
virtual ~ThermalComponentIF() {
}
virtual HeaterRequest performOperation(uint8_t opCode) = 0;
virtual object_id_t getObjectId() = 0;
virtual uint8_t getDomainId() const = 0;
virtual void markStateIgnored() = 0;
virtual float getLowerOpLimit() = 0;
virtual ReturnValue_t setTargetState(int8_t state) = 0;
virtual void setOutputInvalid() = 0;
static bool isOperational(int8_t state) {
return ((state == OPERATIONAL) || (state == OPERATIONAL_IGNORED));
}
static bool isOutOfRange(State state) {
return ((state == OUT_OF_RANGE_HIGH)
|| (state == OUT_OF_RANGE_HIGH_IGNORED)
|| (state == OUT_OF_RANGE_LOW)
|| (state == OUT_OF_RANGE_LOW_IGNORED) || (state == UNKNOWN));
}
static bool isNonOperational(State state) {
return !isOutOfRange(state);
}
static bool isIgnoredState(State state) {
switch (state) {
case OUT_OF_RANGE_LOW_IGNORED:
case OUT_OF_RANGE_HIGH_IGNORED:
case NON_OPERATIONAL_LOW_IGNORED:
case NON_OPERATIONAL_HIGH_IGNORED:
case OPERATIONAL_IGNORED:
case UNKNOWN:
return true;
default:
return false;
}
}
};
#endif /* THERMALCOMPONENTIF_H_ */
#ifndef THERMALCOMPONENTIF_H_
#define THERMALCOMPONENTIF_H_
#include "../events/Event.h"
#include "../parameters/HasParametersIF.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include "../objectmanager/SystemObjectIF.h"
class ThermalComponentIF : public HasParametersIF {
public:
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::TCS_1;
static const Event COMPONENT_TEMP_LOW = MAKE_EVENT(1, SEVERITY::LOW);
static const Event COMPONENT_TEMP_HIGH = MAKE_EVENT(2, SEVERITY::LOW);
static const Event COMPONENT_TEMP_OOL_LOW = MAKE_EVENT(3, SEVERITY::LOW);
static const Event COMPONENT_TEMP_OOL_HIGH = MAKE_EVENT(4, SEVERITY::LOW);
static const Event TEMP_NOT_IN_OP_RANGE = MAKE_EVENT(5, SEVERITY::LOW); //!< Is thrown when a device should start-up, but the temperature is out of OP range. P1: thermalState of the component, P2: 0
static const uint8_t INTERFACE_ID = CLASS_ID::THERMAL_COMPONENT_IF;
static const ReturnValue_t INVALID_TARGET_STATE = MAKE_RETURN_CODE(1);
static const ReturnValue_t ABOVE_OPERATIONAL_LIMIT = MAKE_RETURN_CODE(0xF1);
static const ReturnValue_t BELOW_OPERATIONAL_LIMIT = MAKE_RETURN_CODE(0xF2);
enum State {
OUT_OF_RANGE_LOW = -2,
NON_OPERATIONAL_LOW = -1,
OPERATIONAL = 0,
NON_OPERATIONAL_HIGH = 1,
OUT_OF_RANGE_HIGH = 2,
OUT_OF_RANGE_LOW_IGNORED = OUT_OF_RANGE_LOW - 10,
NON_OPERATIONAL_LOW_IGNORED = NON_OPERATIONAL_LOW - 10,
OPERATIONAL_IGNORED = OPERATIONAL + 10,
NON_OPERATIONAL_HIGH_IGNORED = NON_OPERATIONAL_HIGH + 10,
OUT_OF_RANGE_HIGH_IGNORED = OUT_OF_RANGE_HIGH + 10,
UNKNOWN = 20
};
enum StateRequest {
STATE_REQUEST_HEATING = 4,
STATE_REQUEST_IGNORE = 3,
STATE_REQUEST_OPERATIONAL = 1,
STATE_REQUEST_NON_OPERATIONAL = 0
};
/**
* The elements are ordered by priority, lowest have highest priority
*/
enum Priority {
SAFE = 0, //!< SAFE
IDLE, //!< IDLE
PAYLOAD, //!< PAYLOAD
NUMBER_OF_PRIORITIES //!< MAX_PRIORITY
};
/**
* The elements are ordered by priority, lowest have highest priority
*/
enum HeaterRequest {
HEATER_REQUEST_EMERGENCY_OFF = 0, //!< REQUEST_EMERGENCY_OFF
HEATER_REQUEST_EMERGENCY_ON, //!< REQUEST_EMERGENCY_ON
HEATER_REQUEST_OFF, //!< REQUEST_OFF
HEATER_REQUEST_ON, //!< REQUEST_ON
HEATER_DONT_CARE //!< DONT_CARE
};
virtual ~ThermalComponentIF() {
}
virtual HeaterRequest performOperation(uint8_t opCode) = 0;
virtual object_id_t getObjectId() = 0;
virtual uint8_t getDomainId() const = 0;
virtual void markStateIgnored() = 0;
virtual float getLowerOpLimit() = 0;
virtual ReturnValue_t setTargetState(int8_t state) = 0;
virtual void setOutputInvalid() = 0;
static bool isOperational(int8_t state) {
return ((state == OPERATIONAL) || (state == OPERATIONAL_IGNORED));
}
static bool isOutOfRange(State state) {
return ((state == OUT_OF_RANGE_HIGH)
|| (state == OUT_OF_RANGE_HIGH_IGNORED)
|| (state == OUT_OF_RANGE_LOW)
|| (state == OUT_OF_RANGE_LOW_IGNORED) || (state == UNKNOWN));
}
static bool isNonOperational(State state) {
return !isOutOfRange(state);
}
static bool isIgnoredState(State state) {
switch (state) {
case OUT_OF_RANGE_LOW_IGNORED:
case OUT_OF_RANGE_HIGH_IGNORED:
case NON_OPERATIONAL_LOW_IGNORED:
case NON_OPERATIONAL_HIGH_IGNORED:
case OPERATIONAL_IGNORED:
case UNKNOWN:
return true;
default:
return false;
}
}
};
#endif /* THERMALCOMPONENTIF_H_ */

View File

@ -1,288 +1,288 @@
#include "../monitoring/LimitViolationReporter.h"
#include "../monitoring/MonitoringMessageContent.h"
#include "ThermalModule.h"
#include "AbstractTemperatureSensor.h"
ThermalModule::ThermalModule(uint32_t moduleTemperaturePoolId,
uint32_t currentStatePoolId, uint32_t targetStatePoolId,
GlobDataSet *dataSet, Parameters parameters,
RedundantHeater::Parameters heaterParameters) :
oldStrategy(ACTIVE_SINGLE), survivalTargetTemp(0), targetTemp(0), heating(
false), parameters(parameters), moduleTemperature(
moduleTemperaturePoolId, dataSet, PoolVariableIF::VAR_WRITE), currentState(
currentStatePoolId, dataSet, PoolVariableIF::VAR_WRITE), targetState(
targetStatePoolId, dataSet, PoolVariableIF::VAR_READ) {
heater = new RedundantHeater(heaterParameters);
}
ThermalModule::ThermalModule(uint32_t moduleTemperaturePoolId, GlobDataSet* dataSet) :
oldStrategy(ACTIVE_SINGLE), survivalTargetTemp(0), targetTemp(0), heating(
false), parameters( { 0, 0 }), moduleTemperature(
moduleTemperaturePoolId, dataSet, PoolVariableIF::VAR_WRITE), heater(
NULL), currentState(PoolVariableIF::INVALID, dataSet,
PoolVariableIF::VAR_WRITE), targetState(PoolVariableIF::INVALID,
dataSet, PoolVariableIF::VAR_READ) {
}
ThermalModule::~ThermalModule() {
delete heater;
}
void ThermalModule::performOperation(uint8_t opCode) {
if (heater != NULL) {
heater->performOperation(0);
}
}
void ThermalModule::performMode(Strategy strategy) {
calculateTemperature();
bool safeOnly = (strategy == ACTIVE_SURVIVAL);
ThermalComponentIF::HeaterRequest componentHeaterRequest =
letComponentsPerformAndDeciceIfWeNeedToHeat(safeOnly);
if (heater == NULL) {
informComponentsAboutHeaterState(false, NONE);
return;
}
bool heating = calculateModuleHeaterRequestAndSetModuleStatus(strategy);
if (componentHeaterRequest != ThermalComponentIF::HEATER_DONT_CARE) {
//Components overwrite the module request.
heating = ((componentHeaterRequest
== ThermalComponentIF::HEATER_REQUEST_ON)
|| (componentHeaterRequest
== ThermalComponentIF::HEATER_REQUEST_EMERGENCY_ON));
}
bool dual = (strategy == ACTIVE_DUAL);
if (strategy == PASSIVE) {
informComponentsAboutHeaterState(false, NONE);
if (oldStrategy != PASSIVE) {
heater->set(false, false, true);
}
} else {
if (safeOnly) {
informComponentsAboutHeaterState(heating, SAFE);
} else {
informComponentsAboutHeaterState(heating, ALL);
}
heater->set(heating, dual);
}
oldStrategy = strategy;
}
float ThermalModule::getTemperature() {
return moduleTemperature;
}
void ThermalModule::registerSensor(AbstractTemperatureSensor * sensor) {
sensors.push_back(sensor);
}
void ThermalModule::registerComponent(ThermalComponentIF* component,
ThermalComponentIF::Priority priority) {
components.push_back(ComponentData( { component, priority, ThermalComponentIF::HEATER_DONT_CARE }));
}
void ThermalModule::calculateTemperature() {
uint32_t numberOfValidSensors = 0;
moduleTemperature = 0;
std::list<AbstractTemperatureSensor *>::iterator iter = sensors.begin();
for (; iter != sensors.end(); iter++) {
if ((*iter)->isValid()) {
moduleTemperature = moduleTemperature + (*iter)->getTemperature();
numberOfValidSensors++;
}
}
if (numberOfValidSensors != 0) {
moduleTemperature = moduleTemperature / numberOfValidSensors;
moduleTemperature.setValid(PoolVariableIF::VALID);
} else {
moduleTemperature = INVALID_TEMPERATURE;
moduleTemperature.setValid(PoolVariableIF::INVALID);
}
}
ThermalComponentIF* ThermalModule::findComponent(object_id_t objectId) {
std::list<ComponentData>::iterator iter = components.begin();
for (; iter != components.end(); iter++) {
if (iter->component->getObjectId() == objectId) {
return iter->component;
}
}
return NULL;
}
ThermalComponentIF::HeaterRequest ThermalModule::letComponentsPerformAndDeciceIfWeNeedToHeat(
bool safeOnly) {
ThermalComponentIF::HeaterRequest heaterRequests[ThermalComponentIF::NUMBER_OF_PRIORITIES];
survivalTargetTemp = -999;
targetTemp = -999;
for (uint8_t i = 0; i < ThermalComponentIF::NUMBER_OF_PRIORITIES; i++) {
heaterRequests[i] = ThermalComponentIF::HEATER_DONT_CARE;
}
std::list<ComponentData>::iterator iter = components.begin();
for (; iter != components.end(); iter++) {
updateTargetTemperatures(iter->component,
iter->priority == ThermalComponentIF::SAFE);
ThermalComponentIF::HeaterRequest request =
iter->component->performOperation(0);
iter->request = request;
if (request != ThermalComponentIF::HEATER_DONT_CARE) {
if (request < heaterRequests[iter->priority]) {
heaterRequests[iter->priority] = request;
}
}
}
if (!safeOnly) {
for (uint8_t i = ThermalComponentIF::NUMBER_OF_PRIORITIES - 1; i > 0;
i--) {
if (heaterRequests[i - 1] == ThermalComponentIF::HEATER_DONT_CARE) {
heaterRequests[i - 1] = heaterRequests[i];
}
}
}
return heaterRequests[0];
}
void ThermalModule::informComponentsAboutHeaterState(bool heaterIsOn,
Informee whomToInform) {
std::list<ComponentData>::iterator iter = components.begin();
for (; iter != components.end(); iter++) {
switch (whomToInform) {
case ALL:
break;
case SAFE:
if (!(iter->priority == ThermalComponentIF::SAFE)) {
iter->component->markStateIgnored();
continue;
}
break;
case NONE:
iter->component->markStateIgnored();
continue;
}
if (heaterIsOn) {
if ((iter->request
== ThermalComponentIF::HEATER_REQUEST_EMERGENCY_OFF)
|| (iter->request == ThermalComponentIF::HEATER_REQUEST_OFF)) {
iter->component->markStateIgnored();
}
} else {
if ((iter->request
== ThermalComponentIF::HEATER_REQUEST_EMERGENCY_ON)
|| (iter->request == ThermalComponentIF::HEATER_REQUEST_ON)) {
iter->component->markStateIgnored();
}
}
}
}
void ThermalModule::initialize(PowerSwitchIF* powerSwitch) {
if (heater != NULL) {
heater->setPowerSwitcher(powerSwitch);
}
std::list<ComponentData>::iterator iter = components.begin();
for (; iter != components.end(); iter++) {
float componentLowerOpLimit = iter->component->getLowerOpLimit();
if (iter->priority == ThermalComponentIF::SAFE) {
if (componentLowerOpLimit > survivalTargetTemp) {
survivalTargetTemp = componentLowerOpLimit;
}
} else {
if (componentLowerOpLimit > targetTemp) {
targetTemp = componentLowerOpLimit;
}
}
}
if (survivalTargetTemp > targetTemp) {
targetTemp = survivalTargetTemp;
}
}
bool ThermalModule::calculateModuleHeaterRequestAndSetModuleStatus(
Strategy strategy) {
currentState.setValid(PoolVariableIF::VALID);
if (moduleTemperature == INVALID_TEMPERATURE) {
currentState = UNKNOWN;
return false;
}
float limit = targetTemp;
bool heaterRequest = false;
if (strategy == ACTIVE_SURVIVAL) {
limit = survivalTargetTemp;
}
if (moduleTemperature >= limit) {
currentState = OPERATIONAL;
} else {
currentState = NON_OPERATIONAL;
}
limit += parameters.heaterOn;
if (heating) {
limit += parameters.hysteresis;
}
if (targetState == STATE_REQUEST_HEATING) {
if (moduleTemperature < limit) {
heaterRequest = true;
} else {
heaterRequest = false;
}
}
heating = heaterRequest;
return heaterRequest;
}
void ThermalModule::setHeating(bool on) {
GlobDataSet mySet;
gp_int8_t writableTargetState(targetState.getDataPoolId(),
&mySet, PoolVariableIF::VAR_WRITE);
if (on) {
writableTargetState = STATE_REQUEST_HEATING;
} else {
writableTargetState = STATE_REQUEST_PASSIVE;
}
mySet.commit(PoolVariableIF::VALID);
}
void ThermalModule::updateTargetTemperatures(ThermalComponentIF* component,
bool isSafe) {
if (isSafe) {
if (component->getLowerOpLimit() > survivalTargetTemp) {
survivalTargetTemp = component->getLowerOpLimit();
}
} else {
if (component->getLowerOpLimit() > targetTemp) {
targetTemp = component->getLowerOpLimit();
}
}
}
void ThermalModule::setOutputInvalid() {
moduleTemperature = INVALID_TEMPERATURE;
moduleTemperature.setValid(PoolVariableIF::INVALID);
currentState.setValid(PoolVariableIF::INVALID);
std::list<ComponentData>::iterator iter = components.begin();
for (; iter != components.end(); iter++) {
iter->component->setOutputInvalid();
}
if (heater != NULL) {
heater->set(false,true);
}
}
#include "../monitoring/LimitViolationReporter.h"
#include "../monitoring/MonitoringMessageContent.h"
#include "ThermalModule.h"
#include "AbstractTemperatureSensor.h"
ThermalModule::ThermalModule(uint32_t moduleTemperaturePoolId,
uint32_t currentStatePoolId, uint32_t targetStatePoolId,
GlobDataSet *dataSet, Parameters parameters,
RedundantHeater::Parameters heaterParameters) :
oldStrategy(ACTIVE_SINGLE), survivalTargetTemp(0), targetTemp(0), heating(
false), parameters(parameters), moduleTemperature(
moduleTemperaturePoolId, dataSet, PoolVariableIF::VAR_WRITE), currentState(
currentStatePoolId, dataSet, PoolVariableIF::VAR_WRITE), targetState(
targetStatePoolId, dataSet, PoolVariableIF::VAR_READ) {
heater = new RedundantHeater(heaterParameters);
}
ThermalModule::ThermalModule(uint32_t moduleTemperaturePoolId, GlobDataSet* dataSet) :
oldStrategy(ACTIVE_SINGLE), survivalTargetTemp(0), targetTemp(0), heating(
false), parameters( { 0, 0 }), moduleTemperature(
moduleTemperaturePoolId, dataSet, PoolVariableIF::VAR_WRITE), heater(
NULL), currentState(PoolVariableIF::INVALID, dataSet,
PoolVariableIF::VAR_WRITE), targetState(PoolVariableIF::INVALID,
dataSet, PoolVariableIF::VAR_READ) {
}
ThermalModule::~ThermalModule() {
delete heater;
}
void ThermalModule::performOperation(uint8_t opCode) {
if (heater != NULL) {
heater->performOperation(0);
}
}
void ThermalModule::performMode(Strategy strategy) {
calculateTemperature();
bool safeOnly = (strategy == ACTIVE_SURVIVAL);
ThermalComponentIF::HeaterRequest componentHeaterRequest =
letComponentsPerformAndDeciceIfWeNeedToHeat(safeOnly);
if (heater == NULL) {
informComponentsAboutHeaterState(false, NONE);
return;
}
bool heating = calculateModuleHeaterRequestAndSetModuleStatus(strategy);
if (componentHeaterRequest != ThermalComponentIF::HEATER_DONT_CARE) {
//Components overwrite the module request.
heating = ((componentHeaterRequest
== ThermalComponentIF::HEATER_REQUEST_ON)
|| (componentHeaterRequest
== ThermalComponentIF::HEATER_REQUEST_EMERGENCY_ON));
}
bool dual = (strategy == ACTIVE_DUAL);
if (strategy == PASSIVE) {
informComponentsAboutHeaterState(false, NONE);
if (oldStrategy != PASSIVE) {
heater->set(false, false, true);
}
} else {
if (safeOnly) {
informComponentsAboutHeaterState(heating, SAFE);
} else {
informComponentsAboutHeaterState(heating, ALL);
}
heater->set(heating, dual);
}
oldStrategy = strategy;
}
float ThermalModule::getTemperature() {
return moduleTemperature;
}
void ThermalModule::registerSensor(AbstractTemperatureSensor * sensor) {
sensors.push_back(sensor);
}
void ThermalModule::registerComponent(ThermalComponentIF* component,
ThermalComponentIF::Priority priority) {
components.push_back(ComponentData( { component, priority, ThermalComponentIF::HEATER_DONT_CARE }));
}
void ThermalModule::calculateTemperature() {
uint32_t numberOfValidSensors = 0;
moduleTemperature = 0;
std::list<AbstractTemperatureSensor *>::iterator iter = sensors.begin();
for (; iter != sensors.end(); iter++) {
if ((*iter)->isValid()) {
moduleTemperature = moduleTemperature + (*iter)->getTemperature();
numberOfValidSensors++;
}
}
if (numberOfValidSensors != 0) {
moduleTemperature = moduleTemperature / numberOfValidSensors;
moduleTemperature.setValid(PoolVariableIF::VALID);
} else {
moduleTemperature = INVALID_TEMPERATURE;
moduleTemperature.setValid(PoolVariableIF::INVALID);
}
}
ThermalComponentIF* ThermalModule::findComponent(object_id_t objectId) {
std::list<ComponentData>::iterator iter = components.begin();
for (; iter != components.end(); iter++) {
if (iter->component->getObjectId() == objectId) {
return iter->component;
}
}
return NULL;
}
ThermalComponentIF::HeaterRequest ThermalModule::letComponentsPerformAndDeciceIfWeNeedToHeat(
bool safeOnly) {
ThermalComponentIF::HeaterRequest heaterRequests[ThermalComponentIF::NUMBER_OF_PRIORITIES];
survivalTargetTemp = -999;
targetTemp = -999;
for (uint8_t i = 0; i < ThermalComponentIF::NUMBER_OF_PRIORITIES; i++) {
heaterRequests[i] = ThermalComponentIF::HEATER_DONT_CARE;
}
std::list<ComponentData>::iterator iter = components.begin();
for (; iter != components.end(); iter++) {
updateTargetTemperatures(iter->component,
iter->priority == ThermalComponentIF::SAFE);
ThermalComponentIF::HeaterRequest request =
iter->component->performOperation(0);
iter->request = request;
if (request != ThermalComponentIF::HEATER_DONT_CARE) {
if (request < heaterRequests[iter->priority]) {
heaterRequests[iter->priority] = request;
}
}
}
if (!safeOnly) {
for (uint8_t i = ThermalComponentIF::NUMBER_OF_PRIORITIES - 1; i > 0;
i--) {
if (heaterRequests[i - 1] == ThermalComponentIF::HEATER_DONT_CARE) {
heaterRequests[i - 1] = heaterRequests[i];
}
}
}
return heaterRequests[0];
}
void ThermalModule::informComponentsAboutHeaterState(bool heaterIsOn,
Informee whomToInform) {
std::list<ComponentData>::iterator iter = components.begin();
for (; iter != components.end(); iter++) {
switch (whomToInform) {
case ALL:
break;
case SAFE:
if (!(iter->priority == ThermalComponentIF::SAFE)) {
iter->component->markStateIgnored();
continue;
}
break;
case NONE:
iter->component->markStateIgnored();
continue;
}
if (heaterIsOn) {
if ((iter->request
== ThermalComponentIF::HEATER_REQUEST_EMERGENCY_OFF)
|| (iter->request == ThermalComponentIF::HEATER_REQUEST_OFF)) {
iter->component->markStateIgnored();
}
} else {
if ((iter->request
== ThermalComponentIF::HEATER_REQUEST_EMERGENCY_ON)
|| (iter->request == ThermalComponentIF::HEATER_REQUEST_ON)) {
iter->component->markStateIgnored();
}
}
}
}
void ThermalModule::initialize(PowerSwitchIF* powerSwitch) {
if (heater != NULL) {
heater->setPowerSwitcher(powerSwitch);
}
std::list<ComponentData>::iterator iter = components.begin();
for (; iter != components.end(); iter++) {
float componentLowerOpLimit = iter->component->getLowerOpLimit();
if (iter->priority == ThermalComponentIF::SAFE) {
if (componentLowerOpLimit > survivalTargetTemp) {
survivalTargetTemp = componentLowerOpLimit;
}
} else {
if (componentLowerOpLimit > targetTemp) {
targetTemp = componentLowerOpLimit;
}
}
}
if (survivalTargetTemp > targetTemp) {
targetTemp = survivalTargetTemp;
}
}
bool ThermalModule::calculateModuleHeaterRequestAndSetModuleStatus(
Strategy strategy) {
currentState.setValid(PoolVariableIF::VALID);
if (moduleTemperature == INVALID_TEMPERATURE) {
currentState = UNKNOWN;
return false;
}
float limit = targetTemp;
bool heaterRequest = false;
if (strategy == ACTIVE_SURVIVAL) {
limit = survivalTargetTemp;
}
if (moduleTemperature >= limit) {
currentState = OPERATIONAL;
} else {
currentState = NON_OPERATIONAL;
}
limit += parameters.heaterOn;
if (heating) {
limit += parameters.hysteresis;
}
if (targetState == STATE_REQUEST_HEATING) {
if (moduleTemperature < limit) {
heaterRequest = true;
} else {
heaterRequest = false;
}
}
heating = heaterRequest;
return heaterRequest;
}
void ThermalModule::setHeating(bool on) {
GlobDataSet mySet;
gp_int8_t writableTargetState(targetState.getDataPoolId(),
&mySet, PoolVariableIF::VAR_WRITE);
if (on) {
writableTargetState = STATE_REQUEST_HEATING;
} else {
writableTargetState = STATE_REQUEST_PASSIVE;
}
mySet.commit(PoolVariableIF::VALID);
}
void ThermalModule::updateTargetTemperatures(ThermalComponentIF* component,
bool isSafe) {
if (isSafe) {
if (component->getLowerOpLimit() > survivalTargetTemp) {
survivalTargetTemp = component->getLowerOpLimit();
}
} else {
if (component->getLowerOpLimit() > targetTemp) {
targetTemp = component->getLowerOpLimit();
}
}
}
void ThermalModule::setOutputInvalid() {
moduleTemperature = INVALID_TEMPERATURE;
moduleTemperature.setValid(PoolVariableIF::INVALID);
currentState.setValid(PoolVariableIF::INVALID);
std::list<ComponentData>::iterator iter = components.begin();
for (; iter != components.end(); iter++) {
iter->component->setOutputInvalid();
}
if (heater != NULL) {
heater->set(false,true);
}
}

View File

@ -1,95 +1,95 @@
#ifndef THERMALMODULE_H_
#define THERMALMODULE_H_
#include "../datapoolglob/GlobalDataSet.h"
#include "../datapoolglob/GlobalPoolVariable.h"
#include "../devicehandlers/HealthDevice.h"
#include "../events/EventReportingProxyIF.h"
#include "ThermalModuleIF.h"
#include <list>
#include "tcsDefinitions.h"
#include "RedundantHeater.h"
class PowerSwitchIF;
/**
* @brief Allows creation of different thermal control domains within a system.
*/
class ThermalModule: public ThermalModuleIF {
friend class ThermalController;
public:
struct Parameters {
float heaterOn;
float hysteresis;
};
ThermalModule(uint32_t moduleTemperaturePoolId, uint32_t currentStatePoolId,
uint32_t targetStatePoolId, GlobDataSet *dataSet, Parameters parameters,
RedundantHeater::Parameters heaterParameters);
ThermalModule(uint32_t moduleTemperaturePoolId, GlobDataSet *dataSet);
virtual ~ThermalModule();
void performOperation(uint8_t opCode);
void performMode(Strategy strategy);
float getTemperature();
void registerSensor(AbstractTemperatureSensor *sensor);
void registerComponent(ThermalComponentIF *component,
ThermalComponentIF::Priority priority);
ThermalComponentIF *findComponent(object_id_t objectId);
void initialize(PowerSwitchIF* powerSwitch);
void setHeating(bool on);
virtual void setOutputInvalid();
protected:
enum Informee {
ALL, SAFE, NONE
};
struct ComponentData {
ThermalComponentIF *component;
ThermalComponentIF::Priority priority;
ThermalComponentIF::HeaterRequest request;
};
Strategy oldStrategy;
float survivalTargetTemp;
float targetTemp;
bool heating;
Parameters parameters;
gp_float_t moduleTemperature;
RedundantHeater *heater;
gp_int8_t currentState;
gp_int8_t targetState;
std::list<AbstractTemperatureSensor *> sensors;
std::list<ComponentData> components;
void calculateTemperature();
ThermalComponentIF::HeaterRequest letComponentsPerformAndDeciceIfWeNeedToHeat(bool safeOnly);
void informComponentsAboutHeaterState(bool heaterIsOn,
Informee whomToInform);
bool calculateModuleHeaterRequestAndSetModuleStatus(Strategy strategy);
void updateTargetTemperatures(ThermalComponentIF *component, bool isSafe);
};
#endif /* THERMALMODULE_H_ */
#ifndef THERMALMODULE_H_
#define THERMALMODULE_H_
#include "../datapoolglob/GlobalDataSet.h"
#include "../datapoolglob/GlobalPoolVariable.h"
#include "../devicehandlers/HealthDevice.h"
#include "../events/EventReportingProxyIF.h"
#include "ThermalModuleIF.h"
#include <list>
#include "tcsDefinitions.h"
#include "RedundantHeater.h"
class PowerSwitchIF;
/**
* @brief Allows creation of different thermal control domains within a system.
*/
class ThermalModule: public ThermalModuleIF {
friend class ThermalController;
public:
struct Parameters {
float heaterOn;
float hysteresis;
};
ThermalModule(uint32_t moduleTemperaturePoolId, uint32_t currentStatePoolId,
uint32_t targetStatePoolId, GlobDataSet *dataSet, Parameters parameters,
RedundantHeater::Parameters heaterParameters);
ThermalModule(uint32_t moduleTemperaturePoolId, GlobDataSet *dataSet);
virtual ~ThermalModule();
void performOperation(uint8_t opCode);
void performMode(Strategy strategy);
float getTemperature();
void registerSensor(AbstractTemperatureSensor *sensor);
void registerComponent(ThermalComponentIF *component,
ThermalComponentIF::Priority priority);
ThermalComponentIF *findComponent(object_id_t objectId);
void initialize(PowerSwitchIF* powerSwitch);
void setHeating(bool on);
virtual void setOutputInvalid();
protected:
enum Informee {
ALL, SAFE, NONE
};
struct ComponentData {
ThermalComponentIF *component;
ThermalComponentIF::Priority priority;
ThermalComponentIF::HeaterRequest request;
};
Strategy oldStrategy;
float survivalTargetTemp;
float targetTemp;
bool heating;
Parameters parameters;
gp_float_t moduleTemperature;
RedundantHeater *heater;
gp_int8_t currentState;
gp_int8_t targetState;
std::list<AbstractTemperatureSensor *> sensors;
std::list<ComponentData> components;
void calculateTemperature();
ThermalComponentIF::HeaterRequest letComponentsPerformAndDeciceIfWeNeedToHeat(bool safeOnly);
void informComponentsAboutHeaterState(bool heaterIsOn,
Informee whomToInform);
bool calculateModuleHeaterRequestAndSetModuleStatus(Strategy strategy);
void updateTargetTemperatures(ThermalComponentIF *component, bool isSafe);
};
#endif /* THERMALMODULE_H_ */

View File

@ -1,68 +1,68 @@
#include "../thermal/ThermalMonitor.h"
#include "../thermal/ThermalComponentIF.h"
#include "../monitoring/MonitoringIF.h"
ThermalMonitor::~ThermalMonitor() {
}
void ThermalMonitor::sendTransitionEvent(float currentValue,
ReturnValue_t state) {
switch (state) {
case MonitoringIF::BELOW_LOW_LIMIT:
EventManagerIF::triggerEvent(reportingId,
ThermalComponentIF::COMPONENT_TEMP_OOL_LOW, state);
break;
case MonitoringIF::ABOVE_HIGH_LIMIT:
EventManagerIF::triggerEvent(reportingId,
ThermalComponentIF::COMPONENT_TEMP_OOL_HIGH, state);
break;
case ThermalComponentIF::BELOW_OPERATIONAL_LIMIT:
EventManagerIF::triggerEvent(reportingId,
ThermalComponentIF::COMPONENT_TEMP_LOW, state);
break;
case ThermalComponentIF::ABOVE_OPERATIONAL_LIMIT:
EventManagerIF::triggerEvent(reportingId,
ThermalComponentIF::COMPONENT_TEMP_HIGH, state);
break;
default:
break;
}
}
bool ThermalMonitor::isAboveHighLimit() {
if (oldState == ThermalComponentIF::ABOVE_OPERATIONAL_LIMIT) {
return true;
} else {
return false;
}
}
ReturnValue_t ThermalMonitor::translateState(ThermalComponentIF::State state, float sample, float lowerLimit,
float upperLimit, bool componentIsOperational) {
if (ThermalComponentIF::isIgnoredState(state)) {
setToUnchecked();
return MonitoringIF::UNCHECKED;
}
switch (state) {
case ThermalComponentIF::OUT_OF_RANGE_LOW:
return monitorStateIs(MonitoringIF::BELOW_LOW_LIMIT, sample, lowerLimit);
case ThermalComponentIF::NON_OPERATIONAL_LOW:
if (componentIsOperational) {
return monitorStateIs(ThermalComponentIF::BELOW_OPERATIONAL_LIMIT, sample, lowerLimit);
} else {
return monitorStateIs(HasReturnvaluesIF::RETURN_OK, sample, 0.0);
}
case ThermalComponentIF::OPERATIONAL:
return monitorStateIs(HasReturnvaluesIF::RETURN_OK, sample, 0.0);
case ThermalComponentIF::NON_OPERATIONAL_HIGH:
if (componentIsOperational) {
return monitorStateIs(ThermalComponentIF::ABOVE_OPERATIONAL_LIMIT, sample, upperLimit);
} else {
return monitorStateIs(HasReturnvaluesIF::RETURN_OK, sample, 0.0);
}
case ThermalComponentIF::OUT_OF_RANGE_HIGH:
return monitorStateIs(MonitoringIF::ABOVE_HIGH_LIMIT, sample, upperLimit);
default:
//Never reached, all states covered.
return HasReturnvaluesIF::RETURN_FAILED;
}
}
#include "../thermal/ThermalMonitor.h"
#include "../thermal/ThermalComponentIF.h"
#include "../monitoring/MonitoringIF.h"
ThermalMonitor::~ThermalMonitor() {
}
void ThermalMonitor::sendTransitionEvent(float currentValue,
ReturnValue_t state) {
switch (state) {
case MonitoringIF::BELOW_LOW_LIMIT:
EventManagerIF::triggerEvent(reportingId,
ThermalComponentIF::COMPONENT_TEMP_OOL_LOW, state);
break;
case MonitoringIF::ABOVE_HIGH_LIMIT:
EventManagerIF::triggerEvent(reportingId,
ThermalComponentIF::COMPONENT_TEMP_OOL_HIGH, state);
break;
case ThermalComponentIF::BELOW_OPERATIONAL_LIMIT:
EventManagerIF::triggerEvent(reportingId,
ThermalComponentIF::COMPONENT_TEMP_LOW, state);
break;
case ThermalComponentIF::ABOVE_OPERATIONAL_LIMIT:
EventManagerIF::triggerEvent(reportingId,
ThermalComponentIF::COMPONENT_TEMP_HIGH, state);
break;
default:
break;
}
}
bool ThermalMonitor::isAboveHighLimit() {
if (oldState == ThermalComponentIF::ABOVE_OPERATIONAL_LIMIT) {
return true;
} else {
return false;
}
}
ReturnValue_t ThermalMonitor::translateState(ThermalComponentIF::State state, float sample, float lowerLimit,
float upperLimit, bool componentIsOperational) {
if (ThermalComponentIF::isIgnoredState(state)) {
setToUnchecked();
return MonitoringIF::UNCHECKED;
}
switch (state) {
case ThermalComponentIF::OUT_OF_RANGE_LOW:
return monitorStateIs(MonitoringIF::BELOW_LOW_LIMIT, sample, lowerLimit);
case ThermalComponentIF::NON_OPERATIONAL_LOW:
if (componentIsOperational) {
return monitorStateIs(ThermalComponentIF::BELOW_OPERATIONAL_LIMIT, sample, lowerLimit);
} else {
return monitorStateIs(HasReturnvaluesIF::RETURN_OK, sample, 0.0);
}
case ThermalComponentIF::OPERATIONAL:
return monitorStateIs(HasReturnvaluesIF::RETURN_OK, sample, 0.0);
case ThermalComponentIF::NON_OPERATIONAL_HIGH:
if (componentIsOperational) {
return monitorStateIs(ThermalComponentIF::ABOVE_OPERATIONAL_LIMIT, sample, upperLimit);
} else {
return monitorStateIs(HasReturnvaluesIF::RETURN_OK, sample, 0.0);
}
case ThermalComponentIF::OUT_OF_RANGE_HIGH:
return monitorStateIs(MonitoringIF::ABOVE_HIGH_LIMIT, sample, upperLimit);
default:
//Never reached, all states covered.
return HasReturnvaluesIF::RETURN_FAILED;
}
}

View File

@ -1,26 +1,26 @@
#ifndef FRAMEWORK_THERMAL_THERMALMONITOR_H_
#define FRAMEWORK_THERMAL_THERMALMONITOR_H_
#include "../monitoring/MonitorReporter.h"
#include "../thermal/ThermalComponentIF.h"
/**
* What does it do. How to use it.
*/
class ThermalMonitor: public MonitorReporter<float> {
public:
template<typename ... Args>
ThermalMonitor(Args ... args) :
MonitorReporter<float>(std::forward<Args>(args)...) {
}
~ThermalMonitor();
ReturnValue_t translateState(ThermalComponentIF::State state, float sample,
float lowerLimit, float upperLimit, bool componentIsOperational = true);
bool isAboveHighLimit();
protected:
virtual void sendTransitionEvent(float currentValue, ReturnValue_t state);
};
#endif /* FRAMEWORK_THERMAL_THERMALMONITOR_H_ */
#ifndef FRAMEWORK_THERMAL_THERMALMONITOR_H_
#define FRAMEWORK_THERMAL_THERMALMONITOR_H_
#include "../monitoring/MonitorReporter.h"
#include "../thermal/ThermalComponentIF.h"
/**
* What does it do. How to use it.
*/
class ThermalMonitor: public MonitorReporter<float> {
public:
template<typename ... Args>
ThermalMonitor(Args ... args) :
MonitorReporter<float>(std::forward<Args>(args)...) {
}
~ThermalMonitor();
ReturnValue_t translateState(ThermalComponentIF::State state, float sample,
float lowerLimit, float upperLimit, bool componentIsOperational = true);
bool isAboveHighLimit();
protected:
virtual void sendTransitionEvent(float currentValue, ReturnValue_t state);
};
#endif /* FRAMEWORK_THERMAL_THERMALMONITOR_H_ */