continued with hk data pool
added deadline missed check for fixed timeslot task, improved doc for both periodic task and fixed timeslot task
This commit is contained in:
@ -1,6 +1,7 @@
|
||||
#include <framework/serviceinterface/ServiceInterfaceStream.h>
|
||||
#include "FixedTimeslotTask.h"
|
||||
|
||||
#include <framework/serviceinterface/ServiceInterfaceStream.h>
|
||||
|
||||
uint32_t FixedTimeslotTask::deadlineMissedCount = 0;
|
||||
const size_t PeriodicTaskIF::MINIMUM_STACK_SIZE = configMINIMAL_STACK_SIZE;
|
||||
|
||||
@ -18,16 +19,19 @@ FixedTimeslotTask::~FixedTimeslotTask() {
|
||||
|
||||
void FixedTimeslotTask::taskEntryPoint(void* argument) {
|
||||
|
||||
//The argument is re-interpreted as FixedTimeslotTask. The Task object is global, so it is found from any place.
|
||||
// The argument is re-interpreted as FixedTimeslotTask. The Task object is
|
||||
// global, so it is found from any place.
|
||||
FixedTimeslotTask *originalTask(reinterpret_cast<FixedTimeslotTask*>(argument));
|
||||
// Task should not start until explicitly requested
|
||||
// in FreeRTOS, tasks start as soon as they are created if the scheduler is running
|
||||
// but not if the scheduler is not running.
|
||||
// to be able to accommodate both cases we check a member which is set in #startTask()
|
||||
// if it is not set and we get here, the scheduler was started before #startTask() was called and we need to suspend
|
||||
// if it is set, the scheduler was not running before #startTask() was called and we can continue
|
||||
/* Task should not start until explicitly requested,
|
||||
* but in FreeRTOS, tasks start as soon as they are created if the scheduler
|
||||
* is running but not if the scheduler is not running.
|
||||
* To be able to accommodate both cases we check a member which is set in
|
||||
* #startTask(). If it is not set and we get here, the scheduler was started
|
||||
* before #startTask() was called and we need to suspend if it is set,
|
||||
* the scheduler was not running before #startTask() was called and we
|
||||
* can continue */
|
||||
|
||||
if (!originalTask->started) {
|
||||
if (not originalTask->started) {
|
||||
vTaskSuspend(NULL);
|
||||
}
|
||||
|
||||
@ -81,7 +85,8 @@ ReturnValue_t FixedTimeslotTask::checkSequence() const {
|
||||
}
|
||||
|
||||
void FixedTimeslotTask::taskFunctionality() {
|
||||
// A local iterator for the Polling Sequence Table is created to find the start time for the first entry.
|
||||
// A local iterator for the Polling Sequence Table is created to find the
|
||||
// start time for the first entry.
|
||||
SlotListIter slotListIter = pst.current;
|
||||
|
||||
//The start time for the first entry is read.
|
||||
@ -101,17 +106,30 @@ void FixedTimeslotTask::taskFunctionality() {
|
||||
/* Enter the loop that defines the task behavior. */
|
||||
for (;;) {
|
||||
//The component for this slot is executed and the next one is chosen.
|
||||
this->pst.executeAndAdvance();
|
||||
if (pst.slotFollowsImmediately()) {
|
||||
//Do nothing
|
||||
} else {
|
||||
// we need to wait before executing the current slot
|
||||
//this gives us the time to wait:
|
||||
intervalMs = this->pst.getIntervalToPreviousSlotMs();
|
||||
interval = pdMS_TO_TICKS(intervalMs);
|
||||
vTaskDelayUntil(&xLastWakeTime, interval);
|
||||
//TODO deadline missed check
|
||||
}
|
||||
this->pst.executeAndAdvance();
|
||||
if (not pst.slotFollowsImmediately()) {
|
||||
/* If all operations are finished and the difference of the
|
||||
* current time minus the last wake time is larger than the
|
||||
* expected wait period, a deadline was missed. */
|
||||
if(xTaskGetTickCount() - xLastWakeTime >=
|
||||
pdMS_TO_TICKS(this->pst.getIntervalToPreviousSlotMs())) {
|
||||
#ifdef DEBUG
|
||||
sif::warning << "PeriodicTask: " << pcTaskGetName(NULL) <<
|
||||
" missed deadline!\n" << std::flush;
|
||||
#endif
|
||||
if(deadlineMissedFunc != nullptr) {
|
||||
this->deadlineMissedFunc();
|
||||
}
|
||||
// Continue immediately, no need to wait.
|
||||
break;
|
||||
}
|
||||
|
||||
// we need to wait before executing the current slot
|
||||
//this gives us the time to wait:
|
||||
intervalMs = this->pst.getIntervalToPreviousSlotMs();
|
||||
interval = pdMS_TO_TICKS(intervalMs);
|
||||
vTaskDelayUntil(&xLastWakeTime, interval);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,12 +1,12 @@
|
||||
#ifndef POLLINGTASK_H_
|
||||
#define POLLINGTASK_H_
|
||||
#ifndef FRAMEWORK_OSAL_FREERTOS_FIXEDTIMESLOTTASK_H_
|
||||
#define FRAMEWORK_OSAL_FREERTOS_FIXEDTIMESLOTTASK_H_
|
||||
|
||||
#include <framework/devicehandlers/FixedSlotSequence.h>
|
||||
#include <framework/tasks/FixedTimeslotTaskIF.h>
|
||||
#include <framework/tasks/Typedef.h>
|
||||
|
||||
#include <FreeRTOS.h>
|
||||
#include "task.h"
|
||||
#include <freertos/FreeRTOS.h>
|
||||
#include <freertos/task.h>
|
||||
|
||||
class FixedTimeslotTask: public FixedTimeslotTaskIF {
|
||||
public:
|
||||
@ -29,16 +29,18 @@ public:
|
||||
|
||||
/**
|
||||
* @brief The destructor of the class.
|
||||
*
|
||||
* @details The destructor frees all heap memory that was allocated on thread initialization for the PST and
|
||||
* the device handlers. This is done by calling the PST's destructor.
|
||||
* @details
|
||||
* The destructor frees all heap memory that was allocated on thread
|
||||
* initialization for the PST and the device handlers. This is done by
|
||||
* calling the PST's destructor.
|
||||
*/
|
||||
virtual ~FixedTimeslotTask(void);
|
||||
|
||||
ReturnValue_t startTask(void);
|
||||
/**
|
||||
* This static function can be used as #deadlineMissedFunc.
|
||||
* It counts missedDeadlines and prints the number of missed deadlines every 10th time.
|
||||
* It counts missedDeadlines and prints the number of missed deadlines
|
||||
* every 10th time.
|
||||
*/
|
||||
static void missedDeadlineCounter();
|
||||
/**
|
||||
@ -62,30 +64,29 @@ protected:
|
||||
FixedSlotSequence pst;
|
||||
|
||||
/**
|
||||
* @brief This attribute holds a function pointer that is executed when a deadline was missed.
|
||||
*
|
||||
* @details Another function may be announced to determine the actions to perform when a deadline was missed.
|
||||
* Currently, only one function for missing any deadline is allowed.
|
||||
* If not used, it shall be declared NULL.
|
||||
* @brief This attribute holds a function pointer that is executed when
|
||||
* a deadline was missed.
|
||||
* @details
|
||||
* Another function may be announced to determine the actions to perform
|
||||
* when a deadline was missed. Currently, only one function for missing
|
||||
* any deadline is allowed. If not used, it shall be declared NULL.
|
||||
*/
|
||||
void (*deadlineMissedFunc)(void);
|
||||
/**
|
||||
* @brief This is the entry point in a new polling thread.
|
||||
*
|
||||
* @details This method, that is the generalOSAL::checkAndRestartPeriod( this->periodId, interval ); entry point in the new thread, is here set to generate
|
||||
* and link the Polling Sequence Table to the thread object and start taskFunctionality()
|
||||
* on success. If operation of the task is ended for some reason,
|
||||
* the destructor is called to free allocated memory.
|
||||
* @brief This is the entry point for a new task.
|
||||
* @details
|
||||
* This method starts the task by calling taskFunctionality(), as soon as
|
||||
* all requirements (task scheduler has started and startTask()
|
||||
* has been called) are met.
|
||||
*/
|
||||
static void taskEntryPoint(void* argument);
|
||||
|
||||
/**
|
||||
* @brief This function holds the main functionality of the thread.
|
||||
*
|
||||
*
|
||||
* @details Holding the main functionality of the task, this method is most important.
|
||||
* It links the functionalities provided by FixedSlotSequence with the OS's System Calls
|
||||
* to keep the timing of the periods.
|
||||
* @details
|
||||
* Core function holding the main functionality of the task
|
||||
* It links the functionalities provided by FixedSlotSequence with the
|
||||
* OS's System Calls to keep the timing of the periods.
|
||||
*/
|
||||
void taskFunctionality(void);
|
||||
};
|
||||
|
@ -12,8 +12,8 @@ PeriodicTask::PeriodicTask(const char *name, TaskPriority setPriority,
|
||||
BaseType_t status = xTaskCreate(taskEntryPoint, name,
|
||||
setStack, this, setPriority, &handle);
|
||||
if(status != pdPASS){
|
||||
sif::debug << "PeriodicTask Insufficient heap memory remaining. Status: "
|
||||
<< status << std::endl;
|
||||
sif::debug << "PeriodicTask Insufficient heap memory remaining. "
|
||||
"Status: " << status << std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
@ -23,14 +23,17 @@ PeriodicTask::~PeriodicTask(void) {
|
||||
}
|
||||
|
||||
void PeriodicTask::taskEntryPoint(void* argument) {
|
||||
//The argument is re-interpreted as PeriodicTask. The Task object is global, so it is found from any place.
|
||||
// The argument is re-interpreted as PeriodicTask. The Task object is
|
||||
// global, so it is found from any place.
|
||||
PeriodicTask *originalTask(reinterpret_cast<PeriodicTask*>(argument));
|
||||
// Task should not start until explicitly requested
|
||||
// in FreeRTOS, tasks start as soon as they are created if the scheduler is running
|
||||
// but not if the scheduler is not running.
|
||||
// to be able to accommodate both cases we check a member which is set in #startTask()
|
||||
// if it is not set and we get here, the scheduler was started before #startTask() was called and we need to suspend
|
||||
// if it is set, the scheduler was not running before #startTask() was called and we can continue
|
||||
/* Task should not start until explicitly requested,
|
||||
* but in FreeRTOS, tasks start as soon as they are created if the scheduler
|
||||
* is running but not if the scheduler is not running.
|
||||
* To be able to accommodate both cases we check a member which is set in
|
||||
* #startTask(). If it is not set and we get here, the scheduler was started
|
||||
* before #startTask() was called and we need to suspend if it is set,
|
||||
* the scheduler was not running before #startTask() was called and we
|
||||
* can continue */
|
||||
|
||||
if (not originalTask->started) {
|
||||
vTaskSuspend(NULL);
|
||||
@ -61,9 +64,9 @@ void PeriodicTask::taskFunctionality() {
|
||||
TickType_t xLastWakeTime;
|
||||
const TickType_t xPeriod = pdMS_TO_TICKS(this->period * 1000.);
|
||||
/* The xLastWakeTime variable needs to be initialized with the current tick
|
||||
count. Note that this is the only time the variable is written to explicitly.
|
||||
After this assignment, xLastWakeTime is updated automatically internally within
|
||||
vTaskDelayUntil(). */
|
||||
count. Note that this is the only time the variable is written to
|
||||
explicitly. After this assignment, xLastWakeTime is updated automatically
|
||||
internally within vTaskDelayUntil(). */
|
||||
xLastWakeTime = xTaskGetTickCount();
|
||||
/* Enter the loop that defines the task behavior. */
|
||||
for (;;) {
|
||||
@ -76,12 +79,15 @@ void PeriodicTask::taskFunctionality() {
|
||||
* current time minus the last wake time is larger than the
|
||||
* wait period, a deadline was missed. */
|
||||
if(xTaskGetTickCount() - xLastWakeTime >= xPeriod) {
|
||||
#ifdef DEBUG
|
||||
sif::warning << "PeriodicTask: " << pcTaskGetName(NULL) <<
|
||||
" missed deadline!\n" << std::flush;
|
||||
#endif
|
||||
if(deadlineMissedFunc != nullptr) {
|
||||
this->deadlineMissedFunc();
|
||||
}
|
||||
}
|
||||
|
||||
vTaskDelayUntil(&xLastWakeTime, xPeriod);
|
||||
|
||||
}
|
||||
|
@ -5,10 +5,8 @@
|
||||
#include <framework/tasks/PeriodicTaskIF.h>
|
||||
#include <framework/tasks/Typedef.h>
|
||||
|
||||
extern "C" {
|
||||
#include <freertos/FreeRTOS.h>
|
||||
#include <freertos/task.h>
|
||||
}
|
||||
|
||||
#include <vector>
|
||||
|
||||
@ -22,7 +20,8 @@ class ExecutableObjectIF;
|
||||
class PeriodicTask: public PeriodicTaskIF {
|
||||
public:
|
||||
/**
|
||||
* @brief Standard constructor of the class.
|
||||
* Keep in Mind that you need to call before this vTaskStartScheduler()!
|
||||
* A lot of task parameters are set in "FreeRTOSConfig.h".
|
||||
* @details
|
||||
* The class is initialized without allocated objects.
|
||||
* These need to be added with #addComponent.
|
||||
@ -38,8 +37,9 @@ public:
|
||||
* The function pointer to the deadline missed function that shall
|
||||
* be assigned.
|
||||
*/
|
||||
PeriodicTask(const char *name, TaskPriority setPriority, TaskStackSize setStack,
|
||||
TaskPeriod setPeriod,void (*setDeadlineMissedFunc)());
|
||||
PeriodicTask(const char *name, TaskPriority setPriority,
|
||||
TaskStackSize setStack, TaskPeriod setPeriod,
|
||||
void (*setDeadlineMissedFunc)());
|
||||
/**
|
||||
* @brief Currently, the executed object's lifetime is not coupled with
|
||||
* the task object's lifetime, so the destructor is empty.
|
||||
@ -58,7 +58,9 @@ public:
|
||||
* Adds an object to the list of objects to be executed.
|
||||
* The objects are executed in the order added.
|
||||
* @param object Id of the object to add.
|
||||
* @return RETURN_OK on success, RETURN_FAILED if the object could not be added.
|
||||
* @return
|
||||
* -@c RETURN_OK on success
|
||||
* -@c RETURN_FAILED if the object could not be added.
|
||||
*/
|
||||
ReturnValue_t addComponent(object_id_t object);
|
||||
|
||||
@ -69,40 +71,47 @@ protected:
|
||||
bool started;
|
||||
TaskHandle_t handle;
|
||||
|
||||
typedef std::vector<ExecutableObjectIF*> ObjectList; //!< Typedef for the List of objects.
|
||||
//! Typedef for the List of objects.
|
||||
typedef std::vector<ExecutableObjectIF*> ObjectList;
|
||||
/**
|
||||
* @brief This attribute holds a list of objects to be executed.
|
||||
*/
|
||||
ObjectList objectList;
|
||||
/**
|
||||
* @brief The period of the task.
|
||||
* @details The period determines the frequency of the task's execution. It is expressed in clock ticks.
|
||||
* @details
|
||||
* The period determines the frequency of the task's execution.
|
||||
* It is expressed in clock ticks.
|
||||
*/
|
||||
TaskPeriod period;
|
||||
/**
|
||||
* @brief The pointer to the deadline-missed function.
|
||||
* @details This pointer stores the function that is executed if the task's deadline is missed.
|
||||
* So, each may react individually on a timing failure. The pointer may be NULL,
|
||||
* then nothing happens on missing the deadline. The deadline is equal to the next execution
|
||||
* of the periodic task.
|
||||
* @details
|
||||
* This pointer stores the function that is executed if the task's deadline
|
||||
* is missed so each may react individually on a timing failure.
|
||||
* The pointer may be NULL, then nothing happens on missing the deadline.
|
||||
* The deadline is equal to the next execution of the periodic task.
|
||||
*/
|
||||
void (*deadlineMissedFunc)(void);
|
||||
/**
|
||||
* @brief This is the function executed in the new task's context.
|
||||
* @details It converts the argument back to the thread object type and copies the class instance
|
||||
* to the task context. The taskFunctionality method is called afterwards.
|
||||
* @details
|
||||
* It converts the argument back to the thread object type and copies the
|
||||
* class instance to the task context. The taskFunctionality method is
|
||||
* called afterwards.
|
||||
* @param A pointer to the task object itself is passed as argument.
|
||||
*/
|
||||
|
||||
static void taskEntryPoint(void* argument);
|
||||
/**
|
||||
* @brief The function containing the actual functionality of the task.
|
||||
* @details The method sets and starts
|
||||
* the task's period, then enters a loop that is repeated as long as the isRunning
|
||||
* attribute is true. Within the loop, all performOperation methods of the added
|
||||
* objects are called. Afterwards the checkAndRestartPeriod system call blocks the task
|
||||
* until the next period.
|
||||
* On missing the deadline, the deadlineMissedFunction is executed.
|
||||
* @details
|
||||
* The method sets and starts the task's period, then enters a loop that is
|
||||
* repeated as long as the isRunning attribute is true. Within the loop,
|
||||
* all performOperation methods of the added objects are called.
|
||||
* Afterwards the checkAndRestartPeriod system call blocks the task until
|
||||
* the next period.
|
||||
* On missing the deadline, the deadlineMissedFunction is executed.
|
||||
*/
|
||||
void taskFunctionality(void);
|
||||
};
|
||||
|
Reference in New Issue
Block a user