1
0
forked from fsfw/fsfw

timeslot update for FreeRTOS

This commit is contained in:
2020-08-27 16:05:31 +02:00
parent 9465c8f2b2
commit 66cf2d3559
7 changed files with 647 additions and 619 deletions

View File

@ -1,20 +0,0 @@
/**
* @file PollingSlot.cpp
* @brief This file defines the PollingSlot class.
* @date 19.12.2012
* @author baetz
*/
#include "FixedSequenceSlot.h"
#include "../objectmanager/SystemObjectIF.h"
#include <cstddef>
FixedSequenceSlot::FixedSequenceSlot(object_id_t handlerId, uint32_t setTime,
int8_t setSequenceId, PeriodicTaskIF* executingTask) :
handler(NULL), pollingTimeMs(setTime), opcode(setSequenceId) {
handler = objectManager->get<ExecutableObjectIF>(handlerId);
handler->setTaskIF(executingTask);
}
FixedSequenceSlot::~FixedSequenceSlot() {}

View File

@ -1,60 +0,0 @@
/**
* @file FixedSequenceSlot.h
* @brief This file defines the PollingSlot class.
* @date 19.12.2012
* @author baetz
*/
#ifndef FIXEDSEQUENCESLOT_H_
#define FIXEDSEQUENCESLOT_H_
#include "../objectmanager/ObjectManagerIF.h"
#include "../tasks/ExecutableObjectIF.h"
class PeriodicTaskIF;
/**
* @brief This class is the representation of a single polling sequence table entry.
*
* @details The PollingSlot class is the representation of a single polling
* sequence table entry.
*/
class FixedSequenceSlot {
public:
FixedSequenceSlot( object_id_t handlerId, uint32_t setTimeMs,
int8_t setSequenceId, PeriodicTaskIF* executingTask );
virtual ~FixedSequenceSlot();
/**
* @brief Handler identifies which device handler object is executed in this slot.
*/
ExecutableObjectIF* handler;
/**
* @brief This attribute defines when a device handler object is executed.
*
* @details The pollingTime attribute identifies the time the handler is executed in ms.
* It must be smaller than the period length of the polling sequence.
*/
uint32_t pollingTimeMs;
/**
* @brief This value defines the type of device communication.
*
* @details The state of this value decides what communication routine is
* called in the PST executable or the device handler object.
*/
uint8_t opcode;
/**
* @brief Operator overload for the comparison operator to
* allow sorting by polling time.
* @param fixedSequenceSlot
* @return
*/
bool operator <(const FixedSequenceSlot & fixedSequenceSlot) const {
return pollingTimeMs < fixedSequenceSlot.pollingTimeMs;
}
};
#endif /* FIXEDSEQUENCESLOT_H_ */

View File

@ -1,123 +0,0 @@
#include "FixedSlotSequence.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
FixedSlotSequence::FixedSlotSequence(uint32_t setLengthMs) :
lengthMs(setLengthMs) {
current = slotList.begin();
}
FixedSlotSequence::~FixedSlotSequence() {
// Call the destructor on each list entry.
slotList.clear();
}
void FixedSlotSequence::executeAndAdvance() {
current->handler->performOperation(current->opcode);
// if (returnValue != RETURN_OK) {
// this->sendErrorMessage( returnValue );
// }
//Increment the polling Sequence iterator
this->current++;
//Set it to the beginning, if the list's end is reached.
if (this->current == this->slotList.end()) {
this->current = this->slotList.begin();
}
}
uint32_t FixedSlotSequence::getIntervalToNextSlotMs() {
uint32_t oldTime;
SlotListIter slotListIter = current;
// Get the pollingTimeMs of the current slot object.
oldTime = slotListIter->pollingTimeMs;
// Advance to the next object.
slotListIter++;
// Find the next interval which is not 0.
while (slotListIter != slotList.end()) {
if (oldTime != slotListIter->pollingTimeMs) {
return slotListIter->pollingTimeMs - oldTime;
} else {
slotListIter++;
}
}
// If the list end is reached (this is definitely an interval != 0),
// the interval is calculated by subtracting the remaining time of the PST
// and adding the start time of the first handler in the list.
slotListIter = slotList.begin();
return lengthMs - oldTime + slotListIter->pollingTimeMs;
}
uint32_t FixedSlotSequence::getIntervalToPreviousSlotMs() {
uint32_t currentTime;
SlotListIter slotListIter = current;
// Get the pollingTimeMs of the current slot object.
currentTime = slotListIter->pollingTimeMs;
//if it is the first slot, calculate difference to last slot
if (slotListIter == slotList.begin()){
return lengthMs - (--slotList.end())->pollingTimeMs + currentTime;
}
// get previous slot
slotListIter--;
return currentTime - slotListIter->pollingTimeMs;
}
bool FixedSlotSequence::slotFollowsImmediately() {
uint32_t currentTime = current->pollingTimeMs;
SlotListIter fixedSequenceIter = this->current;
// Get the pollingTimeMs of the current slot object.
if (fixedSequenceIter == slotList.begin())
return false;
fixedSequenceIter--;
if (fixedSequenceIter->pollingTimeMs == currentTime) {
return true;
} else {
return false;
}
}
uint32_t FixedSlotSequence::getLengthMs() const {
return this->lengthMs;
}
ReturnValue_t FixedSlotSequence::checkSequence() const {
if(slotList.empty()) {
sif::error << "Fixed Slot Sequence: Slot list is empty!" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
auto slotIt = slotList.begin();
uint32_t count = 0;
uint32_t time = 0;
while (slotIt != slotList.end()) {
if (slotIt->handler == nullptr) {
sif::error << "FixedSlotSequene::initialize: ObjectId does not exist!"
<< std::endl;
count++;
} else if (slotIt->pollingTimeMs < time) {
sif::error << "FixedSlotSequence::initialize: Time: "
<< slotIt->pollingTimeMs
<< " is smaller than previous with " << time << std::endl;
count++;
} else {
// All ok, print slot.
//info << "Current slot polling time: " << std::endl;
//info << std::dec << slotIt->pollingTimeMs << std::endl;
}
time = slotIt->pollingTimeMs;
slotIt++;
}
//info << "Number of elements in slot list: "
// << slotList.size() << std::endl;
if (count > 0) {
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
void FixedSlotSequence::addSlot(object_id_t componentId, uint32_t slotTimeMs,
int8_t executionStep, PeriodicTaskIF* executingTask) {
this->slotList.insert(FixedSequenceSlot(componentId, slotTimeMs, executionStep,
executingTask));
this->current = slotList.begin();
}

View File

@ -1,152 +0,0 @@
#ifndef FRAMEWORK_DEVICEHANDLERS_FIXEDSLOTSEQUENCE_H_
#define FRAMEWORK_DEVICEHANDLERS_FIXEDSLOTSEQUENCE_H_
#include "FixedSequenceSlot.h"
#include "../objectmanager/SystemObject.h"
#include <set>
/**
* @brief This class is the representation of a Polling Sequence Table in software.
*
* @details
* The FixedSlotSequence object maintains the dynamic execution of
* device handler objects.
*
* The main idea is to create a list of device handlers, to announce all
* handlers to thepolling sequence and to maintain a list of
* polling slot objects. This slot list represents the Polling Sequence Table
* in software.
*
* Each polling slot contains information to indicate when and
* which device handler shall be executed within a given polling period.
* The sequence is then executed by iterating through this slot list.
* Handlers are invoking by calling a certain function stored in the handler list.
*/
class FixedSlotSequence {
public:
using SlotList = std::multiset<FixedSequenceSlot>;
using SlotListIter = std::multiset<FixedSequenceSlot>::iterator;
/**
* @brief The constructor of the FixedSlotSequence object.
*
* @details The constructor takes two arguments, the period length and the init function.
*
* @param setLength The period length, expressed in ms.
*/
FixedSlotSequence(uint32_t setLengthMs);
/**
* @brief The destructor of the FixedSlotSequence object.
*
* @details The destructor frees all allocated memory by iterating through the slotList
* and deleting all allocated resources.
*/
virtual ~FixedSlotSequence();
/**
* @brief This is a method to add an PollingSlot object to slotList.
*
* @details Here, a polling slot object is added to the slot list. It is appended
* to the end of the list. The list is currently NOT reordered.
* Afterwards, the iterator current is set to the beginning of the list.
* @param Object ID of the object to add
* @param setTime Value between (0 to 1) * slotLengthMs, when a FixedTimeslotTask
* will be called inside the slot period.
* @param setSequenceId ID which can be used to distinguish
* different task operations
* @param
* @param
*/
void addSlot(object_id_t handlerId, uint32_t setTime, int8_t setSequenceId,
PeriodicTaskIF* executingTask);
/**
* Checks if the current slot shall be executed immediately after the one before.
* This allows to distinguish between grouped and not grouped handlers.
* @return - @c true if the slot has the same polling time as the previous
* - @c false else
*/
bool slotFollowsImmediately();
/**
* @brief This method returns the time until the next software
* component is invoked.
*
* @details
* This method is vitally important for the operation of the PST.
* By fetching the polling time of the current slot and that of the
* next one (or the first one, if the list end is reached)
* it calculates and returns the interval in milliseconds within
* which the handler execution shall take place.
* If the next slot has the same time as the current one, it is ignored
* until a slot with different time or the end of the PST is found.
*/
uint32_t getIntervalToNextSlotMs();
/**
* @brief This method returns the time difference between the current
* slot and the previous slot
*
* @details
* This method is vitally important for the operation of the PST.
* By fetching the polling time of the current slot and that of the previous
* one (or the last one, if the slot is the first one) it calculates and
* returns the interval in milliseconds that the handler execution shall
* be delayed.
*/
uint32_t getIntervalToPreviousSlotMs();
/**
* @brief This method returns the length of this FixedSlotSequence instance.
*/
uint32_t getLengthMs() const;
/**
* @brief The method to execute the device handler entered in the current
* PollingSlot object.
*
* @details
* Within this method the device handler object to be executed is chosen by
* looking up the handler address of the current slot in the handlerMap.
* Either the device handler's talkToInterface or its listenToInterface
* method is invoked, depending on the isTalking flag of the polling slot.
* After execution the iterator current is increased or, by reaching the
* end of slotList, reset to the beginning.
*/
void executeAndAdvance();
/**
* @brief An iterator that indicates the current polling slot to execute.
*
* @details This is an iterator for slotList and always points to the
* polling slot which is executed next.
*/
SlotListIter current;
/**
* Iterate through slotList and check successful creation.
* Checks if timing is ok (must be ascending) and if all handlers were found.
* @return
*/
ReturnValue_t checkSequence() const;
protected:
/**
* @brief This list contains all PollingSlot objects, defining order and
* execution time of the device handler objects.
*
* @details
* The slot list is a std:list object that contains all created
* PollingSlot instances. They are NOT ordered automatically, so by
* adding entries, the correct order needs to be ensured. By iterating
* through this list the polling sequence is executed. Two entries with
* identical polling times are executed immediately one after another.
*/
SlotList slotList;
uint32_t lengthMs;
};
#endif /* FIXEDSLOTSEQUENCE_H_ */