1
0
forked from fsfw/fsfw

added hal folder

This commit is contained in:
2021-07-13 19:19:25 +02:00
parent 3a9add82fe
commit ca297a7dcd
67 changed files with 6153 additions and 1 deletions

View File

@ -0,0 +1,3 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
GpioCookie.cpp
)

View File

@ -0,0 +1,50 @@
#include "GpioCookie.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
GpioCookie::GpioCookie() {
}
ReturnValue_t GpioCookie::addGpio(gpioId_t gpioId, GpioBase* gpioConfig) {
if (gpioConfig == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GpioCookie::addGpio: gpioConfig is nullpointer" << std::endl;
#else
sif::printWarning("GpioCookie::addGpio: gpioConfig is nullpointer\n");
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
auto gpioMapIter = gpioMap.find(gpioId);
if(gpioMapIter == gpioMap.end()) {
auto statusPair = gpioMap.emplace(gpioId, gpioConfig);
if (statusPair.second == false) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GpioCookie::addGpio: Failed to add GPIO " << gpioId <<
" to GPIO map" << std::endl;
#else
sif::printWarning("GpioCookie::addGpio: Failed to add GPIO %d to GPIO map\n", gpioId);
#endif
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GpioCookie::addGpio: GPIO already exists in GPIO map " << std::endl;
#else
sif::printWarning("GpioCookie::addGpio: GPIO already exists in GPIO map\n");
#endif
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
GpioMap GpioCookie::getGpioMap() const {
return gpioMap;
}
GpioCookie::~GpioCookie() {
for(auto& config: gpioMap) {
delete(config.second);
}
}

View File

@ -0,0 +1,3 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
GyroL3GD20Handler.cpp
)

View File

@ -0,0 +1,262 @@
#include "GyroL3GD20Handler.h"
#include <fsfw/datapool/PoolReadGuard.h>
GyroHandlerL3GD20H::GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication,
CookieIF *comCookie):
DeviceHandlerBase(objectId, deviceCommunication, comCookie),
dataset(this) {
#if FSFW_HAL_L3GD20_GYRO_DEBUG == 1
debugDivider = new PeriodicOperationDivider(5);
#endif
}
GyroHandlerL3GD20H::~GyroHandlerL3GD20H() {}
void GyroHandlerL3GD20H::doStartUp() {
if(internalState == InternalState::NONE) {
internalState = InternalState::CONFIGURE;
}
if(internalState == InternalState::CONFIGURE) {
if(commandExecuted) {
internalState = InternalState::CHECK_REGS;
commandExecuted = false;
}
}
if(internalState == InternalState::CHECK_REGS) {
if(commandExecuted) {
internalState = InternalState::NORMAL;
if(goNormalModeImmediately) {
setMode(MODE_NORMAL);
}
else {
setMode(_MODE_TO_ON);
}
commandExecuted = false;
}
}
}
void GyroHandlerL3GD20H::doShutDown() {
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t GyroHandlerL3GD20H::buildTransitionDeviceCommand(DeviceCommandId_t *id) {
switch(internalState) {
case(InternalState::NONE):
case(InternalState::NORMAL): {
return HasReturnvaluesIF::RETURN_OK;
}
case(InternalState::CONFIGURE): {
*id = L3GD20H::CONFIGURE_CTRL_REGS;
uint8_t command [5];
command[0] = L3GD20H::CTRL_REG_1_VAL;
command[1] = L3GD20H::CTRL_REG_2_VAL;
command[2] = L3GD20H::CTRL_REG_3_VAL;
command[3] = L3GD20H::CTRL_REG_4_VAL;
command[4] = L3GD20H::CTRL_REG_5_VAL;
return buildCommandFromCommand(*id, command, 5);
}
case(InternalState::CHECK_REGS): {
*id = L3GD20H::READ_REGS;
return buildCommandFromCommand(*id, nullptr, 0);
}
default:
#if FSFW_CPP_OSTREAM_ENABLED == 1
/* Might be a configuration error. */
sif::debug << "GyroHandler::buildTransitionDeviceCommand: Unknown internal state!" <<
std::endl;
#else
sif::printDebug("GyroHandler::buildTransitionDeviceCommand: Unknown internal state!\n");
#endif
return HasReturnvaluesIF::RETURN_OK;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroHandlerL3GD20H::buildNormalDeviceCommand(DeviceCommandId_t *id) {
*id = L3GD20H::READ_REGS;
return buildCommandFromCommand(*id, nullptr, 0);
}
ReturnValue_t GyroHandlerL3GD20H::buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) {
switch(deviceCommand) {
case(L3GD20H::READ_REGS): {
commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK | L3GD20H::READ_MASK;
std::memset(commandBuffer + 1, 0, L3GD20H::READ_LEN);
rawPacket = commandBuffer;
rawPacketLen = L3GD20H::READ_LEN + 1;
break;
}
case(L3GD20H::CONFIGURE_CTRL_REGS): {
commandBuffer[0] = L3GD20H::CTRL_REG_1 | L3GD20H::AUTO_INCREMENT_MASK;
if(commandData == nullptr or commandDataLen != 5) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
ctrlReg1Value = commandData[0];
ctrlReg2Value = commandData[1];
ctrlReg3Value = commandData[2];
ctrlReg4Value = commandData[3];
ctrlReg5Value = commandData[4];
bool fsH = ctrlReg4Value & L3GD20H::SET_FS_1;
bool fsL = ctrlReg4Value & L3GD20H::SET_FS_0;
if(not fsH and not fsL) {
sensitivity = L3GD20H::SENSITIVITY_00;
}
else if(not fsH and fsL) {
sensitivity = L3GD20H::SENSITIVITY_01;
}
else {
sensitivity = L3GD20H::SENSITIVITY_11;
}
commandBuffer[1] = ctrlReg1Value;
commandBuffer[2] = ctrlReg2Value;
commandBuffer[3] = ctrlReg3Value;
commandBuffer[4] = ctrlReg4Value;
commandBuffer[5] = ctrlReg5Value;
rawPacket = commandBuffer;
rawPacketLen = 6;
break;
}
case(L3GD20H::READ_CTRL_REGS): {
commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK |
L3GD20H::READ_MASK;
std::memset(commandBuffer + 1, 0, 5);
rawPacket = commandBuffer;
rawPacketLen = 6;
break;
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroHandlerL3GD20H::scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) {
/* For SPI, the ID will always be the one of the last sent command. */
*foundId = this->getPendingCommand();
*foundLen = this->rawPacketLen;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroHandlerL3GD20H::interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
switch(id) {
case(L3GD20H::CONFIGURE_CTRL_REGS): {
commandExecuted = true;
break;
}
case(L3GD20H::READ_CTRL_REGS): {
if(packet[1] == ctrlReg1Value and packet[2] == ctrlReg2Value and
packet[3] == ctrlReg3Value and packet[4] == ctrlReg4Value and
packet[5] == ctrlReg5Value) {
commandExecuted = true;
}
else {
/* Attempt reconfiguration. */
internalState = InternalState::CONFIGURE;
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
break;
}
case(L3GD20H::READ_REGS): {
if(packet[1] != ctrlReg1Value and packet[2] != ctrlReg2Value and
packet[3] != ctrlReg3Value and packet[4] != ctrlReg4Value and
packet[5] != ctrlReg5Value) {
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
else {
if(internalState == InternalState::CHECK_REGS) {
commandExecuted = true;
}
}
statusReg = packet[L3GD20H::STATUS_IDX];
int16_t angVelocXRaw = packet[L3GD20H::OUT_X_H] << 8 | packet[L3GD20H::OUT_X_L];
int16_t angVelocYRaw = packet[L3GD20H::OUT_Y_H] << 8 | packet[L3GD20H::OUT_Y_L];
int16_t angVelocZRaw = packet[L3GD20H::OUT_Z_H] << 8 | packet[L3GD20H::OUT_Z_L];
float angVelocX = angVelocXRaw * sensitivity;
float angVelocY = angVelocYRaw * sensitivity;
float angVelocZ = angVelocZRaw * sensitivity;
int8_t temperaturOffset = (-1) * packet[L3GD20H::TEMPERATURE_IDX];
float temperature = 25.0 + temperaturOffset;
#if FSFW_HAL_L3GD20_GYRO_DEBUG == 1
if(debugDivider->checkAndIncrement()) {
/* Set terminal to utf-8 if there is an issue with micro printout. */
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "GyroHandlerL3GD20H: Angular velocities in degrees per second:" <<
std::endl;
sif::info << "X: " << angVelocX << " \xC2\xB0" << std::endl;
sif::info << "Y: " << angVelocY << " \xC2\xB0" << std::endl;
sif::info << "Z: " << angVelocZ << " \xC2\xB0" << std::endl;
#else
sif::printInfo("GyroHandlerL3GD20H: Angular velocities in degrees per second:\n");
sif::printInfo("X: %f\n", angVelocX);
sif::printInfo("Y: %f\n", angVelocY);
sif::printInfo("Z: %f\n", angVelocZ);
#endif
}
#endif
PoolReadGuard readSet(&dataset);
if(readSet.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
dataset.angVelocX = angVelocX;
dataset.angVelocY = angVelocY;
dataset.angVelocZ = angVelocZ;
dataset.temperature = temperature;
dataset.setValidity(true, true);
}
break;
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return result;
}
uint32_t GyroHandlerL3GD20H::getTransitionDelayMs(Mode_t from, Mode_t to) {
return 10000;
}
void GyroHandlerL3GD20H::setGoNormalModeAtStartup() {
this->goNormalModeImmediately = true;
}
ReturnValue_t GyroHandlerL3GD20H::initializeLocalDataPool(
localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_X,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Y,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Z,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::TEMPERATURE,
new PoolEntry<float>({0.0}));
return HasReturnvaluesIF::RETURN_OK;
}
void GyroHandlerL3GD20H::fillCommandAndReplyMap() {
insertInCommandAndReplyMap(L3GD20H::READ_REGS, 1, &dataset);
insertInCommandAndReplyMap(L3GD20H::CONFIGURE_CTRL_REGS, 1);
insertInCommandAndReplyMap(L3GD20H::READ_CTRL_REGS, 1);
}
void GyroHandlerL3GD20H::modeChanged() {
internalState = InternalState::NONE;
}

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,13 @@
if(FSFW_HAL_ADD_RASPBERRY_PI)
add_subdirectory(rpi)
endif()
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
UnixFileGuard.cpp
utility.cpp
)
add_subdirectory(gpio)
add_subdirectory(spi)
add_subdirectory(i2c)
add_subdirectory(uart)

View File

@ -0,0 +1,33 @@
#include "UnixFileGuard.h"
UnixFileGuard::UnixFileGuard(std::string device, int* fileDescriptor, int flags,
std::string diagnosticPrefix):
fileDescriptor(fileDescriptor) {
if(fileDescriptor == nullptr) {
return;
}
*fileDescriptor = open(device.c_str(), flags);
if (*fileDescriptor < 0) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << diagnosticPrefix <<"Opening device failed with error code " << errno <<
"." << std::endl;
sif::warning << "Error description: " << strerror(errno) << std::endl;
#else
sif::printError("%sOpening device failed with error code %d.\n", diagnosticPrefix);
sif::printWarning("Error description: %s\n", strerror(errno));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
openStatus = OPEN_FILE_FAILED;
}
}
UnixFileGuard::~UnixFileGuard() {
if(fileDescriptor != nullptr) {
close(*fileDescriptor);
}
}
ReturnValue_t UnixFileGuard::getOpenResult() const {
return openStatus;
}

View File

@ -0,0 +1,12 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
LinuxLibgpioIF.cpp
)
# This abstraction layer requires the gpiod library. You can install this library
# with "sudo apt-get install -y libgpiod-dev". If you are cross-compiling, you need
# to install the package before syncing the sysroot to your host computer.
find_library(LIB_GPIO gpiod REQUIRED)
target_link_libraries(${LIB_FSFW_HAL_NAME} PRIVATE
${LIB_GPIO}
)

View File

@ -0,0 +1,305 @@
#include "LinuxLibgpioIF.h"
#include <common/gpio/gpioDefinitions.h>
#include <common/gpio/GpioCookie.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <utility>
#include <unistd.h>
#include <gpiod.h>
LinuxLibgpioIF::LinuxLibgpioIF(object_id_t objectId) : SystemObject(objectId) {
}
LinuxLibgpioIF::~LinuxLibgpioIF() {
for(auto& config: gpioMap) {
delete(config.second);
}
}
ReturnValue_t LinuxLibgpioIF::addGpios(GpioCookie* gpioCookie) {
ReturnValue_t result;
if(gpioCookie == nullptr) {
sif::error << "LinuxLibgpioIF::initialize: Invalid cookie" << std::endl;
return RETURN_FAILED;
}
GpioMap mapToAdd = gpioCookie->getGpioMap();
/* Check whether this ID already exists in the map and remove duplicates */
result = checkForConflicts(mapToAdd);
if (result != RETURN_OK){
return result;
}
result = configureGpios(mapToAdd);
if (result != RETURN_OK) {
return RETURN_FAILED;
}
/* Register new GPIOs in gpioMap */
gpioMap.insert(mapToAdd.begin(), mapToAdd.end());
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::configureGpios(GpioMap& mapToAdd) {
for(auto& gpioConfig: mapToAdd) {
switch(gpioConfig.second->gpioType) {
case(gpio::GpioTypes::NONE): {
return GPIO_INVALID_INSTANCE;
}
case(gpio::GpioTypes::GPIO_REGULAR): {
GpiodRegular* regularGpio = dynamic_cast<GpiodRegular*>(gpioConfig.second);
if(regularGpio == nullptr) {
return GPIO_INVALID_INSTANCE;
}
configureRegularGpio(gpioConfig.first, regularGpio);
break;
}
case(gpio::GpioTypes::CALLBACK): {
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioConfig.second);
if(gpioCallback->callback == nullptr) {
return GPIO_INVALID_INSTANCE;
}
gpioCallback->callback(gpioConfig.first, gpio::GpioOperation::WRITE,
gpioCallback->initValue, gpioCallback->callbackArgs);
}
}
}
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::configureRegularGpio(gpioId_t gpioId, GpiodRegular *regularGpio) {
std::string chipname;
unsigned int lineNum;
struct gpiod_chip *chip;
gpio::Direction direction;
std::string consumer;
struct gpiod_line *lineHandle;
int result = 0;
chipname = regularGpio->chipname;
chip = gpiod_chip_open_by_name(chipname.c_str());
if (!chip) {
sif::warning << "LinuxLibgpioIF::configureRegularGpio: Failed to open chip "
<< chipname << ". Gpio ID: " << gpioId << std::endl;
return RETURN_FAILED;
}
lineNum = regularGpio->lineNum;
lineHandle = gpiod_chip_get_line(chip, lineNum);
if (!lineHandle) {
sif::debug << "LinuxLibgpioIF::configureRegularGpio: Failed to open line " << std::endl;
sif::debug << "GPIO ID: " << gpioId << ", line number: " << lineNum <<
", chipname: " << chipname << std::endl;
sif::debug << "Check if linux GPIO configuration has changed. " << std::endl;
gpiod_chip_close(chip);
return RETURN_FAILED;
}
direction = regularGpio->direction;
consumer = regularGpio->consumer;
/* Configure direction and add a description to the GPIO */
switch (direction) {
case(gpio::OUT): {
result = gpiod_line_request_output(lineHandle, consumer.c_str(),
regularGpio->initValue);
if (result < 0) {
sif::error << "LinuxLibgpioIF::configureRegularGpio: Failed to request line " << lineNum <<
" from GPIO instance with ID: " << gpioId << std::endl;
gpiod_line_release(lineHandle);
return RETURN_FAILED;
}
break;
}
case(gpio::IN): {
result = gpiod_line_request_input(lineHandle, consumer.c_str());
if (result < 0) {
sif::error << "LinuxLibgpioIF::configureGpios: Failed to request line "
<< lineNum << " from GPIO instance with ID: " << gpioId << std::endl;
gpiod_line_release(lineHandle);
return RETURN_FAILED;
}
break;
}
default: {
sif::error << "LinuxLibgpioIF::configureGpios: Invalid direction specified"
<< std::endl;
return GPIO_INVALID_INSTANCE;
}
}
/**
* Write line handle to GPIO configuration instance so it can later be used to set or
* read states of GPIOs.
*/
regularGpio->lineHandle = lineHandle;
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::pullHigh(gpioId_t gpioId) {
gpioMapIter = gpioMap.find(gpioId);
if (gpioMapIter == gpioMap.end()) {
sif::warning << "LinuxLibgpioIF::pullHigh: Unknown GPIO ID " << gpioId << std::endl;
return UNKNOWN_GPIO_ID;
}
if(gpioMapIter->second->gpioType == gpio::GpioTypes::GPIO_REGULAR) {
return driveGpio(gpioId, dynamic_cast<GpiodRegular*>(gpioMapIter->second), 1);
}
else {
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioMapIter->second);
if(gpioCallback->callback == nullptr) {
return GPIO_INVALID_INSTANCE;
}
gpioCallback->callback(gpioMapIter->first, gpio::GpioOperation::WRITE,
1, gpioCallback->callbackArgs);
return RETURN_OK;
}
return GPIO_TYPE_FAILURE;
}
ReturnValue_t LinuxLibgpioIF::pullLow(gpioId_t gpioId) {
gpioMapIter = gpioMap.find(gpioId);
if (gpioMapIter == gpioMap.end()) {
sif::warning << "LinuxLibgpioIF::pullLow: Unknown GPIO ID " << gpioId << std::endl;
return UNKNOWN_GPIO_ID;
}
if(gpioMapIter->second->gpioType == gpio::GpioTypes::GPIO_REGULAR) {
return driveGpio(gpioId, dynamic_cast<GpiodRegular*>(gpioMapIter->second), 0);
}
else {
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioMapIter->second);
if(gpioCallback->callback == nullptr) {
return GPIO_INVALID_INSTANCE;
}
gpioCallback->callback(gpioMapIter->first, gpio::GpioOperation::WRITE,
0, gpioCallback->callbackArgs);
return RETURN_OK;
}
return GPIO_TYPE_FAILURE;
}
ReturnValue_t LinuxLibgpioIF::driveGpio(gpioId_t gpioId,
GpiodRegular* regularGpio, unsigned int logicLevel) {
if(regularGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
int result = gpiod_line_set_value(regularGpio->lineHandle, logicLevel);
if (result < 0) {
sif::warning << "LinuxLibgpioIF::driveGpio: Failed to pull GPIO with ID " << gpioId <<
" to logic level " << logicLevel << std::endl;
return DRIVE_GPIO_FAILURE;
}
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::readGpio(gpioId_t gpioId, int* gpioState) {
gpioMapIter = gpioMap.find(gpioId);
if (gpioMapIter == gpioMap.end()){
sif::warning << "LinuxLibgpioIF::readGpio: Unknown GPIOD ID " << gpioId << std::endl;
return UNKNOWN_GPIO_ID;
}
if(gpioMapIter->second->gpioType == gpio::GpioTypes::GPIO_REGULAR) {
GpiodRegular* regularGpio = dynamic_cast<GpiodRegular*>(gpioMapIter->second);
if(regularGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
*gpioState = gpiod_line_get_value(regularGpio->lineHandle);
}
else {
}
return RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::checkForConflicts(GpioMap& mapToAdd){
ReturnValue_t status = HasReturnvaluesIF::RETURN_OK;
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
for(auto& gpioConfig: mapToAdd) {
switch(gpioConfig.second->gpioType) {
case(gpio::GpioTypes::GPIO_REGULAR): {
auto regularGpio = dynamic_cast<GpiodRegular*>(gpioConfig.second);
if(regularGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
/* Check for conflicts and remove duplicates if necessary */
result = checkForConflictsRegularGpio(gpioConfig.first, regularGpio, mapToAdd);
if(result != HasReturnvaluesIF::RETURN_OK) {
status = result;
}
break;
}
case(gpio::GpioTypes::CALLBACK): {
auto callbackGpio = dynamic_cast<GpioCallback*>(gpioConfig.second);
if(callbackGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
/* Check for conflicts and remove duplicates if necessary */
result = checkForConflictsCallbackGpio(gpioConfig.first, callbackGpio, mapToAdd);
if(result != HasReturnvaluesIF::RETURN_OK) {
status = result;
}
break;
}
default: {
}
}
}
return status;
}
ReturnValue_t LinuxLibgpioIF::checkForConflictsRegularGpio(gpioId_t gpioIdToCheck,
GpiodRegular* gpioToCheck, GpioMap& mapToAdd) {
/* Cross check with private map */
gpioMapIter = gpioMap.find(gpioIdToCheck);
if(gpioMapIter != gpioMap.end()) {
if(gpioMapIter->second->gpioType != gpio::GpioTypes::GPIO_REGULAR) {
sif::warning << "LinuxLibgpioIF::checkForConflicts: ID already exists for different "
"GPIO type" << gpioIdToCheck << ". Removing duplicate." << std::endl;
mapToAdd.erase(gpioIdToCheck);
return HasReturnvaluesIF::RETURN_OK;
}
auto ownRegularGpio = dynamic_cast<GpiodRegular*>(gpioMapIter->second);
if(ownRegularGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
/* Remove element from map to add because a entry for this GPIO
already exists */
sif::warning << "LinuxLibgpioIF::checkForConflictsRegularGpio: Duplicate GPIO definition"
<< " detected. Duplicate will be removed from map to add." << std::endl;
mapToAdd.erase(gpioIdToCheck);
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t LinuxLibgpioIF::checkForConflictsCallbackGpio(gpioId_t gpioIdToCheck,
GpioCallback *callbackGpio, GpioMap& mapToAdd) {
/* Cross check with private map */
gpioMapIter = gpioMap.find(gpioIdToCheck);
if(gpioMapIter != gpioMap.end()) {
if(gpioMapIter->second->gpioType != gpio::GpioTypes::CALLBACK) {
sif::warning << "LinuxLibgpioIF::checkForConflicts: ID already exists for different "
"GPIO type" << gpioIdToCheck << ". Removing duplicate." << std::endl;
mapToAdd.erase(gpioIdToCheck);
return HasReturnvaluesIF::RETURN_OK;
}
/* Remove element from map to add because a entry for this GPIO
already exists */
sif::warning << "LinuxLibgpioIF::checkForConflictsRegularGpio: Duplicate GPIO definition"
<< " detected. Duplicate will be removed from map to add." << std::endl;
mapToAdd.erase(gpioIdToCheck);
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,8 @@
target_sources(${LIB_FSFW_HAL_NAME} PUBLIC
I2cComIF.cpp
I2cCookie.cpp
)

View File

@ -0,0 +1,205 @@
#include "I2cComIF.h"
#include "../utility.h"
#include "../UnixFileGuard.h"
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/i2c-dev.h>
#include <errno.h>
#include <cstring>
I2cComIF::I2cComIF(object_id_t objectId): SystemObject(objectId){
}
I2cComIF::~I2cComIF() {}
ReturnValue_t I2cComIF::initializeInterface(CookieIF* cookie) {
address_t i2cAddress;
std::string deviceFile;
if(cookie == nullptr) {
sif::error << "I2cComIF::initializeInterface: Invalid cookie!" << std::endl;
return NULLPOINTER;
}
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::initializeInterface: Invalid I2C cookie!" << std::endl;
return NULLPOINTER;
}
i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if(i2cDeviceMapIter == i2cDeviceMap.end()) {
size_t maxReplyLen = i2cCookie->getMaxReplyLen();
I2cInstance i2cInstance = {std::vector<uint8_t>(maxReplyLen), 0};
auto statusPair = i2cDeviceMap.emplace(i2cAddress, i2cInstance);
if (not statusPair.second) {
sif::error << "I2cComIF::initializeInterface: Failed to insert device with address " <<
i2cAddress << "to I2C device " << "map" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
sif::error << "I2cComIF::initializeInterface: Device with address " << i2cAddress <<
"already in use" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t I2cComIF::sendMessage(CookieIF *cookie,
const uint8_t *sendData, size_t sendLen) {
ReturnValue_t result;
int fd;
std::string deviceFile;
if(sendData == nullptr) {
sif::error << "I2cComIF::sendMessage: Send Data is nullptr"
<< std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
if(sendLen == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::sendMessage: Invalid I2C Cookie!" << std::endl;
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
sif::error << "I2cComIF::sendMessage: i2cAddress of Cookie not "
<< "registered in i2cDeviceMap" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
deviceFile = i2cCookie->getDeviceFile();
UnixFileGuard fileHelper(deviceFile, &fd, O_RDWR, "I2cComIF::sendMessage");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
}
result = openDevice(deviceFile, i2cAddress, &fd);
if (result != HasReturnvaluesIF::RETURN_OK){
return result;
}
if (write(fd, sendData, sendLen) != (int)sendLen) {
sif::error << "I2cComIF::sendMessage: Failed to send data to I2C "
"device with error code " << errno << ". Error description: "
<< strerror(errno) << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::getSendSuccess(CookieIF *cookie) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::requestReceiveMessage(CookieIF *cookie,
size_t requestLen) {
ReturnValue_t result;
int fd;
std::string deviceFile;
if (requestLen == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::requestReceiveMessage: Invalid I2C Cookie!" << std::endl;
i2cDeviceMapIter->second.replyLen = 0;
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
sif::error << "I2cComIF::requestReceiveMessage: i2cAddress of Cookie not "
<< "registered in i2cDeviceMap" << std::endl;
i2cDeviceMapIter->second.replyLen = 0;
return HasReturnvaluesIF::RETURN_FAILED;
}
deviceFile = i2cCookie->getDeviceFile();
UnixFileGuard fileHelper(deviceFile, &fd, O_RDWR, "I2cComIF::requestReceiveMessage");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
}
result = openDevice(deviceFile, i2cAddress, &fd);
if (result != HasReturnvaluesIF::RETURN_OK){
i2cDeviceMapIter->second.replyLen = 0;
return result;
}
uint8_t* replyBuffer = i2cDeviceMapIter->second.replyBuffer.data();
int readLen = read(fd, replyBuffer, requestLen);
if (readLen != static_cast<int>(requestLen)) {
#if FSFW_VERBOSE_LEVEL >= 1 and FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::requestReceiveMessage: Reading from I2C "
<< "device failed with error code " << errno <<". Description"
<< " of error: " << strerror(errno) << std::endl;
sif::error << "I2cComIF::requestReceiveMessage: Read only " << readLen << " from "
<< requestLen << " bytes" << std::endl;
#endif
i2cDeviceMapIter->second.replyLen = 0;
sif::debug << "I2cComIF::requestReceiveMessage: Read " << readLen << " of " << requestLen << " bytes" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
i2cDeviceMapIter->second.replyLen = requestLen;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::readReceivedMessage(CookieIF *cookie,
uint8_t **buffer, size_t* size) {
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::readReceivedMessage: Invalid I2C Cookie!" << std::endl;
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
sif::error << "I2cComIF::readReceivedMessage: i2cAddress of Cookie not "
<< "found in i2cDeviceMap" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
*buffer = i2cDeviceMapIter->second.replyBuffer.data();
*size = i2cDeviceMapIter->second.replyLen;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::openDevice(std::string deviceFile,
address_t i2cAddress, int* fileDescriptor) {
if (ioctl(*fileDescriptor, I2C_SLAVE, i2cAddress) < 0) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "I2cComIF: Specifying target device failed with error code " << errno << "."
<< std::endl;
sif::warning << "Error description " << strerror(errno) << std::endl;
#else
sif::printWarning("I2cComIF: Specifying target device failed with error code %d.\n");
sif::printWarning("Error description: %s\n", strerror(errno));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,20 @@
#include "I2cCookie.h"
I2cCookie::I2cCookie(address_t i2cAddress_, size_t maxReplyLen_,
std::string deviceFile_) :
i2cAddress(i2cAddress_), maxReplyLen(maxReplyLen_), deviceFile(deviceFile_) {
}
address_t I2cCookie::getAddress() const {
return i2cAddress;
}
size_t I2cCookie::getMaxReplyLen() const {
return maxReplyLen;
}
std::string I2cCookie::getDeviceFile() const {
return deviceFile;
}
I2cCookie::~I2cCookie() {}

View File

@ -0,0 +1,3 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
GpioRPi.cpp
)

View File

@ -0,0 +1,37 @@
#include "GpioRPi.h"
#include "../../common/gpio/GpioCookie.h"
#include <FSFWConfig.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
ReturnValue_t gpio::createRpiGpioConfig(GpioCookie* cookie, gpioId_t gpioId, int bcmPin,
std::string consumer, gpio::Direction direction, int initValue) {
if(cookie == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
GpiodRegular* config = new GpiodRegular();
/* Default chipname for Raspberry Pi. There is still gpiochip1 for expansion, but most users
will not need this */
config->chipname = "gpiochip0";
config->consumer = consumer;
config->direction = direction;
config->initValue = initValue;
/* Sanity check for the BCM pins before assigning it */
if(bcmPin > 27) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "createRpiGpioConfig: BCM pin " << bcmPin << " invalid!" << std::endl;
#else
sif::printError("createRpiGpioConfig: BCM pin %d invalid!\n", bcmPin);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
config->lineNum = bcmPin;
cookie->addGpio(gpioId, config);
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,8 @@
target_sources(${LIB_FSFW_HAL_NAME} PUBLIC
SpiComIF.cpp
SpiCookie.cpp
)

View File

@ -0,0 +1,398 @@
#include "SpiComIF.h"
#include "SpiCookie.h"
#include "../utility.h"
#include "../UnixFileGuard.h"
#include "FSFWConfig.h"
#include <fsfw/ipc/MutexFactory.h>
#include <fsfw/globalfunctions/arrayprinter.h>
#include <linux/spi/spidev.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <cerrno>
#include <cstring>
/* Can be used for low-level debugging of the SPI bus */
#ifndef FSFW_HAL_LINUX_SPI_WIRETAPPING
#define FSFW_HAL_LINUX_SPI_WIRETAPPING 0
#endif
SpiComIF::SpiComIF(object_id_t objectId, GpioIF* gpioComIF):
SystemObject(objectId), gpioComIF(gpioComIF) {
if(gpioComIF == nullptr) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::SpiComIF: GPIO communication interface invalid!" << std::endl;
#else
sif::printError("SpiComIF::SpiComIF: GPIO communication interface invalid!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
}
spiMutex = MutexFactory::instance()->createMutex();
}
ReturnValue_t SpiComIF::initializeInterface(CookieIF *cookie) {
int retval = 0;
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
return NULLPOINTER;
}
address_t spiAddress = spiCookie->getSpiAddress();
auto iter = spiDeviceMap.find(spiAddress);
if(iter == spiDeviceMap.end()) {
size_t bufferSize = spiCookie->getMaxBufferSize();
SpiInstance spiInstance(bufferSize);
auto statusPair = spiDeviceMap.emplace(spiAddress, spiInstance);
if (not statusPair.second) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::initializeInterface: Failed to insert device with address " <<
spiAddress << "to SPI device map" << std::endl;
#else
sif::printError("SpiComIF::initializeInterface: Failed to insert device with address "
"%lu to SPI device map\n", static_cast<unsigned long>(spiAddress));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
/* Now we emplaced the read buffer in the map, we still need to assign that location
to the SPI driver transfer struct */
spiCookie->assignReadBuffer(statusPair.first->second.replyBuffer.data());
}
else {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::initializeInterface: SPI address already exists!" << std::endl;
#else
sif::printError("SpiComIF::initializeInterface: SPI address already exists!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
/* Pull CS high in any case to be sure that device is inactive */
gpioId_t gpioId = spiCookie->getChipSelectPin();
if(gpioId != gpio::NO_GPIO) {
gpioComIF->pullHigh(gpioId);
}
size_t spiSpeed = 0;
spi::SpiModes spiMode = spi::SpiModes::MODE_0;
SpiCookie::UncommonParameters params;
spiCookie->getSpiParameters(spiMode, spiSpeed, &params);
int fileDescriptor = 0;
UnixFileGuard fileHelper(spiCookie->getSpiDevice(), &fileDescriptor, O_RDWR,
"SpiComIF::initializeInterface: ");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
}
/* These flags are rather uncommon */
if(params.threeWireSpi or params.noCs or params.csHigh) {
uint32_t currentMode = 0;
retval = ioctl(fileDescriptor, SPI_IOC_RD_MODE32, &currentMode);
if(retval != 0) {
utility::handleIoctlError("SpiComIF::initialiezInterface: Could not read full mode!");
}
if(params.threeWireSpi) {
currentMode |= SPI_3WIRE;
}
if(params.noCs) {
/* Some drivers like the Raspberry Pi ignore this flag in any case */
currentMode |= SPI_NO_CS;
}
if(params.csHigh) {
currentMode |= SPI_CS_HIGH;
}
/* Write adapted mode */
retval = ioctl(fileDescriptor, SPI_IOC_WR_MODE32, &currentMode);
if(retval != 0) {
utility::handleIoctlError("SpiComIF::initialiezInterface: Could not write full mode!");
}
}
if(params.lsbFirst) {
retval = ioctl(fileDescriptor, SPI_IOC_WR_LSB_FIRST, &params.lsbFirst);
if(retval != 0) {
utility::handleIoctlError("SpiComIF::initializeInterface: Setting LSB first failed");
}
}
if(params.bitsPerWord != 8) {
retval = ioctl(fileDescriptor, SPI_IOC_WR_BITS_PER_WORD, &params.bitsPerWord);
if(retval != 0) {
utility::handleIoctlError("SpiComIF::initializeInterface: "
"Could not write bits per word!");
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::sendMessage(CookieIF *cookie, const uint8_t *sendData, size_t sendLen) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
if(spiCookie == nullptr) {
return NULLPOINTER;
}
if(sendLen > spiCookie->getMaxBufferSize()) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Too much data sent, send length" << sendLen <<
"larger than maximum buffer length" << spiCookie->getMaxBufferSize() << std::endl;
#else
sif::printWarning("SpiComIF::sendMessage: Too much data sent, send length %lu larger "
"than maximum buffer length %lu!\n", static_cast<unsigned long>(sendLen),
static_cast<unsigned long>(spiCookie->getMaxBufferSize()));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return DeviceCommunicationIF::TOO_MUCH_DATA;
}
if(spiCookie->getComIfMode() == spi::SpiComIfModes::REGULAR) {
result = performRegularSendOperation(spiCookie, sendData, sendLen);
}
else if(spiCookie->getComIfMode() == spi::SpiComIfModes::CALLBACK) {
spi::send_callback_function_t sendFunc = nullptr;
void* funcArgs = nullptr;
spiCookie->getCallback(&sendFunc, &funcArgs);
if(sendFunc != nullptr) {
result = sendFunc(this, spiCookie, sendData, sendLen, funcArgs);
}
}
return result;
}
ReturnValue_t SpiComIF::performRegularSendOperation(SpiCookie *spiCookie, const uint8_t *sendData,
size_t sendLen) {
address_t spiAddress = spiCookie->getSpiAddress();
auto iter = spiDeviceMap.find(spiAddress);
if(iter != spiDeviceMap.end()) {
spiCookie->assignReadBuffer(iter->second.replyBuffer.data());
}
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
int retval = 0;
/* Prepare transfer */
int fileDescriptor = 0;
std::string device = spiCookie->getSpiDevice();
UnixFileGuard fileHelper(device, &fileDescriptor, O_RDWR, "SpiComIF::sendMessage: ");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return OPENING_FILE_FAILED;
}
spi::SpiModes spiMode = spi::SpiModes::MODE_0;
uint32_t spiSpeed = 0;
spiCookie->getSpiParameters(spiMode, spiSpeed, nullptr);
setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed);
spiCookie->assignWriteBuffer(sendData);
spiCookie->assignTransferSize(sendLen);
bool fullDuplex = spiCookie->isFullDuplex();
gpioId_t gpioId = spiCookie->getChipSelectPin();
/* Pull SPI CS low. For now, no support for active high given */
if(gpioId != gpio::NO_GPIO) {
result = spiMutex->lockMutex(timeoutType, timeoutMs);
if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::sendMessage: Failed to lock mutex" << std::endl;
#endif
return result;
}
gpioComIF->pullLow(gpioId);
}
/* Execute transfer */
if(fullDuplex) {
/* Initiate a full duplex SPI transfer. */
retval = ioctl(fileDescriptor, SPI_IOC_MESSAGE(1), spiCookie->getTransferStructHandle());
if(retval < 0) {
utility::handleIoctlError("SpiComIF::sendMessage: ioctl error.");
result = FULL_DUPLEX_TRANSFER_FAILED;
}
#if FSFW_HAL_LINUX_SPI_WIRETAPPING == 1
performSpiWiretapping(spiCookie);
#endif /* FSFW_LINUX_SPI_WIRETAPPING == 1 */
}
else {
/* We write with a blocking half-duplex transfer here */
if (write(fileDescriptor, sendData, sendLen) != static_cast<ssize_t>(sendLen)) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Half-Duplex write operation failed!" <<
std::endl;
#else
sif::printWarning("SpiComIF::sendMessage: Half-Duplex write operation failed!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
result = HALF_DUPLEX_TRANSFER_FAILED;
}
}
if(gpioId != gpio::NO_GPIO) {
gpioComIF->pullHigh(gpioId);
result = spiMutex->unlockMutex();
if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::sendMessage: Failed to unlock mutex" << std::endl;
#endif
return result;
}
}
return result;
}
ReturnValue_t SpiComIF::getSendSuccess(CookieIF *cookie) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::requestReceiveMessage(CookieIF *cookie, size_t requestLen) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
return NULLPOINTER;
}
if(spiCookie->isFullDuplex()) {
return HasReturnvaluesIF::RETURN_OK;
}
return performHalfDuplexReception(spiCookie);
}
ReturnValue_t SpiComIF::performHalfDuplexReception(SpiCookie* spiCookie) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
std::string device = spiCookie->getSpiDevice();
int fileDescriptor = 0;
UnixFileGuard fileHelper(device, &fileDescriptor, O_RDWR,
"SpiComIF::requestReceiveMessage: ");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return OPENING_FILE_FAILED;
}
uint8_t* rxBuf = nullptr;
size_t readSize = spiCookie->getCurrentTransferSize();
result = getReadBuffer(spiCookie->getSpiAddress(), &rxBuf);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
gpioId_t gpioId = spiCookie->getChipSelectPin();
if(gpioId != gpio::NO_GPIO) {
result = spiMutex->lockMutex(timeoutType, timeoutMs);
if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::getSendSuccess: Failed to lock mutex" << std::endl;
#endif
return result;
}
gpioComIF->pullLow(gpioId);
}
if(read(fileDescriptor, rxBuf, readSize) != static_cast<ssize_t>(readSize)) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Half-Duplex read operation failed!" << std::endl;
#else
sif::printWarning("SpiComIF::sendMessage: Half-Duplex read operation failed!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
result = HALF_DUPLEX_TRANSFER_FAILED;
}
if(gpioId != gpio::NO_GPIO) {
gpioComIF->pullHigh(gpioId);
result = spiMutex->unlockMutex();
if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::getSendSuccess: Failed to unlock mutex" << std::endl;
#endif
return result;
}
}
return result;
}
ReturnValue_t SpiComIF::readReceivedMessage(CookieIF *cookie, uint8_t **buffer, size_t *size) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
uint8_t* rxBuf = nullptr;
ReturnValue_t result = getReadBuffer(spiCookie->getSpiAddress(), &rxBuf);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
*buffer = rxBuf;
*size = spiCookie->getCurrentTransferSize();
return HasReturnvaluesIF::RETURN_OK;
}
MutexIF* SpiComIF::getMutex(MutexIF::TimeoutType* timeoutType, uint32_t* timeoutMs) {
if(timeoutType != nullptr) {
*timeoutType = this->timeoutType;
}
if(timeoutMs != nullptr) {
*timeoutMs = this->timeoutMs;
}
return spiMutex;
}
void SpiComIF::performSpiWiretapping(SpiCookie* spiCookie) {
if(spiCookie == nullptr) {
return;
}
size_t dataLen = spiCookie->getTransferStructHandle()->len;
uint8_t* dataPtr = reinterpret_cast<uint8_t*>(spiCookie->getTransferStructHandle()->tx_buf);
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "Sent SPI data: " << std::endl;
arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false);
sif::info << "Received SPI data: " << std::endl;
#else
sif::printInfo("Sent SPI data: \n");
arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false);
sif::printInfo("Received SPI data: \n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
dataPtr = reinterpret_cast<uint8_t*>(spiCookie->getTransferStructHandle()->rx_buf);
arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false);
}
ReturnValue_t SpiComIF::getReadBuffer(address_t spiAddress, uint8_t** buffer) {
if(buffer == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
auto iter = spiDeviceMap.find(spiAddress);
if(iter == spiDeviceMap.end()) {
return HasReturnvaluesIF::RETURN_FAILED;
}
*buffer = iter->second.replyBuffer.data();
return HasReturnvaluesIF::RETURN_OK;
}
GpioIF* SpiComIF::getGpioInterface() {
return gpioComIF;
}
void SpiComIF::setSpiSpeedAndMode(int spiFd, spi::SpiModes mode, uint32_t speed) {
int retval = ioctl(spiFd, SPI_IOC_WR_MODE, reinterpret_cast<uint8_t*>(&mode));
if(retval != 0) {
utility::handleIoctlError("SpiTestClass::performRm3100Test: Setting SPI mode failed!");
}
retval = ioctl(spiFd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);
if(retval != 0) {
utility::handleIoctlError("SpiTestClass::performRm3100Test: Setting SPI speed failed!");
}
}

View File

@ -0,0 +1,144 @@
#include "SpiCookie.h"
SpiCookie::SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev,
const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed):
SpiCookie(spi::SpiComIfModes::REGULAR, spiAddress, chipSelect, spiDev, maxSize, spiMode,
spiSpeed, nullptr, nullptr) {
}
SpiCookie::SpiCookie(address_t spiAddress, std::string spiDev, const size_t maxSize,
spi::SpiModes spiMode, uint32_t spiSpeed):
SpiCookie(spiAddress, gpio::NO_GPIO, spiDev, maxSize, spiMode, spiSpeed) {
}
SpiCookie::SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev,
const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed,
spi::send_callback_function_t callback, void *args):
SpiCookie(spi::SpiComIfModes::CALLBACK, spiAddress, chipSelect, spiDev, maxSize,
spiMode, spiSpeed, callback, args) {
}
SpiCookie::SpiCookie(spi::SpiComIfModes comIfMode, address_t spiAddress, gpioId_t chipSelect,
std::string spiDev, const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed,
spi::send_callback_function_t callback, void* args):
spiAddress(spiAddress), chipSelectPin(chipSelect), spiDevice(spiDev),
comIfMode(comIfMode), maxSize(maxSize), spiMode(spiMode), spiSpeed(spiSpeed),
sendCallback(callback), callbackArgs(args) {
}
spi::SpiComIfModes SpiCookie::getComIfMode() const {
return this->comIfMode;
}
void SpiCookie::getSpiParameters(spi::SpiModes& spiMode, uint32_t& spiSpeed,
UncommonParameters* parameters) const {
spiMode = this->spiMode;
spiSpeed = this->spiSpeed;
if(parameters != nullptr) {
parameters->threeWireSpi = uncommonParameters.threeWireSpi;
parameters->lsbFirst = uncommonParameters.lsbFirst;
parameters->noCs = uncommonParameters.noCs;
parameters->bitsPerWord = uncommonParameters.bitsPerWord;
parameters->csHigh = uncommonParameters.csHigh;
}
}
gpioId_t SpiCookie::getChipSelectPin() const {
return chipSelectPin;
}
size_t SpiCookie::getMaxBufferSize() const {
return maxSize;
}
address_t SpiCookie::getSpiAddress() const {
return spiAddress;
}
std::string SpiCookie::getSpiDevice() const {
return spiDevice;
}
void SpiCookie::setThreeWireSpi(bool enable) {
uncommonParameters.threeWireSpi = enable;
}
void SpiCookie::setLsbFirst(bool enable) {
uncommonParameters.lsbFirst = enable;
}
void SpiCookie::setNoCs(bool enable) {
uncommonParameters.noCs = enable;
}
void SpiCookie::setBitsPerWord(uint8_t bitsPerWord) {
uncommonParameters.bitsPerWord = bitsPerWord;
}
void SpiCookie::setCsHigh(bool enable) {
uncommonParameters.csHigh = enable;
}
void SpiCookie::activateCsDeselect(bool deselectCs, uint16_t delayUsecs) {
spiTransferStruct.cs_change = deselectCs;
spiTransferStruct.delay_usecs = delayUsecs;
}
void SpiCookie::assignReadBuffer(uint8_t* rx) {
if(rx != nullptr) {
spiTransferStruct.rx_buf = reinterpret_cast<__u64>(rx);
}
}
void SpiCookie::assignWriteBuffer(const uint8_t* tx) {
if(tx != nullptr) {
spiTransferStruct.tx_buf = reinterpret_cast<__u64>(tx);
}
}
void SpiCookie::setCallbackMode(spi::send_callback_function_t callback,
void *args) {
this->comIfMode = spi::SpiComIfModes::CALLBACK;
this->sendCallback = callback;
this->callbackArgs = args;
}
void SpiCookie::setCallbackArgs(void *args) {
this->callbackArgs = args;
}
spi_ioc_transfer* SpiCookie::getTransferStructHandle() {
return &spiTransferStruct;
}
void SpiCookie::setFullOrHalfDuplex(bool halfDuplex) {
this->halfDuplex = halfDuplex;
}
bool SpiCookie::isFullDuplex() const {
return not this->halfDuplex;
}
void SpiCookie::assignTransferSize(size_t transferSize) {
spiTransferStruct.len = transferSize;
}
size_t SpiCookie::getCurrentTransferSize() const {
return spiTransferStruct.len;
}
void SpiCookie::setSpiSpeed(uint32_t newSpeed) {
this->spiSpeed = newSpeed;
}
void SpiCookie::setSpiMode(spi::SpiModes newMode) {
this->spiMode = newMode;
}
void SpiCookie::getCallback(spi::send_callback_function_t *callback,
void **args) {
*callback = this->sendCallback;
*args = this->callbackArgs;
}

View File

@ -0,0 +1,8 @@
target_sources(${TARGET_NAME} PUBLIC
UartComIF.cpp
UartCookie.cpp
)

View File

@ -0,0 +1,455 @@
#include "UartComIF.h"
#include "OBSWConfig.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
#include <cstring>
#include <fcntl.h>
#include <errno.h>
#include <termios.h>
#include <unistd.h>
UartComIF::UartComIF(object_id_t objectId): SystemObject(objectId){
}
UartComIF::~UartComIF() {}
ReturnValue_t UartComIF::initializeInterface(CookieIF* cookie) {
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
if(cookie == nullptr) {
return NULLPOINTER;
}
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if (uartCookie == nullptr) {
sif::error << "UartComIF::initializeInterface: Invalid UART Cookie!" << std::endl;
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if(uartDeviceMapIter == uartDeviceMap.end()) {
int fileDescriptor = configureUartPort(uartCookie);
if (fileDescriptor < 0) {
return RETURN_FAILED;
}
size_t maxReplyLen = uartCookie->getMaxReplyLen();
UartElements uartElements = {fileDescriptor, std::vector<uint8_t>(maxReplyLen), 0};
auto status = uartDeviceMap.emplace(deviceFile, uartElements);
if (status.second == false) {
sif::warning << "UartComIF::initializeInterface: Failed to insert device " <<
deviceFile << "to UART device map" << std::endl;
return RETURN_FAILED;
}
}
else {
sif::warning << "UartComIF::initializeInterface: UART device " << deviceFile <<
" already in use" << std::endl;
return RETURN_FAILED;
}
return RETURN_OK;
}
int UartComIF::configureUartPort(UartCookie* uartCookie) {
struct termios options = {};
std::string deviceFile = uartCookie->getDeviceFile();
int fd = open(deviceFile.c_str(), O_RDWR);
if (fd < 0) {
sif::warning << "UartComIF::configureUartPort: Failed to open uart " << deviceFile <<
"with error code " << errno << strerror(errno) << std::endl;
return fd;
}
/* Read in existing settings */
if(tcgetattr(fd, &options) != 0) {
sif::warning << "UartComIF::configureUartPort: Error " << errno << "from tcgetattr: "
<< strerror(errno) << std::endl;
return fd;
}
setParityOptions(&options, uartCookie);
setStopBitOptions(&options, uartCookie);
setDatasizeOptions(&options, uartCookie);
setFixedOptions(&options);
setUartMode(&options, *uartCookie);
if(uartCookie->getInputShouldBeFlushed()) {
tcflush(fd, TCIFLUSH);
}
/* Sets uart to non-blocking mode. Read returns immediately when there are no data available */
options.c_cc[VTIME] = 0;
options.c_cc[VMIN] = 0;
configureBaudrate(&options, uartCookie);
/* Save option settings */
if (tcsetattr(fd, TCSANOW, &options) != 0) {
sif::warning << "UartComIF::configureUartPort: Failed to set options with error " <<
errno << ": " << strerror(errno);
return fd;
}
return fd;
}
void UartComIF::setParityOptions(struct termios* options, UartCookie* uartCookie) {
/* Clear parity bit */
options->c_cflag &= ~PARENB;
switch (uartCookie->getParity()) {
case Parity::EVEN:
options->c_cflag |= PARENB;
options->c_cflag &= ~PARODD;
break;
case Parity::ODD:
options->c_cflag |= PARENB;
options->c_cflag |= PARODD;
break;
default:
break;
}
}
void UartComIF::setStopBitOptions(struct termios* options, UartCookie* uartCookie) {
/* Clear stop field. Sets stop bit to one bit */
options->c_cflag &= ~CSTOPB;
switch (uartCookie->getStopBits()) {
case StopBits::TWO_STOP_BITS:
options->c_cflag |= CSTOPB;
break;
default:
break;
}
}
void UartComIF::setDatasizeOptions(struct termios* options, UartCookie* uartCookie) {
/* Clear size bits */
options->c_cflag &= ~CSIZE;
switch (uartCookie->getBitsPerWord()) {
case 5:
options->c_cflag |= CS5;
break;
case 6:
options->c_cflag |= CS6;
break;
case 7:
options->c_cflag |= CS7;
break;
case 8:
options->c_cflag |= CS8;
break;
default:
sif::warning << "UartComIF::setDatasizeOptions: Invalid size specified" << std::endl;
break;
}
}
void UartComIF::setFixedOptions(struct termios* options) {
/* Disable RTS/CTS hardware flow control */
options->c_cflag &= ~CRTSCTS;
/* Turn on READ & ignore ctrl lines (CLOCAL = 1) */
options->c_cflag |= CREAD | CLOCAL;
/* Disable echo */
options->c_lflag &= ~ECHO;
/* Disable erasure */
options->c_lflag &= ~ECHOE;
/* Disable new-line echo */
options->c_lflag &= ~ECHONL;
/* Disable interpretation of INTR, QUIT and SUSP */
options->c_lflag &= ~ISIG;
/* Turn off s/w flow ctrl */
options->c_iflag &= ~(IXON | IXOFF | IXANY);
/* Disable any special handling of received bytes */
options->c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL);
/* Prevent special interpretation of output bytes (e.g. newline chars) */
options->c_oflag &= ~OPOST;
/* Prevent conversion of newline to carriage return/line feed */
options->c_oflag &= ~ONLCR;
}
void UartComIF::configureBaudrate(struct termios* options, UartCookie* uartCookie) {
switch (uartCookie->getBaudrate()) {
case 50:
cfsetispeed(options, B50);
cfsetospeed(options, B50);
break;
case 75:
cfsetispeed(options, B75);
cfsetospeed(options, B75);
break;
case 110:
cfsetispeed(options, B110);
cfsetospeed(options, B110);
break;
case 134:
cfsetispeed(options, B134);
cfsetospeed(options, B134);
break;
case 150:
cfsetispeed(options, B150);
cfsetospeed(options, B150);
break;
case 200:
cfsetispeed(options, B200);
cfsetospeed(options, B200);
break;
case 300:
cfsetispeed(options, B300);
cfsetospeed(options, B300);
break;
case 600:
cfsetispeed(options, B600);
cfsetospeed(options, B600);
break;
case 1200:
cfsetispeed(options, B1200);
cfsetospeed(options, B1200);
break;
case 1800:
cfsetispeed(options, B1800);
cfsetospeed(options, B1800);
break;
case 2400:
cfsetispeed(options, B2400);
cfsetospeed(options, B2400);
break;
case 4800:
cfsetispeed(options, B4800);
cfsetospeed(options, B4800);
break;
case 9600:
cfsetispeed(options, B9600);
cfsetospeed(options, B9600);
break;
case 19200:
cfsetispeed(options, B19200);
cfsetospeed(options, B19200);
break;
case 38400:
cfsetispeed(options, B38400);
cfsetospeed(options, B38400);
break;
case 57600:
cfsetispeed(options, B57600);
cfsetospeed(options, B57600);
break;
case 115200:
cfsetispeed(options, B115200);
cfsetospeed(options, B115200);
break;
case 230400:
cfsetispeed(options, B230400);
cfsetospeed(options, B230400);
break;
case 460800:
cfsetispeed(options, B460800);
cfsetospeed(options, B460800);
break;
default:
sif::warning << "UartComIF::configureBaudrate: Baudrate not supported" << std::endl;
break;
}
}
ReturnValue_t UartComIF::sendMessage(CookieIF *cookie,
const uint8_t *sendData, size_t sendLen) {
int fd = 0;
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
if(sendData == nullptr) {
sif::debug << "UartComIF::sendMessage: Send Data is nullptr" << std::endl;
return RETURN_FAILED;
}
if(sendLen == 0) {
return RETURN_OK;
}
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if(uartCookie == nullptr) {
sif::debug << "UartComIF::sendMessasge: Invalid UART Cookie!" << std::endl;
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if (uartDeviceMapIter == uartDeviceMap.end()) {
sif::debug << "UartComIF::sendMessage: Device file " << deviceFile <<
"not in UART map" << std::endl;
return RETURN_FAILED;
}
fd = uartDeviceMapIter->second.fileDescriptor;
if (write(fd, sendData, sendLen) != (int)sendLen) {
sif::error << "UartComIF::sendMessage: Failed to send data with error code " <<
errno << ": Error description: " << strerror(errno) << std::endl;
return RETURN_FAILED;
}
return RETURN_OK;
}
ReturnValue_t UartComIF::getSendSuccess(CookieIF *cookie) {
return RETURN_OK;
}
ReturnValue_t UartComIF::requestReceiveMessage(CookieIF *cookie, size_t requestLen) {
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if(uartCookie == nullptr) {
sif::debug << "UartComIF::requestReceiveMessage: Invalid Uart Cookie!" << std::endl;
return NULLPOINTER;
}
UartModes uartMode = uartCookie->getUartMode();
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if(uartMode == UartModes::NON_CANONICAL and requestLen == 0) {
return RETURN_OK;
}
if (uartDeviceMapIter == uartDeviceMap.end()) {
sif::debug << "UartComIF::requestReceiveMessage: Device file " << deviceFile
<< " not in uart map" << std::endl;
return RETURN_FAILED;
}
if (uartMode == UartModes::CANONICAL) {
return handleCanonicalRead(*uartCookie, uartDeviceMapIter, requestLen);
}
else if (uartMode == UartModes::NON_CANONICAL) {
return handleNoncanonicalRead(*uartCookie, uartDeviceMapIter, requestLen);
}
else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t UartComIF::handleCanonicalRead(UartCookie& uartCookie, UartDeviceMapIter& iter,
size_t requestLen) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
uint8_t maxReadCycles = uartCookie.getReadCycles();
uint8_t currentReadCycles = 0;
int bytesRead = 0;
size_t currentBytesRead = 0;
size_t maxReplySize = uartCookie.getMaxReplyLen();
int fd = iter->second.fileDescriptor;
auto bufferPtr = iter->second.replyBuffer.data();
do {
size_t allowedReadSize = 0;
if(currentBytesRead >= maxReplySize) {
// Overflow risk. Emit warning, trigger event and break. If this happens,
// the reception buffer is not large enough or data is not polled often enough.
#if OBSW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::requestReceiveMessage: Next read would cause overflow!"
<< std::endl;
#else
sif::printWarning("UartComIF::requestReceiveMessage: "
"Next read would cause overflow!");
#endif
#endif
result = UART_RX_BUFFER_TOO_SMALL;
break;
}
else {
allowedReadSize = maxReplySize - currentBytesRead;
}
bytesRead = read(fd, bufferPtr, allowedReadSize);
if (bytesRead < 0) {
return RETURN_FAILED;
}
else if(bytesRead > 0) {
iter->second.replyLen += bytesRead;
bufferPtr += bytesRead;
currentBytesRead += bytesRead;
}
currentReadCycles++;
} while(bytesRead > 0 and currentReadCycles < maxReadCycles);
return result;
}
ReturnValue_t UartComIF::handleNoncanonicalRead(UartCookie &uartCookie, UartDeviceMapIter &iter,
size_t requestLen) {
int fd = iter->second.fileDescriptor;
auto bufferPtr = iter->second.replyBuffer.data();
// Size check to prevent buffer overflow
if(requestLen > uartCookie.getMaxReplyLen()) {
#if OBSW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::requestReceiveMessage: Next read would cause overflow!"
<< std::endl;
#else
sif::printWarning("UartComIF::requestReceiveMessage: "
"Next read would cause overflow!");
#endif
#endif
return UART_RX_BUFFER_TOO_SMALL;
}
int bytesRead = read(fd, bufferPtr, requestLen);
if (bytesRead < 0) {
return RETURN_FAILED;
}
else if (bytesRead != static_cast<int>(requestLen)) {
if(uartCookie.isReplySizeFixed()) {
sif::warning << "UartComIF::requestReceiveMessage: Only read " << bytesRead <<
" of " << requestLen << " bytes" << std::endl;
return RETURN_FAILED;
}
}
iter->second.replyLen = bytesRead;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t UartComIF::readReceivedMessage(CookieIF *cookie,
uint8_t **buffer, size_t* size) {
std::string deviceFile;
UartDeviceMapIter uartDeviceMapIter;
UartCookie* uartCookie = dynamic_cast<UartCookie*>(cookie);
if(uartCookie == nullptr) {
sif::debug << "UartComIF::readReceivedMessage: Invalid uart cookie!" << std::endl;
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if (uartDeviceMapIter == uartDeviceMap.end()) {
sif::debug << "UartComIF::readReceivedMessage: Device file " << deviceFile <<
" not in uart map" << std::endl;
return RETURN_FAILED;
}
*buffer = uartDeviceMapIter->second.replyBuffer.data();
*size = uartDeviceMapIter->second.replyLen;
/* Length is reset to 0 to prevent reading the same data twice */
uartDeviceMapIter->second.replyLen = 0;
return RETURN_OK;
}
void UartComIF::setUartMode(struct termios *options, UartCookie &uartCookie) {
UartModes uartMode = uartCookie.getUartMode();
if(uartMode == UartModes::NON_CANONICAL) {
/* Disable canonical mode */
options->c_lflag &= ~ICANON;
}
else if(uartMode == UartModes::CANONICAL) {
options->c_lflag |= ICANON;
}
}

View File

@ -0,0 +1,97 @@
#include "UartCookie.h"
#include <fsfw/serviceinterface/ServiceInterface.h>
UartCookie::UartCookie(object_id_t handlerId, std::string deviceFile, UartModes uartMode,
uint32_t baudrate, size_t maxReplyLen):
handlerId(handlerId), deviceFile(deviceFile), uartMode(uartMode), baudrate(baudrate),
maxReplyLen(maxReplyLen) {
}
UartCookie::~UartCookie() {}
uint32_t UartCookie::getBaudrate() const {
return baudrate;
}
size_t UartCookie::getMaxReplyLen() const {
return maxReplyLen;
}
std::string UartCookie::getDeviceFile() const {
return deviceFile;
}
void UartCookie::setParityOdd() {
parity = Parity::ODD;
}
void UartCookie::setParityEven() {
parity = Parity::EVEN;
}
Parity UartCookie::getParity() const {
return parity;
}
void UartCookie::setBitsPerWord(uint8_t bitsPerWord_) {
switch(bitsPerWord_) {
case 5:
case 6:
case 7:
case 8:
break;
default:
sif::debug << "UartCookie::setBitsPerWord: Invalid bits per word specified" << std::endl;
return;
}
bitsPerWord = bitsPerWord_;
}
uint8_t UartCookie::getBitsPerWord() const {
return bitsPerWord;
}
StopBits UartCookie::getStopBits() const {
return stopBits;
}
void UartCookie::setTwoStopBits() {
stopBits = StopBits::TWO_STOP_BITS;
}
void UartCookie::setOneStopBit() {
stopBits = StopBits::ONE_STOP_BIT;
}
UartModes UartCookie::getUartMode() const {
return uartMode;
}
void UartCookie::setReadCycles(uint8_t readCycles) {
this->readCycles = readCycles;
}
void UartCookie::setToFlushInput(bool enable) {
this->flushInput = enable;
}
uint8_t UartCookie::getReadCycles() const {
return readCycles;
}
bool UartCookie::getInputShouldBeFlushed() {
return this->flushInput;
}
object_id_t UartCookie::getHandlerId() const {
return this->handlerId;
}
void UartCookie::setNoFixedSizeReply() {
replySizeFixed = false;
}
bool UartCookie::isReplySizeFixed() {
return replySizeFixed;
}

21
hal/src/linux/utility.cpp Normal file
View File

@ -0,0 +1,21 @@
#include <fsfw_hal/linux/utility.h>
void utility::handleIoctlError(const char* const customPrintout) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
if(customPrintout != nullptr) {
sif::warning << customPrintout << std::endl;
}
sif::warning << "handleIoctlError: Error code " << errno << ", "<< strerror(errno) <<
std::endl;
#else
if(customPrintout != nullptr) {
sif::printWarning("%s\n", customPrintout);
}
sif::printWarning("handleIoctlError: Error code %d, %s\n", errno, strerror(errno));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
}

View File

@ -0,0 +1,7 @@
add_subdirectory(spi)
add_subdirectory(gpio)
add_subdirectory(devicetest)
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
dma.cpp
)

View File

@ -0,0 +1,3 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
GyroL3GD20H.cpp
)

View File

@ -0,0 +1,559 @@
#include "GyroL3GD20H.h"
#include "../spi/mspInit.h"
#include "../spi/spiDefinitions.h"
#include "../spi/spiCore.h"
#include "../spi/spiInterrupts.h"
#include "../spi/stm32h743ziSpi.h"
#include "fsfw/tasks/TaskFactory.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
#include "stm32h7xx_nucleo.h"
#include "stm32h7xx_hal_spi.h"
#include "stm32h7xx_hal_rcc.h"
#include <cstring>
alignas(32) std::array<uint8_t, GyroL3GD20H::recvBufferSize> GyroL3GD20H::rxBuffer;
alignas(32) std::array<uint8_t, GyroL3GD20H::txBufferSize>
GyroL3GD20H::txBuffer __attribute__((section(".dma_buffer")));
TransferStates transferState = TransferStates::IDLE;
spi::TransferModes GyroL3GD20H::transferMode = spi::TransferModes::POLLING;
GyroL3GD20H::GyroL3GD20H(SPI_HandleTypeDef *spiHandle, spi::TransferModes transferMode_):
spiHandle(spiHandle) {
txDmaHandle = new DMA_HandleTypeDef();
rxDmaHandle = new DMA_HandleTypeDef();
spi::setSpiHandle(spiHandle);
spi::assignSpiUserArgs(spi::SpiBus::SPI_1, spiHandle);
transferMode = transferMode_;
if(transferMode == spi::TransferModes::DMA) {
mspCfg = new spi::MspDmaConfigStruct();
auto typedCfg = dynamic_cast<spi::MspDmaConfigStruct*>(mspCfg);
spi::setDmaHandles(txDmaHandle, rxDmaHandle);
spi::h743zi::standardDmaCfg(*typedCfg, IrqPriorities::HIGHEST_FREERTOS,
IrqPriorities::HIGHEST_FREERTOS, IrqPriorities::HIGHEST_FREERTOS);
spi::setSpiDmaMspFunctions(typedCfg);
}
else if(transferMode == spi::TransferModes::INTERRUPT) {
mspCfg = new spi::MspIrqConfigStruct();
auto typedCfg = dynamic_cast<spi::MspIrqConfigStruct*>(mspCfg);
spi::h743zi::standardInterruptCfg(*typedCfg, IrqPriorities::HIGHEST_FREERTOS);
spi::setSpiIrqMspFunctions(typedCfg);
}
else if(transferMode == spi::TransferModes::POLLING) {
mspCfg = new spi::MspPollingConfigStruct();
auto typedCfg = dynamic_cast<spi::MspPollingConfigStruct*>(mspCfg);
spi::h743zi::standardPollingCfg(*typedCfg);
spi::setSpiPollingMspFunctions(typedCfg);
}
spi::assignTransferRxTxCompleteCallback(&spiTransferCompleteCallback, nullptr);
spi::assignTransferErrorCallback(&spiTransferErrorCallback, nullptr);
GPIO_InitTypeDef chipSelect = {};
__HAL_RCC_GPIOD_CLK_ENABLE();
chipSelect.Pin = GPIO_PIN_14;
chipSelect.Mode = GPIO_MODE_OUTPUT_PP;
HAL_GPIO_Init(GPIOD, &chipSelect);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
}
GyroL3GD20H::~GyroL3GD20H() {
delete txDmaHandle;
delete rxDmaHandle;
if(mspCfg != nullptr) {
delete mspCfg;
}
}
ReturnValue_t GyroL3GD20H::initialize() {
// Configure the SPI peripheral
spiHandle->Instance = SPI1;
spiHandle->Init.BaudRatePrescaler = spi::getPrescaler(HAL_RCC_GetHCLKFreq(), 3900000);
spiHandle->Init.Direction = SPI_DIRECTION_2LINES;
spi::assignSpiMode(spi::SpiModes::MODE_3, *spiHandle);
spiHandle->Init.DataSize = SPI_DATASIZE_8BIT;
spiHandle->Init.FirstBit = SPI_FIRSTBIT_MSB;
spiHandle->Init.TIMode = SPI_TIMODE_DISABLE;
spiHandle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
spiHandle->Init.CRCPolynomial = 7;
spiHandle->Init.CRCLength = SPI_CRC_LENGTH_8BIT;
spiHandle->Init.NSS = SPI_NSS_SOFT;
spiHandle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
// Recommended setting to avoid glitches
spiHandle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
spiHandle->Init.Mode = SPI_MODE_MASTER;
if(HAL_SPI_Init(spiHandle) != HAL_OK) {
sif::printWarning("Error initializing SPI\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
delete mspCfg;
transferState = TransferStates::WAIT;
sif::printInfo("GyroL3GD20H::performOperation: Reading WHO AM I register\n");
txBuffer[0] = WHO_AM_I_REG | STM_READ_MASK;
txBuffer[1] = 0;
switch(transferMode) {
case(spi::TransferModes::DMA): {
return handleDmaTransferInit();
}
case(spi::TransferModes::INTERRUPT): {
return handleInterruptTransferInit();
}
case(spi::TransferModes::POLLING): {
return handlePollingTransferInit();
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::performOperation() {
switch(transferMode) {
case(spi::TransferModes::DMA): {
return handleDmaSensorRead();
}
case(spi::TransferModes::POLLING): {
return handlePollingSensorRead();
}
case(spi::TransferModes::INTERRUPT): {
return handleInterruptSensorRead();
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handleDmaTransferInit() {
/* Clean D-cache */
/* Make sure the address is 32-byte aligned and add 32-bytes to length,
in case it overlaps cacheline */
// See https://community.st.com/s/article/FAQ-DMA-is-not-working-on-STM32H7-devices
HAL_StatusTypeDef result = performDmaTransfer(2);
if(result != HAL_OK) {
// Transfer error in transmission process
sif::printWarning("GyroL3GD20H::initialize: Error transmitting SPI with DMA\n");
}
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
switch(transferState) {
case(TransferStates::SUCCESS): {
uint8_t whoAmIVal = rxBuffer[1];
if(whoAmIVal != EXPECTED_WHO_AM_I_VAL) {
sif::printDebug("GyroL3GD20H::initialize: "
"Read WHO AM I value %d not equal to expected value!\n", whoAmIVal);
}
transferState = TransferStates::IDLE;
break;
}
case(TransferStates::FAILURE): {
sif::printWarning("Transfer failure\n");
transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
sif::printInfo("GyroL3GD20H::initialize: Configuring device\n");
// Configure the 5 configuration registers
uint8_t configRegs[5];
prepareConfigRegs(configRegs);
result = performDmaTransfer(6);
if(result != HAL_OK) {
// Transfer error in transmission process
sif::printWarning("Error transmitting SPI with DMA\n");
}
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
switch(transferState) {
case(TransferStates::SUCCESS): {
sif::printInfo("GyroL3GD20H::initialize: Configuration transfer success\n");
transferState = TransferStates::IDLE;
break;
}
case(TransferStates::FAILURE): {
sif::printWarning("GyroL3GD20H::initialize: Configuration transfer failure\n");
transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 5);
result = performDmaTransfer(6);
if(result != HAL_OK) {
// Transfer error in transmission process
sif::printWarning("Error transmitting SPI with DMA\n");
}
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
switch(transferState) {
case(TransferStates::SUCCESS): {
if(rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or
rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or
rxBuffer[5] != configRegs[4]) {
sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n");
}
else {
sif::printInfo("GyroL3GD20H::initialize: Configuration success\n");
}
transferState = TransferStates::IDLE;
break;
}
case(TransferStates::FAILURE): {
sif::printWarning("GyroL3GD20H::initialize: Configuration transfer failure\n");
transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handleDmaSensorRead() {
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 14);
HAL_StatusTypeDef result = performDmaTransfer(15);
if(result != HAL_OK) {
// Transfer error in transmission process
sif::printDebug("GyroL3GD20H::handleDmaSensorRead: Error transmitting SPI with DMA\n");
}
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
switch(transferState) {
case(TransferStates::SUCCESS): {
handleSensorReadout();
break;
}
case(TransferStates::FAILURE): {
sif::printWarning("GyroL3GD20H::handleDmaSensorRead: Sensor read failure\n");
transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
HAL_StatusTypeDef GyroL3GD20H::performDmaTransfer(size_t sendSize) {
transferState = TransferStates::WAIT;
#if STM_USE_PERIPHERAL_TX_BUFFER_MPU_PROTECTION == 0
SCB_CleanDCache_by_Addr((uint32_t*)(((uint32_t)txBuffer.data()) & ~(uint32_t)0x1F),
txBuffer.size()+32);
#endif
// Start SPI transfer via DMA
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
return HAL_SPI_TransmitReceive_DMA(spiHandle, txBuffer.data(), rxBuffer.data(), sendSize);
}
ReturnValue_t GyroL3GD20H::handlePollingTransferInit() {
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
auto result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 2, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) {
case(HAL_OK): {
sif::printInfo("GyroL3GD20H::initialize: Polling transfer success\n");
uint8_t whoAmIVal = rxBuffer[1];
if(whoAmIVal != EXPECTED_WHO_AM_I_VAL) {
sif::printDebug("GyroL3GD20H::performOperation: "
"Read WHO AM I value %d not equal to expected value!\n", whoAmIVal);
}
break;
}
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
case(HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
sif::printInfo("GyroL3GD20H::initialize: Configuring device\n");
// Configure the 5 configuration registers
uint8_t configRegs[5];
prepareConfigRegs(configRegs);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 6, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) {
case(HAL_OK): {
break;
}
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
case(HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 5);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 6, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) {
case(HAL_OK): {
if(rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or
rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or
rxBuffer[5] != configRegs[4]) {
sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n");
}
else {
sif::printInfo("GyroL3GD20H::initialize: Configuration success\n");
}
break;
}
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
case(HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handlePollingSensorRead() {
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 14);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
auto result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 15, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) {
case(HAL_OK): {
handleSensorReadout();
break;
}
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
case(HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handleInterruptTransferInit() {
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 2)) {
case(HAL_OK): {
sif::printInfo("GyroL3GD20H::initialize: Interrupt transfer success\n");
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
uint8_t whoAmIVal = rxBuffer[1];
if(whoAmIVal != EXPECTED_WHO_AM_I_VAL) {
sif::printDebug("GyroL3GD20H::initialize: "
"Read WHO AM I value %d not equal to expected value!\n", whoAmIVal);
}
break;
}
case(HAL_BUSY):
case(HAL_ERROR):
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
}
sif::printInfo("GyroL3GD20H::initialize: Configuring device\n");
transferState = TransferStates::WAIT;
// Configure the 5 configuration registers
uint8_t configRegs[5];
prepareConfigRegs(configRegs);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 6)) {
case(HAL_OK): {
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
break;
}
case(HAL_BUSY):
case(HAL_ERROR):
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
}
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 5);
transferState = TransferStates::WAIT;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 6)) {
case(HAL_OK): {
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
if(rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or
rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or
rxBuffer[5] != configRegs[4]) {
sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n");
}
else {
sif::printInfo("GyroL3GD20H::initialize: Configuration success\n");
}
break;
}
case(HAL_BUSY):
case(HAL_ERROR):
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroL3GD20H::handleInterruptSensorRead() {
transferState = TransferStates::WAIT;
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 14);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 15)) {
case(HAL_OK): {
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
handleSensorReadout();
break;
}
case(HAL_BUSY):
case(HAL_ERROR):
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Sensor read failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
void GyroL3GD20H::prepareConfigRegs(uint8_t* configRegs) {
// Enable sensor
configRegs[0] = 0b00001111;
configRegs[1] = 0b00000000;
configRegs[2] = 0b00000000;
// Big endian select
configRegs[3] = 0b01000000;
configRegs[4] = 0b00000000;
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK;
std::memcpy(txBuffer.data() + 1, configRegs, 5);
}
uint8_t GyroL3GD20H::readRegPolling(uint8_t reg) {
uint8_t rxBuf[2] = {};
uint8_t txBuf[2] = {};
txBuf[0] = reg | STM_READ_MASK;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
auto result = HAL_SPI_TransmitReceive(spiHandle, txBuf, rxBuf, 2, 1000);
if(result) {};
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
return rxBuf[1];
}
void GyroL3GD20H::handleSensorReadout() {
uint8_t statusReg = rxBuffer[8];
int16_t gyroXRaw = rxBuffer[9] << 8 | rxBuffer[10];
float gyroX = static_cast<float>(gyroXRaw) * 0.00875;
int16_t gyroYRaw = rxBuffer[11] << 8 | rxBuffer[12];
float gyroY = static_cast<float>(gyroYRaw) * 0.00875;
int16_t gyroZRaw = rxBuffer[13] << 8 | rxBuffer[14];
float gyroZ = static_cast<float>(gyroZRaw) * 0.00875;
sif::printInfo("Status register: 0b" BYTE_TO_BINARY_PATTERN "\n", BYTE_TO_BINARY(statusReg));
sif::printInfo("Gyro X: %f\n", gyroX);
sif::printInfo("Gyro Y: %f\n", gyroY);
sif::printInfo("Gyro Z: %f\n", gyroZ);
}
void GyroL3GD20H::spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void* args) {
transferState = TransferStates::SUCCESS;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
if(GyroL3GD20H::transferMode == spi::TransferModes::DMA) {
// Invalidate cache prior to access by CPU
SCB_InvalidateDCache_by_Addr ((uint32_t *)GyroL3GD20H::rxBuffer.data(),
GyroL3GD20H::recvBufferSize);
}
}
/**
* @brief SPI error callbacks.
* @param hspi: SPI handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
void GyroL3GD20H::spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void* args) {
transferState = TransferStates::FAILURE;
}

83
hal/src/stm32h7/dma.cpp Normal file
View File

@ -0,0 +1,83 @@
#include <fsfw_hal/stm32h7/dma.h>
#include <stdint.h>
#include <stddef.h>
user_handler_t DMA_1_USER_HANDLERS[8];
user_args_t DMA_1_USER_ARGS[8];
user_handler_t DMA_2_USER_HANDLERS[8];
user_args_t DMA_2_USER_ARGS[8];
void dma::assignDmaUserHandler(DMAIndexes dma_idx, DMAStreams stream_idx,
user_handler_t user_handler, user_args_t user_args) {
if(dma_idx == DMA_1) {
DMA_1_USER_HANDLERS[stream_idx] = user_handler;
DMA_1_USER_ARGS[stream_idx] = user_args;
}
else if(dma_idx == DMA_2) {
DMA_2_USER_HANDLERS[stream_idx] = user_handler;
DMA_2_USER_ARGS[stream_idx] = user_args;
}
}
// The interrupt handlers in the format required for the IRQ vector table
/* Do not change these function names! They need to be exactly equal to the name of the functions
defined in the startup_stm32h743xx.s files! */
#define GENERIC_DMA_IRQ_HANDLER(DMA_IDX, STREAM_IDX) \
if(DMA_##DMA_IDX##_USER_HANDLERS[STREAM_IDX] != NULL) { \
DMA_##DMA_IDX##_USER_HANDLERS[STREAM_IDX](DMA_##DMA_IDX##_USER_ARGS[STREAM_IDX]); \
return; \
} \
Default_Handler() \
extern"C" void DMA1_Stream0_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 0);
}
extern"C" void DMA1_Stream1_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 1);
}
extern"C" void DMA1_Stream2_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 2);
}
extern"C" void DMA1_Stream3_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 3);
}
extern"C" void DMA1_Stream4_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 4);
}
extern"C" void DMA1_Stream5_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 5);
}
extern"C" void DMA1_Stream6_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 6);
}
extern"C" void DMA1_Stream7_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 7);
}
extern"C" void DMA2_Stream0_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 0);
}
extern"C" void DMA2_Stream1_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 1);
}
extern"C" void DMA2_Stream2_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 2);
}
extern"C" void DMA2_Stream3_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 3);
}
extern"C" void DMA2_Stream4_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 4);
}
extern"C" void DMA2_Stream5_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 5);
}
extern"C" void DMA2_Stream6_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 6);
}
extern"C" void DMA2_Stream7_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 7);
}

View File

@ -0,0 +1,3 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
gpio.cpp
)

View File

@ -0,0 +1,71 @@
#include "gpio.h"
#include "stm32h7xx_hal_rcc.h"
void gpio::initializeGpioClock(GPIO_TypeDef* gpioPort) {
#ifdef GPIOA
if(gpioPort == GPIOA) {
__HAL_RCC_GPIOA_CLK_ENABLE();
}
#endif
#ifdef GPIOB
if(gpioPort == GPIOB) {
__HAL_RCC_GPIOB_CLK_ENABLE();
}
#endif
#ifdef GPIOC
if(gpioPort == GPIOC) {
__HAL_RCC_GPIOC_CLK_ENABLE();
}
#endif
#ifdef GPIOD
if(gpioPort == GPIOD) {
__HAL_RCC_GPIOD_CLK_ENABLE();
}
#endif
#ifdef GPIOE
if(gpioPort == GPIOE) {
__HAL_RCC_GPIOE_CLK_ENABLE();
}
#endif
#ifdef GPIOF
if(gpioPort == GPIOF) {
__HAL_RCC_GPIOF_CLK_ENABLE();
}
#endif
#ifdef GPIOG
if(gpioPort == GPIOG) {
__HAL_RCC_GPIOG_CLK_ENABLE();
}
#endif
#ifdef GPIOH
if(gpioPort == GPIOH) {
__HAL_RCC_GPIOH_CLK_ENABLE();
}
#endif
#ifdef GPIOI
if(gpioPort == GPIOI) {
__HAL_RCC_GPIOI_CLK_ENABLE();
}
#endif
#ifdef GPIOJ
if(gpioPort == GPIOJ) {
__HAL_RCC_GPIOJ_CLK_ENABLE();
}
#endif
#ifdef GPIOK
if(gpioPort == GPIOK) {
__HAL_RCC_GPIOK_CLK_ENABLE();
}
#endif
}

View File

@ -0,0 +1,2 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
)

View File

@ -0,0 +1,9 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
spiCore.cpp
spiDefinitions.cpp
spiInterrupts.cpp
mspInit.cpp
SpiCookie.cpp
SpiComIF.cpp
stm32h743ziSpi.cpp
)

View File

@ -0,0 +1,453 @@
#include "SpiComIF.h"
#include "SpiCookie.h"
#include "fsfw/tasks/SemaphoreFactory.h"
#include "fsfw/osal/FreeRTOS/TaskManagement.h"
#include "fsfw_hal/stm32h7/spi/spiCore.h"
#include "fsfw_hal/stm32h7/spi/spiInterrupts.h"
#include "fsfw_hal/stm32h7/spi/mspInit.h"
#include "fsfw_hal/stm32h7/gpio/gpio.h"
#include "stm32h7xx_hal_gpio.h"
SpiComIF::SpiComIF(object_id_t objectId): SystemObject(objectId) {
void* irqArgsVoided = reinterpret_cast<void*>(&irqArgs);
spi::assignTransferRxTxCompleteCallback(&spiTransferCompleteCallback, irqArgsVoided);
spi::assignTransferRxCompleteCallback(&spiTransferRxCompleteCallback, irqArgsVoided);
spi::assignTransferTxCompleteCallback(&spiTransferTxCompleteCallback, irqArgsVoided);
spi::assignTransferErrorCallback(&spiTransferErrorCallback, irqArgsVoided);
}
void SpiComIF::configureCacheMaintenanceOnTxBuffer(bool enable) {
this->cacheMaintenanceOnTxBuffer = enable;
}
void SpiComIF::addDmaHandles(DMA_HandleTypeDef *txHandle, DMA_HandleTypeDef *rxHandle) {
spi::setDmaHandles(txHandle, rxHandle);
}
ReturnValue_t SpiComIF::initialize() {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::initializeInterface(CookieIF *cookie) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error < "SpiComIF::initializeInterface: Invalid cookie" << std::endl;
#else
sif::printError("SpiComIF::initializeInterface: Invalid cookie\n");
#endif
return NULLPOINTER;
}
auto transferMode = spiCookie->getTransferMode();
if(transferMode == spi::TransferModes::DMA) {
DMA_HandleTypeDef *txHandle = nullptr;
DMA_HandleTypeDef *rxHandle = nullptr;
spi::getDmaHandles(&txHandle, &rxHandle);
if(txHandle == nullptr or rxHandle == nullptr) {
sif::printError("SpiComIF::initialize: DMA handles not set!\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
}
// This semaphore ensures thread-safety for a given bus
spiSemaphore = dynamic_cast<BinarySemaphore*>(
SemaphoreFactory::instance()->createBinarySemaphore());
address_t spiAddress = spiCookie->getDeviceAddress();
auto iter = spiDeviceMap.find(spiAddress);
if(iter == spiDeviceMap.end()) {
size_t bufferSize = spiCookie->getMaxRecvSize();
auto statusPair = spiDeviceMap.emplace(spiAddress, SpiInstance(bufferSize));
if (not statusPair.second) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::initializeInterface: Failed to insert device with address " <<
spiAddress << "to SPI device map" << std::endl;
#else
sif::printError("SpiComIF::initializeInterface: Failed to insert device with address "
"%lu to SPI device map\n", static_cast<unsigned long>(spiAddress));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED;
}
}
auto gpioPin = spiCookie->getChipSelectGpioPin();
auto gpioPort = spiCookie->getChipSelectGpioPort();
SPI_HandleTypeDef& spiHandle = spiCookie->getSpiHandle();
auto spiIdx = spiCookie->getSpiIdx();
if(spiIdx == spi::SpiBus::SPI_1) {
#ifdef SPI1
spiHandle.Instance = SPI1;
#endif
}
else if(spiIdx == spi::SpiBus::SPI_2) {
#ifdef SPI2
spiHandle.Instance = SPI2;
#endif
}
else {
printCfgError("SPI Bus Index");
return HasReturnvaluesIF::RETURN_FAILED;
}
auto mspCfg = spiCookie->getMspCfg();
if(transferMode == spi::TransferModes::POLLING) {
auto typedCfg = dynamic_cast<spi::MspPollingConfigStruct*>(mspCfg);
if(typedCfg == nullptr) {
printCfgError("Polling MSP");
return HasReturnvaluesIF::RETURN_FAILED;
}
spi::setSpiPollingMspFunctions(typedCfg);
}
else if(transferMode == spi::TransferModes::INTERRUPT) {
auto typedCfg = dynamic_cast<spi::MspIrqConfigStruct*>(mspCfg);
if(typedCfg == nullptr) {
printCfgError("IRQ MSP");
return HasReturnvaluesIF::RETURN_FAILED;
}
spi::setSpiIrqMspFunctions(typedCfg);
}
else if(transferMode == spi::TransferModes::DMA) {
auto typedCfg = dynamic_cast<spi::MspDmaConfigStruct*>(mspCfg);
if(typedCfg == nullptr) {
printCfgError("DMA MSP");
return HasReturnvaluesIF::RETURN_FAILED;
}
// Check DMA handles
DMA_HandleTypeDef* txHandle = nullptr;
DMA_HandleTypeDef* rxHandle = nullptr;
spi::getDmaHandles(&txHandle, &rxHandle);
if(txHandle == nullptr or rxHandle == nullptr) {
printCfgError("DMA Handle");
return HasReturnvaluesIF::RETURN_FAILED;
}
spi::setSpiDmaMspFunctions(typedCfg);
}
gpio::initializeGpioClock(gpioPort);
GPIO_InitTypeDef chipSelect = {};
chipSelect.Pin = gpioPin;
chipSelect.Mode = GPIO_MODE_OUTPUT_PP;
HAL_GPIO_Init(gpioPort, &chipSelect);
HAL_GPIO_WritePin(gpioPort, gpioPin, GPIO_PIN_SET);
if(HAL_SPI_Init(&spiHandle) != HAL_OK) {
sif::printWarning("SpiComIF::initialize: Error initializing SPI\n");
return HasReturnvaluesIF::RETURN_FAILED;
}
// The MSP configuration struct is not required anymore
spiCookie->deleteMspCfg();
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::sendMessage(CookieIF *cookie, const uint8_t *sendData, size_t sendLen) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
return NULLPOINTER;
}
SPI_HandleTypeDef& spiHandle = spiCookie->getSpiHandle();
auto iter = spiDeviceMap.find(spiCookie->getDeviceAddress());
if(iter == spiDeviceMap.end()) {
return HasReturnvaluesIF::RETURN_FAILED;
}
iter->second.currentTransferLen = sendLen;
auto transferMode = spiCookie->getTransferMode();
switch(spiCookie->getTransferState()) {
case(spi::TransferStates::IDLE): {
break;
}
case(spi::TransferStates::WAIT):
case(spi::TransferStates::FAILURE):
case(spi::TransferStates::SUCCESS):
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
switch(transferMode) {
case(spi::TransferModes::POLLING): {
return handlePollingSendOperation(iter->second.replyBuffer.data(), spiHandle, *spiCookie,
sendData, sendLen);
}
case(spi::TransferModes::INTERRUPT): {
return handleInterruptSendOperation(iter->second.replyBuffer.data(), spiHandle, *spiCookie,
sendData, sendLen);
}
case(spi::TransferModes::DMA): {
return handleDmaSendOperation(iter->second.replyBuffer.data(), spiHandle, *spiCookie,
sendData, sendLen);
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::getSendSuccess(CookieIF *cookie) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::requestReceiveMessage(CookieIF *cookie, size_t requestLen) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::readReceivedMessage(CookieIF *cookie, uint8_t **buffer, size_t *size) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
return NULLPOINTER;
}
switch(spiCookie->getTransferState()) {
case(spi::TransferStates::SUCCESS): {
auto iter = spiDeviceMap.find(spiCookie->getDeviceAddress());
if(iter == spiDeviceMap.end()) {
return HasReturnvaluesIF::RETURN_FAILED;
}
*buffer = iter->second.replyBuffer.data();
*size = iter->second.currentTransferLen;
spiCookie->setTransferState(spi::TransferStates::IDLE);
break;
}
case(spi::TransferStates::FAILURE): {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::readReceivedMessage: Transfer failure" << std::endl;
#else
sif::printWarning("SpiComIF::readReceivedMessage: Transfer failure\n");
#endif
#endif
spiCookie->setTransferState(spi::TransferStates::IDLE);
return HasReturnvaluesIF::RETURN_FAILED;
}
case(spi::TransferStates::WAIT):
case(spi::TransferStates::IDLE): {
break;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
void SpiComIF::setDefaultPollingTimeout(dur_millis_t timeout) {
this->defaultPollingTimeout = timeout;
}
ReturnValue_t SpiComIF::handlePollingSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t *sendData, size_t sendLen) {
auto gpioPort = spiCookie.getChipSelectGpioPort();
auto gpioPin = spiCookie.getChipSelectGpioPin();
auto returnval = spiSemaphore->acquire(timeoutType, timeoutMs);
if(returnval != HasReturnvaluesIF::RETURN_OK) {
return returnval;
}
spiCookie.setTransferState(spi::TransferStates::WAIT);
HAL_GPIO_WritePin(gpioPort, gpioPin, GPIO_PIN_RESET);
auto result = HAL_SPI_TransmitReceive(&spiHandle, const_cast<uint8_t*>(sendData),
recvPtr, sendLen, defaultPollingTimeout);
HAL_GPIO_WritePin(gpioPort, gpioPin, GPIO_PIN_SET);
spiSemaphore->release();
switch(result) {
case(HAL_OK): {
spiCookie.setTransferState(spi::TransferStates::SUCCESS);
break;
}
case(HAL_TIMEOUT): {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Polling Mode | Timeout for SPI device" <<
spiCookie->getDeviceAddress() << std::endl;
#else
sif::printWarning("SpiComIF::sendMessage: Polling Mode | Timeout for SPI device %d\n",
spiCookie.getDeviceAddress());
#endif
#endif
spiCookie.setTransferState(spi::TransferStates::FAILURE);
return spi::HAL_TIMEOUT_RETVAL;
}
case(HAL_ERROR):
default: {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Polling Mode | HAL error for SPI device" <<
spiCookie->getDeviceAddress() << std::endl;
#else
sif::printWarning("SpiComIF::sendMessage: Polling Mode | HAL error for SPI device %d\n",
spiCookie.getDeviceAddress());
#endif
#endif
spiCookie.setTransferState(spi::TransferStates::FAILURE);
return spi::HAL_ERROR_RETVAL;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::handleInterruptSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen) {
return handleIrqSendOperation(recvPtr, spiHandle, spiCookie, sendData, sendLen);
}
ReturnValue_t SpiComIF::handleDmaSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen) {
return handleIrqSendOperation(recvPtr, spiHandle, spiCookie, sendData, sendLen);
}
ReturnValue_t SpiComIF::handleIrqSendOperation(uint8_t *recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t *sendData, size_t sendLen) {
ReturnValue_t result = genericIrqSendSetup(recvPtr, spiHandle, spiCookie, sendData, sendLen);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
// yet another HAL driver which is not const-correct..
HAL_StatusTypeDef status = HAL_OK;
auto transferMode = spiCookie.getTransferMode();
if(transferMode == spi::TransferModes::DMA) {
if(cacheMaintenanceOnTxBuffer) {
/* Clean D-cache. Make sure the address is 32-byte aligned and add 32-bytes to length,
in case it overlaps cacheline */
SCB_CleanDCache_by_Addr((uint32_t*)(((uint32_t) sendData ) & ~(uint32_t)0x1F),
sendLen + 32);
}
status = HAL_SPI_TransmitReceive_DMA(&spiHandle, const_cast<uint8_t*>(sendData),
currentRecvPtr, sendLen);
}
else {
status = HAL_SPI_TransmitReceive_IT(&spiHandle, const_cast<uint8_t*>(sendData),
currentRecvPtr, sendLen);
}
switch(status) {
case(HAL_OK): {
break;
}
default: {
return halErrorHandler(status, transferMode);
}
}
return result;
}
ReturnValue_t SpiComIF::halErrorHandler(HAL_StatusTypeDef status, spi::TransferModes transferMode) {
char modeString[10];
if(transferMode == spi::TransferModes::DMA) {
std::snprintf(modeString, sizeof(modeString), "Dma");
}
else {
std::snprintf(modeString, sizeof(modeString), "Interrupt");
}
sif::printWarning("SpiComIF::handle%sSendOperation: HAL error %d occured\n", modeString,
status);
switch(status) {
case(HAL_BUSY): {
return spi::HAL_BUSY_RETVAL;
}
case(HAL_ERROR): {
return spi::HAL_ERROR_RETVAL;
}
case(HAL_TIMEOUT): {
return spi::HAL_TIMEOUT_RETVAL;
}
default: {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
}
ReturnValue_t SpiComIF::genericIrqSendSetup(uint8_t *recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t *sendData, size_t sendLen) {
currentRecvPtr = recvPtr;
currentRecvBuffSize = sendLen;
// Take the semaphore which will be released by a callback when the transfer is complete
ReturnValue_t result = spiSemaphore->acquire(SemaphoreIF::TimeoutType::WAITING, timeoutMs);
if(result != HasReturnvaluesIF::RETURN_OK) {
// Configuration error
sif::printWarning("SpiComIF::handleInterruptSendOperation: Semaphore "
"could not be acquired after %d ms\n", timeoutMs);
return result;
}
// Cache the current SPI handle in any case
spi::setSpiHandle(&spiHandle);
// Assign the IRQ arguments for the user callbacks
irqArgs.comIF = this;
irqArgs.spiCookie = &spiCookie;
// The SPI handle is passed to the default SPI callback as a void argument. This callback
// is different from the user callbacks specified above!
spi::assignSpiUserArgs(spiCookie.getSpiIdx(), reinterpret_cast<void*>(&spiHandle));
HAL_GPIO_WritePin(spiCookie.getChipSelectGpioPort(), spiCookie.getChipSelectGpioPin(),
GPIO_PIN_RESET);
return HasReturnvaluesIF::RETURN_OK;
}
void SpiComIF::spiTransferTxCompleteCallback(SPI_HandleTypeDef *hspi, void *args) {
genericIrqHandler(args, spi::TransferStates::SUCCESS);
}
void SpiComIF::spiTransferRxCompleteCallback(SPI_HandleTypeDef *hspi, void *args) {
genericIrqHandler(args, spi::TransferStates::SUCCESS);
}
void SpiComIF::spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void *args) {
genericIrqHandler(args, spi::TransferStates::SUCCESS);
}
void SpiComIF::spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void *args) {
genericIrqHandler(args, spi::TransferStates::FAILURE);
}
void SpiComIF::genericIrqHandler(void *irqArgsVoid, spi::TransferStates targetState) {
IrqArgs* irqArgs = reinterpret_cast<IrqArgs*>(irqArgsVoid);
if(irqArgs == nullptr) {
return;
}
SpiCookie* spiCookie = irqArgs->spiCookie;
SpiComIF* comIF = irqArgs->comIF;
if(spiCookie == nullptr or comIF == nullptr) {
return;
}
spiCookie->setTransferState(targetState);
// Pull CS pin high again
HAL_GPIO_WritePin(spiCookie->getChipSelectGpioPort(), spiCookie->getChipSelectGpioPin(),
GPIO_PIN_SET);
// Release the task semaphore
BaseType_t taskWoken = pdFALSE;
ReturnValue_t result = BinarySemaphore::releaseFromISR(comIF->spiSemaphore->getSemaphore(),
&taskWoken);
if(result != HasReturnvaluesIF::RETURN_OK) {
// Configuration error
printf("SpiComIF::genericIrqHandler: Failure releasing Semaphore!\n");
}
// Perform cache maintenance operation for DMA transfers
if(spiCookie->getTransferMode() == spi::TransferModes::DMA) {
// Invalidate cache prior to access by CPU
SCB_InvalidateDCache_by_Addr ((uint32_t *) comIF->currentRecvPtr,
comIF->currentRecvBuffSize);
}
/* Request a context switch if the SPI ComIF task was woken up and has a higher priority
than the currently running task */
if(taskWoken == pdTRUE) {
TaskManagement::requestContextSwitch(CallContext::ISR);
}
}
void SpiComIF::printCfgError(const char *const type) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::initializeInterface: Invalid " << type << " configuration"
<< std::endl;
#else
sif::printWarning("SpiComIF::initializeInterface: Invalid %s configuration\n", type);
#endif
}

View File

@ -0,0 +1,78 @@
#include "SpiCookie.h"
SpiCookie::SpiCookie(address_t deviceAddress, spi::SpiBus spiIdx, spi::TransferModes transferMode,
spi::MspCfgBase* mspCfg, uint32_t spiSpeed, spi::SpiModes spiMode,
uint16_t chipSelectGpioPin, GPIO_TypeDef* chipSelectGpioPort, size_t maxRecvSize):
deviceAddress(deviceAddress), spiIdx(spiIdx), spiSpeed(spiSpeed), spiMode(spiMode),
transferMode(transferMode), chipSelectGpioPin(chipSelectGpioPin),
chipSelectGpioPort(chipSelectGpioPort), mspCfg(mspCfg), maxRecvSize(maxRecvSize) {
spiHandle.Init.DataSize = SPI_DATASIZE_8BIT;
spiHandle.Init.FirstBit = SPI_FIRSTBIT_MSB;
spiHandle.Init.TIMode = SPI_TIMODE_DISABLE;
spiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
spiHandle.Init.CRCPolynomial = 7;
spiHandle.Init.CRCLength = SPI_CRC_LENGTH_8BIT;
spiHandle.Init.NSS = SPI_NSS_SOFT;
spiHandle.Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
spiHandle.Init.Direction = SPI_DIRECTION_2LINES;
// Recommended setting to avoid glitches
spiHandle.Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
spiHandle.Init.Mode = SPI_MODE_MASTER;
spi::assignSpiMode(spiMode, spiHandle);
spiHandle.Init.BaudRatePrescaler = spi::getPrescaler(HAL_RCC_GetHCLKFreq(), spiSpeed);
}
uint16_t SpiCookie::getChipSelectGpioPin() const {
return chipSelectGpioPin;
}
GPIO_TypeDef* SpiCookie::getChipSelectGpioPort() {
return chipSelectGpioPort;
}
address_t SpiCookie::getDeviceAddress() const {
return deviceAddress;
}
spi::SpiBus SpiCookie::getSpiIdx() const {
return spiIdx;
}
spi::SpiModes SpiCookie::getSpiMode() const {
return spiMode;
}
uint32_t SpiCookie::getSpiSpeed() const {
return spiSpeed;
}
size_t SpiCookie::getMaxRecvSize() const {
return maxRecvSize;
}
SPI_HandleTypeDef& SpiCookie::getSpiHandle() {
return spiHandle;
}
spi::MspCfgBase* SpiCookie::getMspCfg() {
return mspCfg;
}
void SpiCookie::deleteMspCfg() {
if(mspCfg != nullptr) {
delete mspCfg;
}
}
spi::TransferModes SpiCookie::getTransferMode() const {
return transferMode;
}
void SpiCookie::setTransferState(spi::TransferStates transferState) {
this->transferState = transferState;
}
spi::TransferStates SpiCookie::getTransferState() const {
return this->transferState;
}

View File

@ -0,0 +1,252 @@
#include <fsfw_hal/stm32h7/dma.h>
#include "mspInit.h"
#include "spiCore.h"
#include "spiInterrupts.h"
#include "stm32h743xx.h"
#include "stm32h7xx_hal_spi.h"
#include "stm32h7xx_hal_dma.h"
#include "stm32h7xx_hal_def.h"
#include <stdio.h>
spi::msp_func_t mspInitFunc = nullptr;
spi::MspCfgBase* mspInitArgs = nullptr;
spi::msp_func_t mspDeinitFunc = nullptr;
spi::MspCfgBase* mspDeinitArgs = nullptr;
/**
* @brief SPI MSP Initialization
* This function configures the hardware resources used in this example:
* - Peripheral's clock enable
* - Peripheral's GPIO Configuration
* - DMA configuration for transmission request by peripheral
* - NVIC configuration for DMA interrupt request enable
* @param hspi: SPI handle pointer
* @retval None
*/
void spi::halMspInitDma(SPI_HandleTypeDef* hspi, MspCfgBase* cfgBase) {
auto cfg = dynamic_cast<MspDmaConfigStruct*>(cfgBase);
if(hspi == nullptr or cfg == nullptr) {
return;
}
setSpiHandle(hspi);
DMA_HandleTypeDef* hdma_tx = nullptr;
DMA_HandleTypeDef* hdma_rx = nullptr;
spi::getDmaHandles(&hdma_tx, &hdma_rx);
if(hdma_tx == nullptr or hdma_rx == nullptr) {
printf("HAL_SPI_MspInit: Invalid DMA handles. Make sure to call setDmaHandles!\n");
return;
}
spi::halMspInitInterrupt(hspi, cfg);
// DMA setup
if(cfg->dmaClkEnableWrapper == nullptr) {
mspErrorHandler("spi::halMspInitDma", "DMA Clock init invalid");
}
cfg->dmaClkEnableWrapper();
// Configure the DMA
/* Configure the DMA handler for Transmission process */
if(hdma_tx->Instance == nullptr) {
// Assume it was not configured properly
mspErrorHandler("spi::halMspInitDma", "DMA TX handle invalid");
}
HAL_DMA_Init(hdma_tx);
/* Associate the initialized DMA handle to the the SPI handle */
__HAL_LINKDMA(hspi, hdmatx, *hdma_tx);
HAL_DMA_Init(hdma_rx);
/* Associate the initialized DMA handle to the the SPI handle */
__HAL_LINKDMA(hspi, hdmarx, *hdma_rx);
/*##-4- Configure the NVIC for DMA #########################################*/
/* NVIC configuration for DMA transfer complete interrupt (SPI1_RX) */
// Assign the interrupt handler
dma::assignDmaUserHandler(cfg->rxDmaIndex, cfg->rxDmaStream, &spi::dmaRxIrqHandler, hdma_rx);
HAL_NVIC_SetPriority(cfg->rxDmaIrqNumber, cfg->rxPreEmptPriority, cfg->rxSubpriority);
HAL_NVIC_EnableIRQ(cfg->rxDmaIrqNumber);
/* NVIC configuration for DMA transfer complete interrupt (SPI1_TX) */
// Assign the interrupt handler
dma::assignDmaUserHandler(cfg->txDmaIndex, cfg->txDmaStream,
&spi::dmaTxIrqHandler, hdma_tx);
HAL_NVIC_SetPriority(cfg->txDmaIrqNumber, cfg->txPreEmptPriority, cfg->txSubpriority);
HAL_NVIC_EnableIRQ(cfg->txDmaIrqNumber);
}
/**
* @brief SPI MSP De-Initialization
* This function frees the hardware resources used in this example:
* - Disable the Peripheral's clock
* - Revert GPIO, DMA and NVIC configuration to their default state
* @param hspi: SPI handle pointer
* @retval None
*/
void spi::halMspDeinitDma(SPI_HandleTypeDef* hspi, MspCfgBase* cfgBase) {
auto cfg = dynamic_cast<MspDmaConfigStruct*>(cfgBase);
if(hspi == nullptr or cfg == nullptr) {
return;
}
spi::halMspDeinitInterrupt(hspi, cfgBase);
DMA_HandleTypeDef* hdma_tx = NULL;
DMA_HandleTypeDef* hdma_rx = NULL;
spi::getDmaHandles(&hdma_tx, &hdma_rx);
if(hdma_tx == NULL || hdma_rx == NULL) {
printf("HAL_SPI_MspInit: Invalid DMA handles. Make sure to call setDmaHandles!\n");
}
else {
// Disable the DMA
/* De-Initialize the DMA associated to transmission process */
HAL_DMA_DeInit(hdma_tx);
/* De-Initialize the DMA associated to reception process */
HAL_DMA_DeInit(hdma_rx);
}
// Disable the NVIC for DMA
HAL_NVIC_DisableIRQ(cfg->txDmaIrqNumber);
HAL_NVIC_DisableIRQ(cfg->rxDmaIrqNumber);
}
void spi::halMspInitPolling(SPI_HandleTypeDef* hspi, MspCfgBase* cfgBase) {
auto cfg = dynamic_cast<MspPollingConfigStruct*>(cfgBase);
GPIO_InitTypeDef GPIO_InitStruct = {};
/*##-1- Enable peripherals and GPIO Clocks #################################*/
/* Enable GPIO TX/RX clock */
cfg->setupMacroWrapper();
/*##-2- Configure peripheral GPIO ##########################################*/
/* SPI SCK GPIO pin configuration */
GPIO_InitStruct.Pin = cfg->sckPin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = cfg->sckAlternateFunction;
HAL_GPIO_Init(cfg->sckPort, &GPIO_InitStruct);
/* SPI MISO GPIO pin configuration */
GPIO_InitStruct.Pin = cfg->misoPin;
GPIO_InitStruct.Alternate = cfg->misoAlternateFunction;
HAL_GPIO_Init(cfg->misoPort, &GPIO_InitStruct);
/* SPI MOSI GPIO pin configuration */
GPIO_InitStruct.Pin = cfg->mosiPin;
GPIO_InitStruct.Alternate = cfg->mosiAlternateFunction;
HAL_GPIO_Init(cfg->mosiPort, &GPIO_InitStruct);
}
void spi::halMspDeinitPolling(SPI_HandleTypeDef* hspi, MspCfgBase* cfgBase) {
auto cfg = reinterpret_cast<MspPollingConfigStruct*>(cfgBase);
// Reset peripherals
cfg->cleanUpMacroWrapper();
// Disable peripherals and GPIO Clocks
/* Configure SPI SCK as alternate function */
HAL_GPIO_DeInit(cfg->sckPort, cfg->sckPin);
/* Configure SPI MISO as alternate function */
HAL_GPIO_DeInit(cfg->misoPort, cfg->misoPin);
/* Configure SPI MOSI as alternate function */
HAL_GPIO_DeInit(cfg->mosiPort, cfg->mosiPin);
}
void spi::halMspInitInterrupt(SPI_HandleTypeDef* hspi, MspCfgBase* cfgBase) {
auto cfg = dynamic_cast<MspIrqConfigStruct*>(cfgBase);
if(cfg == nullptr or hspi == nullptr) {
return;
}
spi::halMspInitPolling(hspi, cfg);
// Configure the NVIC for SPI
spi::assignSpiUserHandler(cfg->spiBus, cfg->spiIrqHandler, cfg->spiUserArgs);
HAL_NVIC_SetPriority(cfg->spiIrqNumber, cfg->preEmptPriority, cfg->subpriority);
HAL_NVIC_EnableIRQ(cfg->spiIrqNumber);
}
void spi::halMspDeinitInterrupt(SPI_HandleTypeDef* hspi, MspCfgBase* cfgBase) {
auto cfg = dynamic_cast<MspIrqConfigStruct*>(cfgBase);
spi::halMspDeinitPolling(hspi, cfg);
// Disable the NVIC for SPI
HAL_NVIC_DisableIRQ(cfg->spiIrqNumber);
}
void spi::getMspInitFunction(msp_func_t* init_func, MspCfgBase** args) {
if(init_func != NULL && args != NULL) {
*init_func = mspInitFunc;
*args = mspInitArgs;
}
}
void spi::getMspDeinitFunction(msp_func_t* deinit_func, MspCfgBase** args) {
if(deinit_func != NULL && args != NULL) {
*deinit_func = mspDeinitFunc;
*args = mspDeinitArgs;
}
}
void spi::setSpiDmaMspFunctions(MspDmaConfigStruct* cfg,
msp_func_t initFunc, msp_func_t deinitFunc) {
mspInitFunc = initFunc;
mspDeinitFunc = deinitFunc;
mspInitArgs = cfg;
mspDeinitArgs = cfg;
}
void spi::setSpiIrqMspFunctions(MspIrqConfigStruct *cfg, msp_func_t initFunc,
msp_func_t deinitFunc) {
mspInitFunc = initFunc;
mspDeinitFunc = deinitFunc;
mspInitArgs = cfg;
mspDeinitArgs = cfg;
}
void spi::setSpiPollingMspFunctions(MspPollingConfigStruct *cfg, msp_func_t initFunc,
msp_func_t deinitFunc) {
mspInitFunc = initFunc;
mspDeinitFunc = deinitFunc;
mspInitArgs = cfg;
mspDeinitArgs = cfg;
}
/**
* @brief SPI MSP Initialization
* This function configures the hardware resources used in this example:
* - Peripheral's clock enable
* - Peripheral's GPIO Configuration
* - DMA configuration for transmission request by peripheral
* - NVIC configuration for DMA interrupt request enable
* @param hspi: SPI handle pointer
* @retval None
*/
extern "C" void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi) {
if(mspInitFunc != NULL) {
mspInitFunc(hspi, mspInitArgs);
}
else {
printf("HAL_SPI_MspInit: Please call set_msp_functions to assign SPI MSP functions\n");
}
}
/**
* @brief SPI MSP De-Initialization
* This function frees the hardware resources used in this example:
* - Disable the Peripheral's clock
* - Revert GPIO, DMA and NVIC configuration to their default state
* @param hspi: SPI handle pointer
* @retval None
*/
extern "C" void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi) {
if(mspDeinitFunc != NULL) {
mspDeinitFunc(hspi, mspDeinitArgs);
}
else {
printf("HAL_SPI_MspDeInit: Please call set_msp_functions to assign SPI MSP functions\n");
}
}
void spi::mspErrorHandler(const char* const function, const char *const message) {
printf("%s failure: %s\n", function, message);
}

View File

@ -0,0 +1,340 @@
#include "spiDefinitions.h"
#include "spiCore.h"
#include <cstdio>
SPI_HandleTypeDef* spiHandle = nullptr;
DMA_HandleTypeDef* hdmaTx = nullptr;
DMA_HandleTypeDef* hdmaRx = nullptr;
spi_transfer_cb_t rxTxCb = nullptr;
void* rxTxArgs = nullptr;
spi_transfer_cb_t txCb = nullptr;
void* txArgs = nullptr;
spi_transfer_cb_t rxCb = nullptr;
void* rxArgs = nullptr;
spi_transfer_cb_t errorCb = nullptr;
void* errorArgs = nullptr;
void mapIndexAndStream(DMA_HandleTypeDef* handle, dma::DMAType dmaType, dma::DMAIndexes dmaIdx,
dma::DMAStreams dmaStream, IRQn_Type* dmaIrqNumber);
void mapSpiBus(DMA_HandleTypeDef *handle, dma::DMAType dmaType, spi::SpiBus spiBus);
void spi::configureDmaHandle(DMA_HandleTypeDef *handle, spi::SpiBus spiBus, dma::DMAType dmaType,
dma::DMAIndexes dmaIdx, dma::DMAStreams dmaStream, IRQn_Type* dmaIrqNumber,
uint32_t dmaMode, uint32_t dmaPriority) {
using namespace dma;
mapIndexAndStream(handle, dmaType, dmaIdx, dmaStream, dmaIrqNumber);
mapSpiBus(handle, dmaType, spiBus);
if(dmaType == DMAType::TX) {
handle->Init.Direction = DMA_MEMORY_TO_PERIPH;
}
else {
handle->Init.Direction = DMA_PERIPH_TO_MEMORY;
}
handle->Init.Priority = dmaPriority;
handle->Init.Mode = dmaMode;
// Standard settings for the rest for now
handle->Init.FIFOMode = DMA_FIFOMODE_DISABLE;
handle->Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
handle->Init.MemBurst = DMA_MBURST_INC4;
handle->Init.PeriphBurst = DMA_PBURST_INC4;
handle->Init.PeriphInc = DMA_PINC_DISABLE;
handle->Init.MemInc = DMA_MINC_ENABLE;
handle->Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
handle->Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
}
void spi::setDmaHandles(DMA_HandleTypeDef* txHandle, DMA_HandleTypeDef* rxHandle) {
hdmaTx = txHandle;
hdmaRx = rxHandle;
}
void spi::getDmaHandles(DMA_HandleTypeDef** txHandle, DMA_HandleTypeDef** rxHandle) {
*txHandle = hdmaTx;
*rxHandle = hdmaRx;
}
void spi::setSpiHandle(SPI_HandleTypeDef *spiHandle_) {
if(spiHandle_ == NULL) {
return;
}
spiHandle = spiHandle_;
}
void spi::assignTransferRxTxCompleteCallback(spi_transfer_cb_t callback, void *userArgs) {
rxTxCb = callback;
rxTxArgs = userArgs;
}
void spi::assignTransferRxCompleteCallback(spi_transfer_cb_t callback, void *userArgs) {
rxCb = callback;
rxArgs = userArgs;
}
void spi::assignTransferTxCompleteCallback(spi_transfer_cb_t callback, void *userArgs) {
txCb = callback;
txArgs = userArgs;
}
void spi::assignTransferErrorCallback(spi_transfer_cb_t callback, void *userArgs) {
errorCb = callback;
errorArgs = userArgs;
}
SPI_HandleTypeDef* spi::getSpiHandle() {
return spiHandle;
}
/**
* @brief TxRx Transfer completed callback.
* @param hspi: SPI handle
*/
extern "C" void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi) {
if(rxTxCb != NULL) {
rxTxCb(hspi, rxTxArgs);
}
else {
printf("HAL_SPI_TxRxCpltCallback: No user callback specified\n");
}
}
/**
* @brief TxRx Transfer completed callback.
* @param hspi: SPI handle
*/
extern "C" void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi) {
if(txCb != NULL) {
txCb(hspi, txArgs);
}
else {
printf("HAL_SPI_TxCpltCallback: No user callback specified\n");
}
}
/**
* @brief TxRx Transfer completed callback.
* @param hspi: SPI handle
*/
extern "C" void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi) {
if(rxCb != nullptr) {
rxCb(hspi, rxArgs);
}
else {
printf("HAL_SPI_RxCpltCallback: No user callback specified\n");
}
}
/**
* @brief SPI error callbacks.
* @param hspi: SPI handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
extern "C" void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi) {
if(errorCb != nullptr) {
errorCb(hspi, rxArgs);
}
else {
printf("HAL_SPI_ErrorCallback: No user callback specified\n");
}
}
void mapIndexAndStream(DMA_HandleTypeDef* handle, dma::DMAType dmaType, dma::DMAIndexes dmaIdx,
dma::DMAStreams dmaStream, IRQn_Type* dmaIrqNumber) {
using namespace dma;
if(dmaIdx == DMAIndexes::DMA_1) {
#ifdef DMA1
switch(dmaStream) {
case(DMAStreams::STREAM_0): {
#ifdef DMA1_Stream0
handle->Instance = DMA1_Stream0;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream0_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_1): {
#ifdef DMA1_Stream1
handle->Instance = DMA1_Stream1;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream1_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_2): {
#ifdef DMA1_Stream2
handle->Instance = DMA1_Stream2;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream2_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_3): {
#ifdef DMA1_Stream3
handle->Instance = DMA1_Stream3;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream3_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_4): {
#ifdef DMA1_Stream4
handle->Instance = DMA1_Stream4;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream4_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_5): {
#ifdef DMA1_Stream5
handle->Instance = DMA1_Stream5;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream5_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_6): {
#ifdef DMA1_Stream6
handle->Instance = DMA1_Stream6;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream6_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_7): {
#ifdef DMA1_Stream7
handle->Instance = DMA1_Stream7;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA1_Stream7_IRQn;
}
#endif
break;
}
}
if(dmaType == DMAType::TX) {
handle->Init.Request = DMA_REQUEST_SPI1_TX;
}
else {
handle->Init.Request = DMA_REQUEST_SPI1_RX;
}
#endif /* DMA1 */
}
if(dmaIdx == DMAIndexes::DMA_2) {
#ifdef DMA2
switch(dmaStream) {
case(DMAStreams::STREAM_0): {
#ifdef DMA2_Stream0
handle->Instance = DMA2_Stream0;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream0_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_1): {
#ifdef DMA2_Stream1
handle->Instance = DMA2_Stream1;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream1_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_2): {
#ifdef DMA2_Stream2
handle->Instance = DMA2_Stream2;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream2_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_3): {
#ifdef DMA2_Stream3
handle->Instance = DMA2_Stream3;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream3_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_4): {
#ifdef DMA2_Stream4
handle->Instance = DMA2_Stream4;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream4_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_5): {
#ifdef DMA2_Stream5
handle->Instance = DMA2_Stream5;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream5_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_6): {
#ifdef DMA2_Stream6
handle->Instance = DMA2_Stream6;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream6_IRQn;
}
#endif
break;
}
case(DMAStreams::STREAM_7): {
#ifdef DMA2_Stream7
handle->Instance = DMA2_Stream7;
if(dmaIrqNumber != nullptr) {
*dmaIrqNumber = DMA2_Stream7_IRQn;
}
#endif
break;
}
}
#endif /* DMA2 */
}
}
void mapSpiBus(DMA_HandleTypeDef *handle, dma::DMAType dmaType, spi::SpiBus spiBus) {
if(dmaType == dma::DMAType::TX) {
if(spiBus == spi::SpiBus::SPI_1) {
#ifdef DMA_REQUEST_SPI1_TX
handle->Init.Request = DMA_REQUEST_SPI1_TX;
#endif
}
else if(spiBus == spi::SpiBus::SPI_2) {
#ifdef DMA_REQUEST_SPI2_TX
handle->Init.Request = DMA_REQUEST_SPI2_TX;
#endif
}
}
else {
if(spiBus == spi::SpiBus::SPI_1) {
#ifdef DMA_REQUEST_SPI1_RX
handle->Init.Request = DMA_REQUEST_SPI1_RX;
#endif
}
else if(spiBus == spi::SpiBus::SPI_2) {
#ifdef DMA_REQUEST_SPI2_RX
handle->Init.Request = DMA_REQUEST_SPI2_RX;
#endif
}
}
}

View File

@ -0,0 +1,52 @@
#include "spiDefinitions.h"
void spi::assignSpiMode(SpiModes spiMode, SPI_HandleTypeDef& spiHandle) {
switch(spiMode) {
case(SpiModes::MODE_0): {
spiHandle.Init.CLKPolarity = SPI_POLARITY_LOW;
spiHandle.Init.CLKPhase = SPI_PHASE_1EDGE;
break;
}
case(SpiModes::MODE_1): {
spiHandle.Init.CLKPolarity = SPI_POLARITY_LOW;
spiHandle.Init.CLKPhase = SPI_PHASE_2EDGE;
break;
}
case(SpiModes::MODE_2): {
spiHandle.Init.CLKPolarity = SPI_POLARITY_HIGH;
spiHandle.Init.CLKPhase = SPI_PHASE_1EDGE;
break;
}
case(SpiModes::MODE_3): {
spiHandle.Init.CLKPolarity = SPI_POLARITY_HIGH;
spiHandle.Init.CLKPhase = SPI_PHASE_2EDGE;
break;
}
}
}
uint32_t spi::getPrescaler(uint32_t clock_src_freq, uint32_t baudrate_mbps) {
uint32_t divisor = 0;
uint32_t spi_clk = clock_src_freq;
uint32_t presc = 0;
static const uint32_t baudrate[] = {
SPI_BAUDRATEPRESCALER_2,
SPI_BAUDRATEPRESCALER_4,
SPI_BAUDRATEPRESCALER_8,
SPI_BAUDRATEPRESCALER_16,
SPI_BAUDRATEPRESCALER_32,
SPI_BAUDRATEPRESCALER_64,
SPI_BAUDRATEPRESCALER_128,
SPI_BAUDRATEPRESCALER_256,
};
while( spi_clk > baudrate_mbps) {
presc = baudrate[divisor];
if (++divisor > 7)
break;
spi_clk = ( spi_clk >> 1);
}
return presc;
}

View File

@ -0,0 +1,106 @@
#include "spiInterrupts.h"
#include "spiCore.h"
#include "stm32h7xx_hal.h"
#include "stm32h7xx_hal_dma.h"
#include "stm32h7xx_hal_spi.h"
#include <stddef.h>
user_handler_t spi1UserHandler = &spi::spiIrqHandler;
user_args_t spi1UserArgs = nullptr;
user_handler_t spi2UserHandler = &spi::spiIrqHandler;
user_args_t spi2UserArgs = nullptr;
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void spi::dmaRxIrqHandler(void* dmaHandle) {
if(dmaHandle == nullptr) {
return;
}
HAL_DMA_IRQHandler((DMA_HandleTypeDef *) dmaHandle);
}
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void spi::dmaTxIrqHandler(void* dmaHandle) {
if(dmaHandle == nullptr) {
return;
}
HAL_DMA_IRQHandler((DMA_HandleTypeDef *) dmaHandle);
}
/**
* @brief This function handles SPIx interrupt request.
* @param None
* @retval None
*/
void spi::spiIrqHandler(void* spiHandle) {
if(spiHandle == nullptr) {
return;
}
//auto currentSpiHandle = spi::getSpiHandle();
HAL_SPI_IRQHandler((SPI_HandleTypeDef *) spiHandle);
}
void spi::assignSpiUserHandler(spi::SpiBus spiIdx, user_handler_t userHandler,
user_args_t userArgs) {
if(spiIdx == spi::SpiBus::SPI_1) {
spi1UserHandler = userHandler;
spi1UserArgs = userArgs;
}
else {
spi2UserHandler = userHandler;
spi2UserArgs = userArgs;
}
}
void spi::getSpiUserHandler(spi::SpiBus spiBus, user_handler_t *userHandler,
user_args_t *userArgs) {
if(userHandler == nullptr or userArgs == nullptr) {
return;
}
if(spiBus == spi::SpiBus::SPI_1) {
*userArgs = spi1UserArgs;
*userHandler = spi1UserHandler;
}
else {
*userArgs = spi2UserArgs;
*userHandler = spi2UserHandler;
}
}
void spi::assignSpiUserArgs(spi::SpiBus spiBus, user_args_t userArgs) {
if(spiBus == spi::SpiBus::SPI_1) {
spi1UserArgs = userArgs;
}
else {
spi2UserArgs = userArgs;
}
}
/* Do not change these function names! They need to be exactly equal to the name of the functions
defined in the startup_stm32h743xx.s files! */
extern "C" void SPI1_IRQHandler() {
if(spi1UserHandler != NULL) {
spi1UserHandler(spi1UserArgs);
return;
}
Default_Handler();
}
extern "C" void SPI2_IRQHandler() {
if(spi2UserHandler != nullptr) {
spi2UserHandler(spi2UserArgs);
return;
}
Default_Handler();
}

View File

@ -0,0 +1,81 @@
#include "stm32h743ziSpi.h"
#include "spiCore.h"
#include "spiInterrupts.h"
#include "stm32h7xx_hal.h"
#include "stm32h7xx_hal_rcc.h"
#include <cstdio>
void spiSetupWrapper() {
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_SPI1_CLK_ENABLE();
}
void spiCleanUpWrapper() {
__HAL_RCC_SPI1_FORCE_RESET();
__HAL_RCC_SPI1_RELEASE_RESET();
}
void spiDmaClockEnableWrapper() {
__HAL_RCC_DMA2_CLK_ENABLE();
}
void spi::h743zi::standardPollingCfg(MspPollingConfigStruct& cfg) {
cfg.setupMacroWrapper = &spiSetupWrapper;
cfg.cleanUpMacroWrapper = &spiCleanUpWrapper;
cfg.sckPort = GPIOA;
cfg.sckPin = GPIO_PIN_5;
cfg.misoPort = GPIOA;
cfg.misoPin = GPIO_PIN_6;
cfg.mosiPort = GPIOA;
cfg.mosiPin = GPIO_PIN_7;
cfg.sckAlternateFunction = GPIO_AF5_SPI1;
cfg.mosiAlternateFunction = GPIO_AF5_SPI1;
cfg.misoAlternateFunction = GPIO_AF5_SPI1;
}
void spi::h743zi::standardInterruptCfg(MspIrqConfigStruct& cfg, IrqPriorities spiIrqPrio,
IrqPriorities spiSubprio) {
// High, but works on FreeRTOS as well (priorities range from 0 to 15)
cfg.preEmptPriority = spiIrqPrio;
cfg.subpriority = spiSubprio;
cfg.spiIrqNumber = SPI1_IRQn;
cfg.spiBus = SpiBus::SPI_1;
user_handler_t spiUserHandler = nullptr;
user_args_t spiUserArgs = nullptr;
getSpiUserHandler(spi::SpiBus::SPI_1, &spiUserHandler, &spiUserArgs);
if(spiUserHandler == nullptr) {
printf("spi::h743zi::standardInterruptCfg: Invalid SPI user handlers\n");
return;
}
cfg.spiUserArgs = spiUserArgs;
cfg.spiIrqHandler = spiUserHandler;
standardPollingCfg(cfg);
}
void spi::h743zi::standardDmaCfg(MspDmaConfigStruct& cfg, IrqPriorities spiIrqPrio,
IrqPriorities txIrqPrio, IrqPriorities rxIrqPrio, IrqPriorities spiSubprio,
IrqPriorities txSubprio, IrqPriorities rxSubprio) {
cfg.dmaClkEnableWrapper = &spiDmaClockEnableWrapper;
cfg.rxDmaIndex = dma::DMAIndexes::DMA_2;
cfg.txDmaIndex = dma::DMAIndexes::DMA_2;
cfg.txDmaStream = dma::DMAStreams::STREAM_3;
cfg.rxDmaStream = dma::DMAStreams::STREAM_2;
DMA_HandleTypeDef* txHandle;
DMA_HandleTypeDef* rxHandle;
spi::getDmaHandles(&txHandle, &rxHandle);
if(txHandle == nullptr or rxHandle == nullptr) {
printf("spi::h743zi::standardDmaCfg: Invalid DMA handles\n");
return;
}
spi::configureDmaHandle(txHandle, spi::SpiBus::SPI_1, dma::DMAType::TX, cfg.txDmaIndex,
cfg.txDmaStream, &cfg.txDmaIrqNumber);
spi::configureDmaHandle(rxHandle, spi::SpiBus::SPI_1, dma::DMAType::RX, cfg.rxDmaIndex,
cfg.rxDmaStream, &cfg.rxDmaIrqNumber, DMA_NORMAL, DMA_PRIORITY_HIGH);
cfg.txPreEmptPriority = txIrqPrio;
cfg.rxPreEmptPriority = txSubprio;
cfg.txSubpriority = rxIrqPrio;
cfg.rxSubpriority = rxSubprio;
standardInterruptCfg(cfg, spiIrqPrio, spiSubprio);
}

View File

@ -0,0 +1,2 @@
target_sources(${LIB_FSFW_HAL_NAME} PRIVATE
)