1
0
forked from ROMEO/nexosim

Split sinks and source registries

This makes it possible to concurrently control and monitor the
simulation when using gRPC.
Accordingly, the gRPC server now runs on 2 threads so it can serve
control and monitoring requests concurrently.
This commit is contained in:
Serge Barral 2024-06-12 11:14:30 +02:00
parent f731d40add
commit 0abc520e4b
19 changed files with 1259 additions and 1679 deletions

View File

@ -28,7 +28,7 @@ jobs:
toolchain: ${{ matrix.rust }}
- name: Run cargo check
run: cargo check --features="rpc grpc-service"
run: cargo check --features="grpc-service"
build-wasm:
name: Build wasm32
@ -43,7 +43,7 @@ jobs:
targets: wasm32-unknown-unknown
- name: Run cargo build (wasm)
run: cargo build --target wasm32-unknown-unknown --features="rpc"
run: cargo build --target wasm32-unknown-unknown --features="wasm-service"
test:
name: Test suite
@ -56,7 +56,7 @@ jobs:
uses: dtolnay/rust-toolchain@stable
- name: Run cargo test
run: cargo test --features="rpc grpc-service"
run: cargo test --features="grpc-service"
loom-dry-run:
name: Loom dry run
@ -69,7 +69,7 @@ jobs:
uses: dtolnay/rust-toolchain@stable
- name: Dry-run cargo test (Loom)
run: cargo test --no-run --tests --features="rpc grpc-service"
run: cargo test --no-run --tests --features="grpc-service"
env:
RUSTFLAGS: --cfg asynchronix_loom
@ -86,12 +86,12 @@ jobs:
components: miri
- name: Run cargo miri tests (single-threaded executor)
run: cargo miri test --tests --lib --features="rpc grpc-service"
run: cargo miri test --tests --lib --features="grpc-service"
env:
MIRIFLAGS: -Zmiri-strict-provenance -Zmiri-disable-isolation -Zmiri-num-cpus=1
- name: Run cargo miri tests (multi-threaded executor)
run: cargo miri test --tests --lib --features="rpc grpc-service"
run: cargo miri test --tests --lib --features="grpc-service"
env:
MIRIFLAGS: -Zmiri-strict-provenance -Zmiri-disable-isolation -Zmiri-num-cpus=4
@ -149,7 +149,7 @@ jobs:
run: cargo fmt --all -- --check
- name: Run cargo clippy
run: cargo clippy --features="rpc grpc-service"
run: cargo clippy --features="grpc-service"
docs:
name: Docs
@ -162,4 +162,4 @@ jobs:
uses: dtolnay/rust-toolchain@stable
- name: Run cargo doc
run: cargo doc --no-deps --features="rpc grpc-service" --document-private-items
run: cargo doc --no-deps --features="grpc-service" --document-private-items

View File

@ -61,7 +61,7 @@ rmp-serde = { version = "1.1", optional = true }
serde = { version = "1", optional = true }
# gRPC service dependencies.
tokio = { version = "1.0", features=["net"], optional = true }
tokio = { version = "1.0", features=["net", "rt-multi-thread"], optional = true }
tonic = { version = "0.11", default-features = false, features=["codegen", "prost"], optional = true }
# WASM service dependencies.

View File

@ -414,6 +414,8 @@ pub(crate) mod macros;
pub mod model;
pub mod ports;
#[cfg(feature = "rpc")]
pub mod registry;
#[cfg(feature = "rpc")]
pub mod rpc;
pub mod simulation;
pub mod time;

View File

@ -0,0 +1,75 @@
//! Registry for sinks and sources.
//!
//! This module provides the `EndpointRegistry` object which associates each
//! event sink, event source and query source to a unique name.
mod event_sink_registry;
mod event_source_registry;
mod query_source_registry;
use serde::{de::DeserializeOwned, ser::Serialize};
use crate::ports::{EventSinkStream, EventSource, QuerySource};
pub(crate) use event_sink_registry::EventSinkRegistry;
pub(crate) use event_source_registry::EventSourceRegistry;
pub(crate) use query_source_registry::QuerySourceRegistry;
/// A registry that holds all sources and sinks meant to be accessed through
/// bindings or remote procedure calls.
#[derive(Default, Debug)]
pub struct EndpointRegistry {
pub(crate) event_sink_registry: EventSinkRegistry,
pub(crate) event_source_registry: EventSourceRegistry,
pub(crate) query_source_registry: QuerySourceRegistry,
}
impl EndpointRegistry {
/// Creates a new, empty registry.
pub fn new() -> Self {
Self::default()
}
/// Adds an event source to the registry.
///
/// If the specified name is already in use for another event source, the source
/// provided as argument is returned in the error.
pub fn add_event_source<T>(
&mut self,
source: EventSource<T>,
name: impl Into<String>,
) -> Result<(), EventSource<T>>
where
T: DeserializeOwned + Clone + Send + 'static,
{
self.event_source_registry.add(source, name)
}
/// Adds a query source to the registry.
///
/// If the specified name is already in use for another query source, the
/// source provided as argument is returned in the error.
pub fn add_query_source<T, R>(
&mut self,
source: QuerySource<T, R>,
name: impl Into<String>,
) -> Result<(), QuerySource<T, R>>
where
T: DeserializeOwned + Clone + Send + 'static,
R: Serialize + Send + 'static,
{
self.query_source_registry.add(source, name)
}
/// Adds an event sink to the registry.
///
/// If the specified name is already in use for another event sink, the
/// event sink provided as argument is returned in the error.
pub fn add_event_sink<S>(&mut self, sink: S, name: impl Into<String>) -> Result<(), S>
where
S: EventSinkStream + Send + 'static,
S::Item: Serialize,
{
self.event_sink_registry.add(sink, name)
}
}

View File

@ -0,0 +1,90 @@
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::fmt;
use rmp_serde::encode::Error as RmpEncodeError;
use serde::Serialize;
use crate::ports::EventSinkStream;
/// A registry that holds all sources and sinks meant to be accessed through
/// remote procedure calls.
#[derive(Default)]
pub(crate) struct EventSinkRegistry(HashMap<String, Box<dyn EventSinkStreamAny>>);
impl EventSinkRegistry {
/// Adds a sink to the registry.
///
/// If the specified name is already in use for another sink, the sink
/// provided as argument is returned in the error.
pub(crate) fn add<S>(&mut self, sink: S, name: impl Into<String>) -> Result<(), S>
where
S: EventSinkStream + Send + 'static,
S::Item: Serialize,
{
match self.0.entry(name.into()) {
Entry::Vacant(s) => {
s.insert(Box::new(sink));
Ok(())
}
Entry::Occupied(_) => Err(sink),
}
}
/// Returns a mutable reference to the specified sink if it is in the
/// registry.
pub(crate) fn get_mut(&mut self, name: &str) -> Option<&mut dyn EventSinkStreamAny> {
self.0.get_mut(name).map(|s| s.as_mut())
}
}
impl fmt::Debug for EventSinkRegistry {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "EventSinkRegistry ({} sinks)", self.0.len())
}
}
/// A type-erased `EventSinkStream`.
pub(crate) trait EventSinkStreamAny: Send + 'static {
/// Human-readable name of the event type, as returned by
/// `any::type_name()`.
fn event_type_name(&self) -> &'static str;
/// Starts or resumes the collection of new events.
fn open(&mut self);
/// Pauses the collection of new events.
fn close(&mut self);
/// Encode and collect all events in a vector.
fn collect(&mut self) -> Result<Vec<Vec<u8>>, RmpEncodeError>;
}
impl<E> EventSinkStreamAny for E
where
E: EventSinkStream + Send + 'static,
E::Item: Serialize,
{
fn event_type_name(&self) -> &'static str {
std::any::type_name::<E::Item>()
}
fn open(&mut self) {
self.open();
}
fn close(&mut self) {
self.close();
}
fn collect(&mut self) -> Result<Vec<Vec<u8>>, RmpEncodeError> {
self.__try_fold(Vec::new(), |mut encoded_events, event| {
rmp_serde::to_vec_named(&event).map(|encoded_event| {
encoded_events.push(encoded_event);
encoded_events
})
})
}
}

View File

@ -0,0 +1,121 @@
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::fmt;
use std::time::Duration;
use rmp_serde::decode::Error as RmpDecodeError;
use serde::de::DeserializeOwned;
use crate::ports::EventSource;
use crate::simulation::{Action, ActionKey};
/// A registry that holds all sources and sinks meant to be accessed through
/// remote procedure calls.
#[derive(Default)]
pub(crate) struct EventSourceRegistry(HashMap<String, Box<dyn EventSourceAny>>);
impl EventSourceRegistry {
/// Adds an event source to the registry.
///
/// If the specified name is already in use for another event source, the source
/// provided as argument is returned in the error.
pub(crate) fn add<T>(
&mut self,
source: EventSource<T>,
name: impl Into<String>,
) -> Result<(), EventSource<T>>
where
T: DeserializeOwned + Clone + Send + 'static,
{
match self.0.entry(name.into()) {
Entry::Vacant(s) => {
s.insert(Box::new(source));
Ok(())
}
Entry::Occupied(_) => Err(source),
}
}
/// Returns a mutable reference to the specified event source if it is in
/// the registry.
pub(crate) fn get_mut(&mut self, name: &str) -> Option<&mut dyn EventSourceAny> {
self.0.get_mut(name).map(|s| s.as_mut())
}
}
impl fmt::Debug for EventSourceRegistry {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "EventSourceRegistry ({} sources)", self.0.len())
}
}
/// A type-erased `EventSource` that operates on MessagePack-encoded serialized
/// events.
pub(crate) trait EventSourceAny: Send + 'static {
/// Returns an action which, when processed, broadcasts an event to all
/// connected input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn event(&mut self, msgpack_arg: &[u8]) -> Result<Action, RmpDecodeError>;
/// Returns a cancellable action and a cancellation key; when processed, the
/// action broadcasts an event to all connected input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn keyed_event(&mut self, msgpack_arg: &[u8]) -> Result<(Action, ActionKey), RmpDecodeError>;
/// Returns a periodically recurring action which, when processed,
/// broadcasts an event to all connected input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<Action, RmpDecodeError>;
/// Returns a cancellable, periodically recurring action and a cancellation
/// key; when processed, the action broadcasts an event to all connected
/// input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn keyed_periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<(Action, ActionKey), RmpDecodeError>;
/// Human-readable name of the event type, as returned by
/// `any::type_name()`.
fn event_type_name(&self) -> &'static str;
}
impl<T> EventSourceAny for EventSource<T>
where
T: DeserializeOwned + Clone + Send + 'static,
{
fn event(&mut self, msgpack_arg: &[u8]) -> Result<Action, RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.event(arg))
}
fn keyed_event(&mut self, msgpack_arg: &[u8]) -> Result<(Action, ActionKey), RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.keyed_event(arg))
}
fn periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<Action, RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.periodic_event(period, arg))
}
fn keyed_periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<(Action, ActionKey), RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.keyed_periodic_event(period, arg))
}
fn event_type_name(&self) -> &'static str {
std::any::type_name::<T>()
}
}

View File

@ -0,0 +1,125 @@
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::fmt;
use rmp_serde::decode::Error as RmpDecodeError;
use rmp_serde::encode::Error as RmpEncodeError;
use serde::de::DeserializeOwned;
use serde::Serialize;
use crate::ports::{QuerySource, ReplyReceiver};
use crate::simulation::Action;
/// A registry that holds all sources and sinks meant to be accessed through
/// remote procedure calls.
#[derive(Default)]
pub(crate) struct QuerySourceRegistry(HashMap<String, Box<dyn QuerySourceAny>>);
impl QuerySourceRegistry {
/// Adds a query source to the registry.
///
/// If the specified name is already in use for another query source, the
/// source provided as argument is returned in the error.
pub(crate) fn add<T, R>(
&mut self,
source: QuerySource<T, R>,
name: impl Into<String>,
) -> Result<(), QuerySource<T, R>>
where
T: DeserializeOwned + Clone + Send + 'static,
R: Serialize + Send + 'static,
{
match self.0.entry(name.into()) {
Entry::Vacant(s) => {
s.insert(Box::new(source));
Ok(())
}
Entry::Occupied(_) => Err(source),
}
}
/// Returns a mutable reference to the specified query source if it is in
/// the registry.
pub(crate) fn get_mut(&mut self, name: &str) -> Option<&mut dyn QuerySourceAny> {
self.0.get_mut(name).map(|s| s.as_mut())
}
}
impl fmt::Debug for QuerySourceRegistry {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "QuerySourceRegistry ({} query sources)", self.0.len(),)
}
}
/// A type-erased `QuerySource` that operates on MessagePack-encoded serialized
/// queries and returns MessagePack-encoded replies.
pub(crate) trait QuerySourceAny: Send + 'static {
/// Returns an action which, when processed, broadcasts a query to all
/// connected replier ports.
///
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn query(
&mut self,
msgpack_arg: &[u8],
) -> Result<(Action, Box<dyn ReplyReceiverAny>), RmpDecodeError>;
/// Human-readable name of the request type, as returned by
/// `any::type_name()`.
fn request_type_name(&self) -> &'static str;
/// Human-readable name of the reply type, as returned by
/// `any::type_name()`.
fn reply_type_name(&self) -> &'static str;
}
impl<T, R> QuerySourceAny for QuerySource<T, R>
where
T: DeserializeOwned + Clone + Send + 'static,
R: Serialize + Send + 'static,
{
fn query(
&mut self,
msgpack_arg: &[u8],
) -> Result<(Action, Box<dyn ReplyReceiverAny>), RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| {
let (action, reply_recv) = self.query(arg);
let reply_recv: Box<dyn ReplyReceiverAny> = Box::new(reply_recv);
(action, reply_recv)
})
}
fn request_type_name(&self) -> &'static str {
std::any::type_name::<T>()
}
fn reply_type_name(&self) -> &'static str {
std::any::type_name::<R>()
}
}
/// A type-erased `ReplyReceiver` that returns MessagePack-encoded replies..
pub(crate) trait ReplyReceiverAny {
/// Take the replies, if any, encode them and collect them in a vector.
fn take_collect(&mut self) -> Option<Result<Vec<Vec<u8>>, RmpEncodeError>>;
}
impl<R: Serialize + 'static> ReplyReceiverAny for ReplyReceiver<R> {
fn take_collect(&mut self) -> Option<Result<Vec<Vec<u8>>, RmpEncodeError>> {
let replies = self.take()?;
let encoded_replies = (move || {
let mut encoded_replies = Vec::new();
for reply in replies {
let encoded_reply = rmp_serde::to_vec_named(&reply)?;
encoded_replies.push(encoded_reply);
}
Ok(encoded_replies)
})();
Some(encoded_replies)
}
}

View File

@ -4,14 +4,8 @@ mod codegen;
#[cfg(feature = "grpc-service")]
pub mod grpc;
mod key_registry;
mod monitoring_service;
mod simulation_service;
mod sink_registry;
mod source_registry;
#[cfg(feature = "wasm-service")]
mod protobuf;
mod services;
#[cfg(feature = "wasm-service")]
pub mod wasm;
pub use monitoring_service::MonitoringService;
pub use simulation_service::SimulationService;
pub use sink_registry::SinkRegistry;
pub use source_registry::SourceRegistry;

View File

@ -6,11 +6,12 @@ use std::sync::MutexGuard;
use tonic::{transport::Server, Request, Response, Status};
use crate::rpc::EndpointRegistry;
use crate::registry::EndpointRegistry;
use crate::simulation::SimInit;
use super::codegen::simulation::*;
use super::simulation_service::SimulationService;
use super::key_registry::KeyRegistry;
use super::services::{timestamp_to_monotonic, ControllerService, MonitorService};
/// Runs a gRPC simulation server.
///
@ -22,8 +23,10 @@ pub fn run<F>(sim_gen: F, addr: SocketAddr) -> Result<(), Box<dyn std::error::Er
where
F: FnMut() -> (SimInit, EndpointRegistry) + Send + 'static,
{
// Use a single-threaded server.
let rt = tokio::runtime::Builder::new_current_thread()
// Use 2 threads so that the controller and monitor services can be used
// concurrently.
let rt = tokio::runtime::Builder::new_multi_thread()
.worker_threads(2)
.enable_io()
.build()?;
@ -40,21 +43,37 @@ where
}
struct GrpcSimulationService {
inner: Mutex<SimulationService>,
sim_gen: Mutex<Box<dyn FnMut() -> (SimInit, EndpointRegistry) + Send + 'static>>,
controller_service: Mutex<ControllerService>,
monitor_service: Mutex<MonitorService>,
}
impl GrpcSimulationService {
fn new<F>(sim_gen: F) -> Self
/// Creates a new `GrpcSimulationService` without any active simulation.
///
/// The argument is a closure that is called every time the simulation is
/// (re)started by the remote client. It must create a new `SimInit` object
/// complemented by a registry that exposes the public event and query
/// interface.
pub(crate) fn new<F>(sim_gen: F) -> Self
where
F: FnMut() -> (SimInit, EndpointRegistry) + Send + 'static,
{
Self {
inner: Mutex::new(SimulationService::new(sim_gen)),
sim_gen: Mutex::new(Box::new(sim_gen)),
controller_service: Mutex::new(ControllerService::NotStarted),
monitor_service: Mutex::new(MonitorService::NotStarted),
}
}
fn inner(&self) -> MutexGuard<'_, SimulationService> {
self.inner.lock().unwrap()
/// Locks the controller and returns the mutex guard.
fn controller(&self) -> MutexGuard<'_, ControllerService> {
self.controller_service.lock().unwrap()
}
/// Locks the monitor and returns the mutex guard.
fn monitor(&self) -> MutexGuard<'_, MonitorService> {
self.monitor_service.lock().unwrap()
}
}
@ -63,17 +82,41 @@ impl simulation_server::Simulation for GrpcSimulationService {
async fn init(&self, request: Request<InitRequest>) -> Result<Response<InitReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().init(request)))
let start_time = request.time.unwrap_or_default();
let reply = if let Some(start_time) = timestamp_to_monotonic(start_time) {
let (sim_init, endpoint_registry) = (self.sim_gen.lock().unwrap())();
let simulation = sim_init.init(start_time);
*self.controller() = ControllerService::Started {
simulation,
event_source_registry: endpoint_registry.event_source_registry,
query_source_registry: endpoint_registry.query_source_registry,
key_registry: KeyRegistry::default(),
};
*self.monitor() = MonitorService::Started {
event_sink_registry: endpoint_registry.event_sink_registry,
};
init_reply::Result::Empty(())
} else {
init_reply::Result::Error(Error {
code: ErrorCode::InvalidTime as i32,
message: "out-of-range nanosecond field".to_string(),
})
};
Ok(Response::new(InitReply {
result: Some(reply),
}))
}
async fn time(&self, request: Request<TimeRequest>) -> Result<Response<TimeReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().time(request)))
Ok(Response::new(self.controller().time(request)))
}
async fn step(&self, request: Request<StepRequest>) -> Result<Response<StepReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().step(request)))
Ok(Response::new(self.controller().step(request)))
}
async fn step_until(
&self,
@ -81,7 +124,7 @@ impl simulation_server::Simulation for GrpcSimulationService {
) -> Result<Response<StepUntilReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().step_until(request)))
Ok(Response::new(self.controller().step_until(request)))
}
async fn schedule_event(
&self,
@ -89,7 +132,7 @@ impl simulation_server::Simulation for GrpcSimulationService {
) -> Result<Response<ScheduleEventReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().schedule_event(request)))
Ok(Response::new(self.controller().schedule_event(request)))
}
async fn cancel_event(
&self,
@ -97,7 +140,7 @@ impl simulation_server::Simulation for GrpcSimulationService {
) -> Result<Response<CancelEventReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().cancel_event(request)))
Ok(Response::new(self.controller().cancel_event(request)))
}
async fn process_event(
&self,
@ -105,7 +148,7 @@ impl simulation_server::Simulation for GrpcSimulationService {
) -> Result<Response<ProcessEventReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().process_event(request)))
Ok(Response::new(self.controller().process_event(request)))
}
async fn process_query(
&self,
@ -113,7 +156,7 @@ impl simulation_server::Simulation for GrpcSimulationService {
) -> Result<Response<ProcessQueryReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().process_query(request)))
Ok(Response::new(self.controller().process_query(request)))
}
async fn read_events(
&self,
@ -121,7 +164,7 @@ impl simulation_server::Simulation for GrpcSimulationService {
) -> Result<Response<ReadEventsReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().read_events(request)))
Ok(Response::new(self.monitor().read_events(request)))
}
async fn open_sink(
&self,
@ -129,7 +172,7 @@ impl simulation_server::Simulation for GrpcSimulationService {
) -> Result<Response<OpenSinkReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().open_sink(request)))
Ok(Response::new(self.monitor().open_sink(request)))
}
async fn close_sink(
&self,
@ -137,6 +180,6 @@ impl simulation_server::Simulation for GrpcSimulationService {
) -> Result<Response<CloseSinkReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().close_sink(request)))
Ok(Response::new(self.monitor().close_sink(request)))
}
}

View File

@ -0,0 +1,154 @@
use std::error;
use std::fmt;
use bytes::Buf;
use prost::Message;
use crate::registry::EndpointRegistry;
use crate::rpc::key_registry::KeyRegistry;
use crate::simulation::SimInit;
use super::codegen::simulation::*;
use super::services::{timestamp_to_monotonic, ControllerService, MonitorService};
/// Protobuf-based simulation manager.
///
/// A `ProtobufService` enables the management of the lifecycle of a
/// simulation, including creating a
/// [`Simulation`](crate::simulation::Simulation), invoking its methods and
/// instantiating a new simulation.
///
/// Its methods map the various RPC service methods defined in
/// `simulation.proto`.
pub(crate) struct ProtobufService {
sim_gen: Box<dyn FnMut() -> (SimInit, EndpointRegistry) + Send + 'static>,
controller_service: ControllerService,
monitor_service: MonitorService,
}
impl ProtobufService {
/// Creates a new `ProtobufService` without any active simulation.
///
/// The argument is a closure that is called every time the simulation is
/// (re)started by the remote client. It must create a new `SimInit` object
/// complemented by a registry that exposes the public event and query
/// interface.
pub(crate) fn new<F>(sim_gen: F) -> Self
where
F: FnMut() -> (SimInit, EndpointRegistry) + Send + 'static,
{
Self {
sim_gen: Box::new(sim_gen),
controller_service: ControllerService::NotStarted,
monitor_service: MonitorService::NotStarted,
}
}
/// Processes an encoded `AnyRequest` message and returns an encoded reply.
pub(crate) fn process_request<B>(&mut self, request_buf: B) -> Result<Vec<u8>, InvalidRequest>
where
B: Buf,
{
match AnyRequest::decode(request_buf) {
Ok(AnyRequest { request: Some(req) }) => match req {
any_request::Request::InitRequest(request) => {
Ok(self.init(request).encode_to_vec())
}
any_request::Request::TimeRequest(request) => {
Ok(self.controller_service.time(request).encode_to_vec())
}
any_request::Request::StepRequest(request) => {
Ok(self.controller_service.step(request).encode_to_vec())
}
any_request::Request::StepUntilRequest(request) => {
Ok(self.controller_service.step_until(request).encode_to_vec())
}
any_request::Request::ScheduleEventRequest(request) => Ok(self
.controller_service
.schedule_event(request)
.encode_to_vec()),
any_request::Request::CancelEventRequest(request) => Ok(self
.controller_service
.cancel_event(request)
.encode_to_vec()),
any_request::Request::ProcessEventRequest(request) => Ok(self
.controller_service
.process_event(request)
.encode_to_vec()),
any_request::Request::ProcessQueryRequest(request) => Ok(self
.controller_service
.process_query(request)
.encode_to_vec()),
any_request::Request::ReadEventsRequest(request) => {
Ok(self.monitor_service.read_events(request).encode_to_vec())
}
any_request::Request::OpenSinkRequest(request) => {
Ok(self.monitor_service.open_sink(request).encode_to_vec())
}
any_request::Request::CloseSinkRequest(request) => {
Ok(self.monitor_service.close_sink(request).encode_to_vec())
}
},
Ok(AnyRequest { request: None }) => Err(InvalidRequest {
description: "the message did not contain any request".to_string(),
}),
Err(err) => Err(InvalidRequest {
description: format!("bad request: {}", err),
}),
}
}
/// Initialize a simulation with the provided time.
///
/// If a simulation is already active, it is destructed and replaced with a
/// new simulation.
///
/// If the initialization time is not provided, it is initialized with the
/// epoch of `MonotonicTime` (1970-01-01 00:00:00 TAI).
fn init(&mut self, request: InitRequest) -> InitReply {
let start_time = request.time.unwrap_or_default();
let reply = if let Some(start_time) = timestamp_to_monotonic(start_time) {
let (sim_init, endpoint_registry) = (self.sim_gen)();
let simulation = sim_init.init(start_time);
self.controller_service = ControllerService::Started {
simulation,
event_source_registry: endpoint_registry.event_source_registry,
query_source_registry: endpoint_registry.query_source_registry,
key_registry: KeyRegistry::default(),
};
self.monitor_service = MonitorService::Started {
event_sink_registry: endpoint_registry.event_sink_registry,
};
init_reply::Result::Empty(())
} else {
init_reply::Result::Error(Error {
code: ErrorCode::InvalidTime as i32,
message: "out-of-range nanosecond field".to_string(),
})
};
InitReply {
result: Some(reply),
}
}
}
impl fmt::Debug for ProtobufService {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ProtobufService").finish_non_exhaustive()
}
}
#[derive(Clone, Debug)]
pub(crate) struct InvalidRequest {
description: String,
}
impl fmt::Display for InvalidRequest {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.description)
}
}
impl error::Error for InvalidRequest {}

View File

@ -0,0 +1,94 @@
mod controller_service;
mod monitor_service;
use std::time::Duration;
use prost_types::Timestamp;
use tai_time::MonotonicTime;
use super::codegen::simulation::{Error, ErrorCode};
pub(crate) use controller_service::ControllerService;
pub(crate) use monitor_service::MonitorService;
/// Transforms an error code and a message into a Protobuf error.
fn to_error(code: ErrorCode, message: impl Into<String>) -> Error {
Error {
code: code as i32,
message: message.into(),
}
}
/// An error returned when a simulation was not started.
fn simulation_not_started_error() -> Error {
to_error(
ErrorCode::SimulationNotStarted,
"the simulation was not started",
)
}
/// Attempts a cast from a `MonotonicTime` to a protobuf `Timestamp`.
///
/// This will fail if the time is outside the protobuf-specified range for
/// timestamps (0001-01-01 00:00:00 to 9999-12-31 23:59:59).
pub(crate) fn monotonic_to_timestamp(monotonic_time: MonotonicTime) -> Option<Timestamp> {
// Unix timestamp for 0001-01-01 00:00:00, the minimum accepted by
// protobuf's specification for the `Timestamp` type.
const MIN_SECS: i64 = -62135596800;
// Unix timestamp for 9999-12-31 23:59:59, the maximum accepted by
// protobuf's specification for the `Timestamp` type.
const MAX_SECS: i64 = 253402300799;
let secs = monotonic_time.as_secs();
if !(MIN_SECS..=MAX_SECS).contains(&secs) {
return None;
}
Some(Timestamp {
seconds: secs,
nanos: monotonic_time.subsec_nanos() as i32,
})
}
/// Attempts a cast from a protobuf `Timestamp` to a `MonotonicTime`.
///
/// This should never fail provided that the `Timestamp` complies with the
/// protobuf specification. It can only fail if the nanosecond part is negative
/// or greater than 999'999'999.
pub(crate) fn timestamp_to_monotonic(timestamp: Timestamp) -> Option<MonotonicTime> {
let nanos: u32 = timestamp.nanos.try_into().ok()?;
MonotonicTime::new(timestamp.seconds, nanos)
}
/// Attempts a cast from a protobuf `Duration` to a `std::time::Duration`.
///
/// If the `Duration` complies with the protobuf specification, this can only
/// fail if the duration is negative.
pub(crate) fn to_positive_duration(duration: prost_types::Duration) -> Option<Duration> {
if duration.seconds < 0 || duration.nanos < 0 {
return None;
}
Some(Duration::new(
duration.seconds as u64,
duration.nanos as u32,
))
}
/// Attempts a cast from a protobuf `Duration` to a strictly positive
/// `std::time::Duration`.
///
/// If the `Duration` complies with the protobuf specification, this can only
/// fail if the duration is negative or null.
pub(crate) fn to_strictly_positive_duration(duration: prost_types::Duration) -> Option<Duration> {
if duration.seconds < 0 || duration.nanos < 0 || (duration.seconds == 0 && duration.nanos == 0)
{
return None;
}
Some(Duration::new(
duration.seconds as u64,
duration.nanos as u32,
))
}

View File

@ -0,0 +1,397 @@
use std::fmt;
use prost_types::Timestamp;
use crate::registry::{EventSourceRegistry, QuerySourceRegistry};
use crate::rpc::key_registry::{KeyRegistry, KeyRegistryId};
use crate::simulation::Simulation;
use super::super::codegen::simulation::*;
use super::{
monotonic_to_timestamp, simulation_not_started_error, timestamp_to_monotonic, to_error,
to_positive_duration, to_strictly_positive_duration,
};
/// Protobuf-based simulation manager.
///
/// A `ControllerService` enables the management of the lifecycle of a
/// simulation.
///
/// Its methods map the various RPC simulation control service methods defined
/// in `simulation.proto`.
#[allow(clippy::large_enum_variant)]
pub(crate) enum ControllerService {
NotStarted,
Started {
simulation: Simulation,
event_source_registry: EventSourceRegistry,
query_source_registry: QuerySourceRegistry,
key_registry: KeyRegistry,
},
}
impl ControllerService {
/// Returns the current simulation time.
pub(crate) fn time(&mut self, _request: TimeRequest) -> TimeReply {
let reply = match self {
Self::Started { simulation, .. } => {
if let Some(timestamp) = monotonic_to_timestamp(simulation.time()) {
time_reply::Result::Time(timestamp)
} else {
time_reply::Result::Error(to_error(
ErrorCode::SimulationTimeOutOfRange,
"the final simulation time is out of range",
))
}
}
Self::NotStarted => time_reply::Result::Error(simulation_not_started_error()),
};
TimeReply {
result: Some(reply),
}
}
/// Advances simulation time to that of the next scheduled event, processing
/// that event as well as all other event scheduled for the same time.
///
/// Processing is gated by a (possibly blocking) call to
/// [`Clock::synchronize()`](crate::time::Clock::synchronize) on the
/// configured simulation clock. This method blocks until all newly
/// processed events have completed.
pub(crate) fn step(&mut self, _request: StepRequest) -> StepReply {
let reply = match self {
Self::Started { simulation, .. } => {
simulation.step();
if let Some(timestamp) = monotonic_to_timestamp(simulation.time()) {
step_reply::Result::Time(timestamp)
} else {
step_reply::Result::Error(to_error(
ErrorCode::SimulationTimeOutOfRange,
"the final simulation time is out of range",
))
}
}
Self::NotStarted => step_reply::Result::Error(simulation_not_started_error()),
};
StepReply {
result: Some(reply),
}
}
/// Iteratively advances the simulation time until the specified deadline,
/// as if by calling
/// [`Simulation::step()`](crate::simulation::Simulation::step) repeatedly.
///
/// This method blocks until all events scheduled up to the specified target
/// time have completed. The simulation time upon completion is equal to the
/// specified target time, whether or not an event was scheduled for that
/// time.
pub(crate) fn step_until(&mut self, request: StepUntilRequest) -> StepUntilReply {
let reply = match self {
Self::Started { simulation, .. } => move || -> Result<Timestamp, Error> {
let deadline = request.deadline.ok_or(to_error(
ErrorCode::MissingArgument,
"missing deadline argument",
))?;
match deadline {
step_until_request::Deadline::Time(time) => {
let time = timestamp_to_monotonic(time).ok_or(to_error(
ErrorCode::InvalidTime,
"out-of-range nanosecond field",
))?;
simulation.step_until(time).map_err(|_| {
to_error(
ErrorCode::InvalidTime,
"the specified deadline lies in the past",
)
})?;
}
step_until_request::Deadline::Duration(duration) => {
let duration = to_positive_duration(duration).ok_or(to_error(
ErrorCode::InvalidDuration,
"the specified deadline lies in the past",
))?;
simulation.step_by(duration);
}
};
let timestamp = monotonic_to_timestamp(simulation.time()).ok_or(to_error(
ErrorCode::SimulationTimeOutOfRange,
"the final simulation time is out of range",
))?;
Ok(timestamp)
}(),
Self::NotStarted => Err(simulation_not_started_error()),
};
StepUntilReply {
result: Some(match reply {
Ok(timestamp) => step_until_reply::Result::Time(timestamp),
Err(error) => step_until_reply::Result::Error(error),
}),
}
}
/// Schedules an event at a future time.
pub(crate) fn schedule_event(&mut self, request: ScheduleEventRequest) -> ScheduleEventReply {
let reply = match self {
Self::Started {
simulation,
event_source_registry,
key_registry,
..
} => move || -> Result<Option<KeyRegistryId>, Error> {
let source_name = &request.source_name;
let msgpack_event = &request.event;
let with_key = request.with_key;
let period = request
.period
.map(|period| {
to_strictly_positive_duration(period).ok_or(to_error(
ErrorCode::InvalidDuration,
"the specified event period is not strictly positive",
))
})
.transpose()?;
let deadline = request.deadline.ok_or(to_error(
ErrorCode::MissingArgument,
"missing deadline argument",
))?;
let deadline = match deadline {
schedule_event_request::Deadline::Time(time) => timestamp_to_monotonic(time)
.ok_or(to_error(
ErrorCode::InvalidTime,
"out-of-range nanosecond field",
))?,
schedule_event_request::Deadline::Duration(duration) => {
let duration = to_strictly_positive_duration(duration).ok_or(to_error(
ErrorCode::InvalidDuration,
"the specified scheduling deadline is not in the future",
))?;
simulation.time() + duration
}
};
let source = event_source_registry.get_mut(source_name).ok_or(to_error(
ErrorCode::SourceNotFound,
"no event source is registered with the name '{}'".to_string(),
))?;
let (action, action_key) = match (with_key, period) {
(false, None) => source.event(msgpack_event).map(|action| (action, None)),
(false, Some(period)) => source
.periodic_event(period, msgpack_event)
.map(|action| (action, None)),
(true, None) => source
.keyed_event(msgpack_event)
.map(|(action, key)| (action, Some(key))),
(true, Some(period)) => source
.keyed_periodic_event(period, msgpack_event)
.map(|(action, key)| (action, Some(key))),
}
.map_err(|_| {
to_error(
ErrorCode::InvalidMessage,
format!(
"the event could not be deserialized as type '{}'",
source.event_type_name()
),
)
})?;
let key_id = action_key.map(|action_key| {
// Free stale keys from the registry.
key_registry.remove_expired_keys(simulation.time());
if period.is_some() {
key_registry.insert_eternal_key(action_key)
} else {
key_registry.insert_key(action_key, deadline)
}
});
simulation.process(action);
Ok(key_id)
}(),
Self::NotStarted => Err(simulation_not_started_error()),
};
ScheduleEventReply {
result: Some(match reply {
Ok(Some(key_id)) => {
let (subkey1, subkey2) = key_id.into_raw_parts();
schedule_event_reply::Result::Key(EventKey {
subkey1: subkey1
.try_into()
.expect("action key index is too large to be serialized"),
subkey2,
})
}
Ok(None) => schedule_event_reply::Result::Empty(()),
Err(error) => schedule_event_reply::Result::Error(error),
}),
}
}
/// Cancels a keyed event.
pub(crate) fn cancel_event(&mut self, request: CancelEventRequest) -> CancelEventReply {
let reply = match self {
Self::Started {
simulation,
key_registry,
..
} => move || -> Result<(), Error> {
let key = request
.key
.ok_or(to_error(ErrorCode::MissingArgument, "missing key argument"))?;
let subkey1: usize = key
.subkey1
.try_into()
.map_err(|_| to_error(ErrorCode::InvalidKey, "invalid event key"))?;
let subkey2 = key.subkey2;
let key_id = KeyRegistryId::from_raw_parts(subkey1, subkey2);
key_registry.remove_expired_keys(simulation.time());
let key = key_registry.extract_key(key_id).ok_or(to_error(
ErrorCode::InvalidKey,
"invalid or expired event key",
))?;
key.cancel();
Ok(())
}(),
Self::NotStarted => Err(simulation_not_started_error()),
};
CancelEventReply {
result: Some(match reply {
Ok(()) => cancel_event_reply::Result::Empty(()),
Err(error) => cancel_event_reply::Result::Error(error),
}),
}
}
/// Broadcasts an event from an event source immediately, blocking until
/// completion.
///
/// Simulation time remains unchanged.
pub(crate) fn process_event(&mut self, request: ProcessEventRequest) -> ProcessEventReply {
let reply = match self {
Self::Started {
simulation,
event_source_registry,
..
} => move || -> Result<(), Error> {
let source_name = &request.source_name;
let msgpack_event = &request.event;
let source = event_source_registry.get_mut(source_name).ok_or(to_error(
ErrorCode::SourceNotFound,
"no source is registered with the name '{}'".to_string(),
))?;
let event = source.event(msgpack_event).map_err(|_| {
to_error(
ErrorCode::InvalidMessage,
format!(
"the event could not be deserialized as type '{}'",
source.event_type_name()
),
)
})?;
simulation.process(event);
Ok(())
}(),
Self::NotStarted => Err(simulation_not_started_error()),
};
ProcessEventReply {
result: Some(match reply {
Ok(()) => process_event_reply::Result::Empty(()),
Err(error) => process_event_reply::Result::Error(error),
}),
}
}
/// Broadcasts an event from an event source immediately, blocking until
/// completion.
///
/// Simulation time remains unchanged.
pub(crate) fn process_query(&mut self, request: ProcessQueryRequest) -> ProcessQueryReply {
let reply = match self {
Self::Started {
simulation,
query_source_registry,
..
} => move || -> Result<Vec<Vec<u8>>, Error> {
let source_name = &request.source_name;
let msgpack_request = &request.request;
let source = query_source_registry.get_mut(source_name).ok_or(to_error(
ErrorCode::SourceNotFound,
"no source is registered with the name '{}'".to_string(),
))?;
let (query, mut promise) = source.query(msgpack_request).map_err(|_| {
to_error(
ErrorCode::InvalidMessage,
format!(
"the request could not be deserialized as type '{}'",
source.request_type_name()
),
)
})?;
simulation.process(query);
let replies = promise.take_collect().ok_or(to_error(
ErrorCode::InternalError,
"a reply to the query was expected but none was available".to_string(),
))?;
replies.map_err(|_| {
to_error(
ErrorCode::InvalidMessage,
format!(
"the reply could not be serialized as type '{}'",
source.reply_type_name()
),
)
})
}(),
Self::NotStarted => Err(simulation_not_started_error()),
};
match reply {
Ok(replies) => ProcessQueryReply {
replies,
result: Some(process_query_reply::Result::Empty(())),
},
Err(error) => ProcessQueryReply {
replies: Vec::new(),
result: Some(process_query_reply::Result::Error(error)),
},
}
}
}
impl fmt::Debug for ControllerService {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ControllerService").finish_non_exhaustive()
}
}

View File

@ -0,0 +1,120 @@
use std::fmt;
use crate::registry::EventSinkRegistry;
use super::super::codegen::simulation::*;
use super::{simulation_not_started_error, to_error};
/// Protobuf-based simulation monitor.
///
/// A `MonitorService` enables the monitoring of the event sinks of a
/// [`Simulation`](crate::simulation::Simulation).
///
/// Its methods map the various RPC monitoring service methods defined in
/// `simulation.proto`.
pub(crate) enum MonitorService {
Started {
event_sink_registry: EventSinkRegistry,
},
NotStarted,
}
impl MonitorService {
/// Read all events from an event sink.
pub(crate) fn read_events(&mut self, request: ReadEventsRequest) -> ReadEventsReply {
let reply = match self {
Self::Started {
event_sink_registry,
} => move || -> Result<Vec<Vec<u8>>, Error> {
let sink_name = &request.sink_name;
let sink = event_sink_registry.get_mut(sink_name).ok_or(to_error(
ErrorCode::SinkNotFound,
format!("no sink is registered with the name '{}'", sink_name),
))?;
sink.collect().map_err(|_| {
to_error(
ErrorCode::InvalidMessage,
format!(
"the event could not be serialized from type '{}'",
sink.event_type_name()
),
)
})
}(),
Self::NotStarted => Err(simulation_not_started_error()),
};
match reply {
Ok(events) => ReadEventsReply {
events,
result: Some(read_events_reply::Result::Empty(())),
},
Err(error) => ReadEventsReply {
events: Vec::new(),
result: Some(read_events_reply::Result::Error(error)),
},
}
}
/// Opens an event sink.
pub(crate) fn open_sink(&mut self, request: OpenSinkRequest) -> OpenSinkReply {
let reply = match self {
Self::Started {
event_sink_registry,
} => {
let sink_name = &request.sink_name;
if let Some(sink) = event_sink_registry.get_mut(sink_name) {
sink.open();
open_sink_reply::Result::Empty(())
} else {
open_sink_reply::Result::Error(to_error(
ErrorCode::SinkNotFound,
format!("no sink is registered with the name '{}'", sink_name),
))
}
}
Self::NotStarted => open_sink_reply::Result::Error(simulation_not_started_error()),
};
OpenSinkReply {
result: Some(reply),
}
}
/// Closes an event sink.
pub(crate) fn close_sink(&mut self, request: CloseSinkRequest) -> CloseSinkReply {
let reply = match self {
Self::Started {
event_sink_registry,
} => {
let sink_name = &request.sink_name;
if let Some(sink) = event_sink_registry.get_mut(sink_name) {
sink.close();
close_sink_reply::Result::Empty(())
} else {
close_sink_reply::Result::Error(to_error(
ErrorCode::SinkNotFound,
format!("no sink is registered with the name '{}'", sink_name),
))
}
}
Self::NotStarted => close_sink_reply::Result::Error(simulation_not_started_error()),
};
CloseSinkReply {
result: Some(reply),
}
}
}
impl fmt::Debug for MonitorService {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SimulationService").finish_non_exhaustive()
}
}

View File

@ -1,584 +0,0 @@
mod management_service;
mod monitoring_service;
use std::error;
use std::fmt;
use std::time::Duration;
use bytes::Buf;
use prost::Message;
use prost_types::Timestamp;
use tai_time::MonotonicTime;
use crate::rpc::key_registry::{KeyRegistry, KeyRegistryId};
use crate::rpc::{SinkRegistry, SourceRegistry};
use crate::simulation::{SimInit, Simulation};
use super::codegen::simulation::*;
use super::sink_registry;
use management_service::ManagementService;
use monitoring_service::MonitoringService;
/// Protobuf-based simulation manager.
///
/// A `SimulationService` enables the management of the lifecycle of a
/// simulation, including creating a
/// [`Simulation`](crate::simulation::Simulation), invoking its methods and
/// instantiating a new simulation.
///
/// Its methods map the various RPC service methods defined in
/// `simulation.proto`.
pub struct SimulationService {
sim_gen: Box<dyn FnMut() -> (SimInit, SourceRegistry, SinkRegistry) + Send + 'static>,
services: Option<(ManagementService, MonitoringService)>,
}
impl SimulationService {
/// Creates a new `SimulationService` without any active simulation.
///
/// The argument is a closure that is called every time the simulation is
/// (re)started by the remote client. It must create a new `SimInit` object
/// complemented by a registry that exposes the public event and query
/// interface.
pub fn new<F>(sim_gen: F) -> Self
where
F: FnMut() -> (SimInit, SourceRegistry, SinkRegistry) + Send + 'static,
{
Self {
sim_gen: Box::new(sim_gen),
services: None,
}
}
/// Processes an encoded `AnyRequest` message and returns an encoded reply.
/*pub fn process_request<B>(&mut self, request_buf: B) -> Result<Vec<u8>, InvalidRequest>
where
B: Buf,
{
match AnyRequest::decode(request_buf) {
Ok(AnyRequest { request: Some(req) }) => match req {
any_request::Request::InitRequest(request) => {
Ok(self.init(request).encode_to_vec())
}
any_request::Request::TimeRequest(request) => {
Ok(self.time(request).encode_to_vec())
}
any_request::Request::StepRequest(request) => {
Ok(self.step(request).encode_to_vec())
}
any_request::Request::StepUntilRequest(request) => {
Ok(self.step_until(request).encode_to_vec())
}
any_request::Request::ScheduleEventRequest(request) => {
Ok(self.schedule_event(request).encode_to_vec())
}
any_request::Request::CancelEventRequest(request) => {
Ok(self.cancel_event(request).encode_to_vec())
}
any_request::Request::ProcessEventRequest(request) => {
Ok(self.process_event(request).encode_to_vec())
}
any_request::Request::ProcessQueryRequest(request) => {
Ok(self.process_query(request).encode_to_vec())
}
},
Ok(AnyRequest { request: None }) => Err(InvalidRequest {
description: "the message did not contain any request".to_string(),
}),
Err(err) => Err(InvalidRequest {
description: format!("bad request: {}", err),
}),
}
}*/
/// Initialize a simulation with the provided time.
///
/// If a simulation is already active, it is destructed and replaced with a
/// new simulation.
///
/// If the initialization time is not provided, it is initialized with the
/// epoch of `MonotonicTime` (1970-01-01 00:00:00 TAI).
pub(crate) fn init(&mut self, request: InitRequest) -> InitReply {
let start_time = request.time.unwrap_or_default();
let reply = if let Some(start_time) = timestamp_to_monotonic(start_time) {
let (sim_init, source_registry, sink_registry) = (self.sim_gen)();
let simulation = sim_init.init(start_time);
self.services = Some((
ManagementService::new(simulation, source_registry, KeyRegistry::default()),
MonitoringService::new(sink_registry),
));
init_reply::Result::Empty(())
} else {
init_reply::Result::Error(Error {
code: ErrorCode::InvalidTime as i32,
message: "out-of-range nanosecond field".to_string(),
})
};
InitReply {
result: Some(reply),
}
}
/// Returns the current simulation time.
pub(crate) fn time(&mut self, request: TimeRequest) -> TimeReply {
if let Some((management_service, ..)) = &mut self.services {
management_service.time(request)
} else {
TimeReply {
result: Some(time_reply::Result::Error(simulation_not_started_error())),
}
}
}
/// Advances simulation time to that of the next scheduled event, processing
/// that event as well as all other events scheduled for the same time.
///
/// Processing is gated by a (possibly blocking) call to
/// [`Clock::synchronize()`](crate::time::Clock::synchronize) on the
/// configured simulation clock. This method blocks until all newly
/// processed events have completed.
pub(crate) fn step(&mut self, _request: StepRequest) -> StepReply {
let reply = match &mut self.sim_context {
Some((simulation, ..)) => {
simulation.step();
if let Some(timestamp) = monotonic_to_timestamp(simulation.time()) {
step_reply::Result::Time(timestamp)
} else {
step_reply::Result::Error(Error {
code: ErrorCode::SimulationTimeOutOfRange as i32,
message: "the final simulation time is out of range".to_string(),
})
}
}
None => step_reply::Result::Error(Error {
code: ErrorCode::SimulationNotStarted as i32,
message: "the simulation was not started".to_string(),
}),
};
StepReply {
result: Some(reply),
}
}
/// Iteratively advances the simulation time until the specified deadline,
/// as if by calling
/// [`Simulation::step()`](crate::simulation::Simulation::step) repeatedly.
///
/// This method blocks until all events scheduled up to the specified target
/// time have completed. The simulation time upon completion is equal to the
/// specified target time, whether or not an event was scheduled for that
/// time.
pub(crate) fn step_until(&mut self, request: StepUntilRequest) -> StepUntilReply {
let reply = move || -> Result<Timestamp, (ErrorCode, &str)> {
let deadline = request
.deadline
.ok_or((ErrorCode::MissingArgument, "missing deadline argument"))?;
let simulation = match deadline {
step_until_request::Deadline::Time(time) => {
let time = timestamp_to_monotonic(time)
.ok_or((ErrorCode::InvalidTime, "out-of-range nanosecond field"))?;
let (simulation, ..) = self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started",
))?;
simulation.step_until(time).map_err(|_| {
(
ErrorCode::InvalidTime,
"the specified deadline lies in the past",
)
})?;
simulation
}
step_until_request::Deadline::Duration(duration) => {
let duration = to_positive_duration(duration).ok_or((
ErrorCode::InvalidDuration,
"the specified deadline lies in the past",
))?;
let (simulation, ..) = self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started",
))?;
simulation.step_by(duration);
simulation
}
};
let timestamp = monotonic_to_timestamp(simulation.time()).ok_or((
ErrorCode::SimulationTimeOutOfRange,
"the final simulation time is out of range",
))?;
Ok(timestamp)
}();
StepUntilReply {
result: Some(match reply {
Ok(timestamp) => step_until_reply::Result::Time(timestamp),
Err((code, message)) => step_until_reply::Result::Error(Error {
code: code as i32,
message: message.to_string(),
}),
}),
}
}
/// Schedules an event at a future time.
pub(crate) fn schedule_event(&mut self, request: ScheduleEventRequest) -> ScheduleEventReply {
let reply = move || -> Result<Option<KeyRegistryId>, (ErrorCode, String)> {
let source_name = &request.source_name;
let msgpack_event = &request.event;
let with_key = request.with_key;
let period = request
.period
.map(|period| {
to_strictly_positive_duration(period).ok_or((
ErrorCode::InvalidDuration,
"the specified event period is not strictly positive".to_string(),
))
})
.transpose()?;
let (simulation, endpoint_registry, key_registry) =
self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started".to_string(),
))?;
let deadline = request.deadline.ok_or((
ErrorCode::MissingArgument,
"missing deadline argument".to_string(),
))?;
let deadline = match deadline {
schedule_event_request::Deadline::Time(time) => timestamp_to_monotonic(time)
.ok_or((
ErrorCode::InvalidTime,
"out-of-range nanosecond field".to_string(),
))?,
schedule_event_request::Deadline::Duration(duration) => {
let duration = to_strictly_positive_duration(duration).ok_or((
ErrorCode::InvalidDuration,
"the specified scheduling deadline is not in the future".to_string(),
))?;
simulation.time() + duration
}
};
let source = endpoint_registry.get_event_source_mut(source_name).ok_or((
ErrorCode::SourceNotFound,
"no event source is registered with the name '{}'".to_string(),
))?;
let (action, action_key) = match (with_key, period) {
(false, None) => source.event(msgpack_event).map(|action| (action, None)),
(false, Some(period)) => source
.periodic_event(period, msgpack_event)
.map(|action| (action, None)),
(true, None) => source
.keyed_event(msgpack_event)
.map(|(action, key)| (action, Some(key))),
(true, Some(period)) => source
.keyed_periodic_event(period, msgpack_event)
.map(|(action, key)| (action, Some(key))),
}
.map_err(|_| {
(
ErrorCode::InvalidMessage,
format!(
"the event could not be deserialized as type '{}'",
source.event_type_name()
),
)
})?;
let key_id = action_key.map(|action_key| {
// Free stale keys from the registry.
key_registry.remove_expired_keys(simulation.time());
if period.is_some() {
key_registry.insert_eternal_key(action_key)
} else {
key_registry.insert_key(action_key, deadline)
}
});
simulation.process(action);
Ok(key_id)
}();
ScheduleEventReply {
result: Some(match reply {
Ok(Some(key_id)) => {
let (subkey1, subkey2) = key_id.into_raw_parts();
schedule_event_reply::Result::Key(EventKey {
subkey1: subkey1
.try_into()
.expect("action key index is too large to be serialized"),
subkey2,
})
}
Ok(None) => schedule_event_reply::Result::Empty(()),
Err((code, message)) => schedule_event_reply::Result::Error(Error {
code: code as i32,
message,
}),
}),
}
}
/// Cancels a keyed event.
pub(crate) fn cancel_event(&mut self, request: CancelEventRequest) -> CancelEventReply {
let reply = move || -> Result<(), (ErrorCode, String)> {
let key = request.key.ok_or((
ErrorCode::MissingArgument,
"missing key argument".to_string(),
))?;
let subkey1: usize = key
.subkey1
.try_into()
.map_err(|_| (ErrorCode::InvalidKey, "invalid event key".to_string()))?;
let subkey2 = key.subkey2;
let (simulation, _, key_registry) = self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started".to_string(),
))?;
let key_id = KeyRegistryId::from_raw_parts(subkey1, subkey2);
key_registry.remove_expired_keys(simulation.time());
let key = key_registry.extract_key(key_id).ok_or((
ErrorCode::InvalidKey,
"invalid or expired event key".to_string(),
))?;
key.cancel();
Ok(())
}();
CancelEventReply {
result: Some(match reply {
Ok(()) => cancel_event_reply::Result::Empty(()),
Err((code, message)) => cancel_event_reply::Result::Error(Error {
code: code as i32,
message,
}),
}),
}
}
/// Broadcasts an event from an event source immediately, blocking until
/// completion.
///
/// Simulation time remains unchanged.
pub(crate) fn process_event(&mut self, request: ProcessEventRequest) -> ProcessEventReply {
let reply = move || -> Result<(), (ErrorCode, String)> {
let source_name = &request.source_name;
let msgpack_event = &request.event;
let (simulation, registry, _) = self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started".to_string(),
))?;
let source = registry.get_event_source_mut(source_name).ok_or((
ErrorCode::SourceNotFound,
"no source is registered with the name '{}'".to_string(),
))?;
let event = source.event(msgpack_event).map_err(|_| {
(
ErrorCode::InvalidMessage,
format!(
"the event could not be deserialized as type '{}'",
source.event_type_name()
),
)
})?;
simulation.process(event);
Ok(())
}();
ProcessEventReply {
result: Some(match reply {
Ok(()) => process_event_reply::Result::Empty(()),
Err((code, message)) => process_event_reply::Result::Error(Error {
code: code as i32,
message,
}),
}),
}
}
/// Broadcasts an event from an event source immediately, blocking until
/// completion.
///
/// Simulation time remains unchanged.
pub(crate) fn process_query(&mut self, request: ProcessQueryRequest) -> ProcessQueryReply {
let reply = move || -> Result<Vec<Vec<u8>>, (ErrorCode, String)> {
let source_name = &request.source_name;
let msgpack_request = &request.request;
let (simulation, registry, _) = self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started".to_string(),
))?;
let source = registry.get_query_source_mut(source_name).ok_or((
ErrorCode::SourceNotFound,
"no source is registered with the name '{}'".to_string(),
))?;
let (query, mut promise) = source.query(msgpack_request).map_err(|_| {
(
ErrorCode::InvalidMessage,
format!(
"the request could not be deserialized as type '{}'",
source.request_type_name()
),
)
})?;
simulation.process(query);
let replies = promise.take_collect().ok_or((
ErrorCode::InternalError,
"a reply to the query was expected but none was available".to_string(),
))?;
replies.map_err(|_| {
(
ErrorCode::InvalidMessage,
format!(
"the reply could not be serialized as type '{}'",
source.reply_type_name()
),
)
})
}();
match reply {
Ok(replies) => ProcessQueryReply {
replies,
result: Some(process_query_reply::Result::Empty(())),
},
Err((code, message)) => ProcessQueryReply {
replies: Vec::new(),
result: Some(process_query_reply::Result::Error(Error {
code: code as i32,
message,
})),
},
}
}
}
impl fmt::Debug for SimulationService {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SimulationService").finish_non_exhaustive()
}
}
#[derive(Clone, Debug)]
pub struct InvalidRequest {
description: String,
}
impl fmt::Display for InvalidRequest {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.description)
}
}
impl error::Error for InvalidRequest {}
/// An error returned when a simulation was not started.
fn simulation_not_started_error() -> Error {
Error {
code: ErrorCode::SimulationNotStarted as i32,
message: "the simulation was not started".to_string(),
}
}
/// Attempts a cast from a `MonotonicTime` to a protobuf `Timestamp`.
///
/// This will fail if the time is outside the protobuf-specified range for
/// timestamps (0001-01-01 00:00:00 to 9999-12-31 23:59:59).
fn monotonic_to_timestamp(monotonic_time: MonotonicTime) -> Option<Timestamp> {
// Unix timestamp for 0001-01-01 00:00:00, the minimum accepted by
// protobuf's specification for the `Timestamp` type.
const MIN_SECS: i64 = -62135596800;
// Unix timestamp for 9999-12-31 23:59:59, the maximum accepted by
// protobuf's specification for the `Timestamp` type.
const MAX_SECS: i64 = 253402300799;
let secs = monotonic_time.as_secs();
if !(MIN_SECS..=MAX_SECS).contains(&secs) {
return None;
}
Some(Timestamp {
seconds: secs,
nanos: monotonic_time.subsec_nanos() as i32,
})
}
/// Attempts a cast from a protobuf `Timestamp` to a `MonotonicTime`.
///
/// This should never fail provided that the `Timestamp` complies with the
/// protobuf specification. It can only fail if the nanosecond part is negative
/// or greater than 999'999'999.
fn timestamp_to_monotonic(timestamp: Timestamp) -> Option<MonotonicTime> {
let nanos: u32 = timestamp.nanos.try_into().ok()?;
MonotonicTime::new(timestamp.seconds, nanos)
}
/// Attempts a cast from a protobuf `Duration` to a `std::time::Duration`.
///
/// If the `Duration` complies with the protobuf specification, this can only
/// fail if the duration is negative.
fn to_positive_duration(duration: prost_types::Duration) -> Option<Duration> {
if duration.seconds < 0 || duration.nanos < 0 {
return None;
}
Some(Duration::new(
duration.seconds as u64,
duration.nanos as u32,
))
}
/// Attempts a cast from a protobuf `Duration` to a strictly positive
/// `std::time::Duration`.
///
/// If the `Duration` complies with the protobuf specification, this can only
/// fail if the duration is negative or null.
fn to_strictly_positive_duration(duration: prost_types::Duration) -> Option<Duration> {
if duration.seconds < 0 || duration.nanos < 0 || (duration.seconds == 0 && duration.nanos == 0)
{
return None;
}
Some(Duration::new(
duration.seconds as u64,
duration.nanos as u32,
))
}

View File

@ -1,451 +0,0 @@
use std::fmt;
use std::time::Duration;
use prost_types::Timestamp;
use tai_time::MonotonicTime;
use crate::rpc::key_registry::{KeyRegistry, KeyRegistryId};
use crate::rpc::SourceRegistry;
use crate::simulation::Simulation;
use super::super::codegen::simulation::*;
/// Protobuf-based simulation manager.
///
/// A `ManagementService` enables the management of the lifecycle of a
/// simulation.
///
/// Its methods map the various RPC management service methods defined in
/// `simulation.proto`.
pub(crate) struct ManagementService {
simulation: Simulation,
source_registry: SourceRegistry,
key_registry: KeyRegistry,
}
impl ManagementService {
/// Creates a new `ManagementService`.
pub(crate) fn new(
simulation: Simulation,
source_registry: SourceRegistry,
key_registry: KeyRegistry,
) -> Self {
Self {
simulation,
source_registry,
key_registry,
}
}
/// Returns the current simulation time.
pub(crate) fn time(&mut self, _request: TimeRequest) -> TimeReply {
let reply = if let Some(timestamp) = monotonic_to_timestamp(self.simulation.time()) {
time_reply::Result::Time(timestamp)
} else {
time_reply::Result::Error(Error {
code: ErrorCode::SimulationTimeOutOfRange as i32,
message: "the final simulation time is out of range".to_string(),
})
};
TimeReply {
result: Some(reply),
}
}
/// Advances simulation time to that of the next scheduled event, processing
/// that event as well as all other event scheduled for the same time.
///
/// Processing is gated by a (possibly blocking) call to
/// [`Clock::synchronize()`](crate::time::Clock::synchronize) on the
/// configured simulation clock. This method blocks until all newly
/// processed events have completed.
pub(crate) fn step(&mut self, _request: StepRequest) -> StepReply {
self.simulation.step();
let reply = if let Some(timestamp) = monotonic_to_timestamp(self.simulation.time()) {
step_reply::Result::Time(timestamp)
} else {
step_reply::Result::Error(Error {
code: ErrorCode::SimulationTimeOutOfRange as i32,
message: "the final simulation time is out of range".to_string(),
})
};
StepReply {
result: Some(reply),
}
}
/// Iteratively advances the simulation time until the specified deadline,
/// as if by calling
/// [`Simulation::step()`](crate::simulation::Simulation::step) repeatedly.
///
/// This method blocks until all events scheduled up to the specified target
/// time have completed. The simulation time upon completion is equal to the
/// specified target time, whether or not an event was scheduled for that
/// time.
pub(crate) fn step_until(&mut self, request: StepUntilRequest) -> StepUntilReply {
let reply = move || -> Result<Timestamp, (ErrorCode, &str)> {
let deadline = request
.deadline
.ok_or((ErrorCode::MissingArgument, "missing deadline argument"))?;
match deadline {
step_until_request::Deadline::Time(time) => {
let time = timestamp_to_monotonic(time)
.ok_or((ErrorCode::InvalidTime, "out-of-range nanosecond field"))?;
self.simulation.step_until(time).map_err(|_| {
(
ErrorCode::InvalidTime,
"the specified deadline lies in the past",
)
})?;
}
step_until_request::Deadline::Duration(duration) => {
let duration = to_positive_duration(duration).ok_or((
ErrorCode::InvalidDuration,
"the specified deadline lies in the past",
))?;
self.simulation.step_by(duration);
}
};
let timestamp = monotonic_to_timestamp(self.simulation.time()).ok_or((
ErrorCode::SimulationTimeOutOfRange,
"the final simulation time is out of range",
))?;
Ok(timestamp)
}();
StepUntilReply {
result: Some(match reply {
Ok(timestamp) => step_until_reply::Result::Time(timestamp),
Err((code, message)) => step_until_reply::Result::Error(Error {
code: code as i32,
message: message.to_string(),
}),
}),
}
}
/// Schedules an event at a future time.
pub(crate) fn schedule_event(&mut self, request: ScheduleEventRequest) -> ScheduleEventReply {
let reply = move || -> Result<Option<KeyRegistryId>, (ErrorCode, String)> {
let source_name = &request.source_name;
let msgpack_event = &request.event;
let with_key = request.with_key;
let period = request
.period
.map(|period| {
to_strictly_positive_duration(period).ok_or((
ErrorCode::InvalidDuration,
"the specified event period is not strictly positive".to_string(),
))
})
.transpose()?;
let deadline = request.deadline.ok_or((
ErrorCode::MissingArgument,
"missing deadline argument".to_string(),
))?;
let deadline = match deadline {
schedule_event_request::Deadline::Time(time) => timestamp_to_monotonic(time)
.ok_or((
ErrorCode::InvalidTime,
"out-of-range nanosecond field".to_string(),
))?,
schedule_event_request::Deadline::Duration(duration) => {
let duration = to_strictly_positive_duration(duration).ok_or((
ErrorCode::InvalidDuration,
"the specified scheduling deadline is not in the future".to_string(),
))?;
self.simulation.time() + duration
}
};
let source = self
.source_registry
.get_event_source_mut(source_name)
.ok_or((
ErrorCode::SourceNotFound,
"no event source is registered with the name '{}'".to_string(),
))?;
let (action, action_key) = match (with_key, period) {
(false, None) => source.event(msgpack_event).map(|action| (action, None)),
(false, Some(period)) => source
.periodic_event(period, msgpack_event)
.map(|action| (action, None)),
(true, None) => source
.keyed_event(msgpack_event)
.map(|(action, key)| (action, Some(key))),
(true, Some(period)) => source
.keyed_periodic_event(period, msgpack_event)
.map(|(action, key)| (action, Some(key))),
}
.map_err(|_| {
(
ErrorCode::InvalidMessage,
format!(
"the event could not be deserialized as type '{}'",
source.event_type_name()
),
)
})?;
let key_id = action_key.map(|action_key| {
// Free stale keys from the registry.
self.key_registry
.remove_expired_keys(self.simulation.time());
if period.is_some() {
self.key_registry.insert_eternal_key(action_key)
} else {
self.key_registry.insert_key(action_key, deadline)
}
});
self.simulation.process(action);
Ok(key_id)
}();
ScheduleEventReply {
result: Some(match reply {
Ok(Some(key_id)) => {
let (subkey1, subkey2) = key_id.into_raw_parts();
schedule_event_reply::Result::Key(EventKey {
subkey1: subkey1
.try_into()
.expect("action key index is too large to be serialized"),
subkey2,
})
}
Ok(None) => schedule_event_reply::Result::Empty(()),
Err((code, message)) => schedule_event_reply::Result::Error(Error {
code: code as i32,
message,
}),
}),
}
}
/// Cancels a keyed event.
pub(crate) fn cancel_event(&mut self, request: CancelEventRequest) -> CancelEventReply {
let reply = move || -> Result<(), (ErrorCode, String)> {
let key = request.key.ok_or((
ErrorCode::MissingArgument,
"missing key argument".to_string(),
))?;
let subkey1: usize = key
.subkey1
.try_into()
.map_err(|_| (ErrorCode::InvalidKey, "invalid event key".to_string()))?;
let subkey2 = key.subkey2;
let key_id = KeyRegistryId::from_raw_parts(subkey1, subkey2);
self.key_registry
.remove_expired_keys(self.simulation.time());
let key = self.key_registry.extract_key(key_id).ok_or((
ErrorCode::InvalidKey,
"invalid or expired event key".to_string(),
))?;
key.cancel();
Ok(())
}();
CancelEventReply {
result: Some(match reply {
Ok(()) => cancel_event_reply::Result::Empty(()),
Err((code, message)) => cancel_event_reply::Result::Error(Error {
code: code as i32,
message,
}),
}),
}
}
/// Broadcasts an event from an event source immediately, blocking until
/// completion.
///
/// Simulation time remains unchanged.
pub(crate) fn process_event(&mut self, request: ProcessEventRequest) -> ProcessEventReply {
let reply = move || -> Result<(), (ErrorCode, String)> {
let source_name = &request.source_name;
let msgpack_event = &request.event;
let source = self
.source_registry
.get_event_source_mut(source_name)
.ok_or((
ErrorCode::SourceNotFound,
"no source is registered with the name '{}'".to_string(),
))?;
let event = source.event(msgpack_event).map_err(|_| {
(
ErrorCode::InvalidMessage,
format!(
"the event could not be deserialized as type '{}'",
source.event_type_name()
),
)
})?;
self.simulation.process(event);
Ok(())
}();
ProcessEventReply {
result: Some(match reply {
Ok(()) => process_event_reply::Result::Empty(()),
Err((code, message)) => process_event_reply::Result::Error(Error {
code: code as i32,
message,
}),
}),
}
}
/// Broadcasts an event from an event source immediately, blocking until
/// completion.
///
/// Simulation time remains unchanged.
pub(crate) fn process_query(&mut self, request: ProcessQueryRequest) -> ProcessQueryReply {
let reply = move || -> Result<Vec<Vec<u8>>, (ErrorCode, String)> {
let source_name = &request.source_name;
let msgpack_request = &request.request;
let source = self
.source_registry
.get_query_source_mut(source_name)
.ok_or((
ErrorCode::SourceNotFound,
"no source is registered with the name '{}'".to_string(),
))?;
let (query, mut promise) = source.query(msgpack_request).map_err(|_| {
(
ErrorCode::InvalidMessage,
format!(
"the request could not be deserialized as type '{}'",
source.request_type_name()
),
)
})?;
self.simulation.process(query);
let replies = promise.take_collect().ok_or((
ErrorCode::InternalError,
"a reply to the query was expected but none was available".to_string(),
))?;
replies.map_err(|_| {
(
ErrorCode::InvalidMessage,
format!(
"the reply could not be serialized as type '{}'",
source.reply_type_name()
),
)
})
}();
match reply {
Ok(replies) => ProcessQueryReply {
replies,
result: Some(process_query_reply::Result::Empty(())),
},
Err((code, message)) => ProcessQueryReply {
replies: Vec::new(),
result: Some(process_query_reply::Result::Error(Error {
code: code as i32,
message,
})),
},
}
}
}
impl fmt::Debug for ManagementService {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ManagementService").finish_non_exhaustive()
}
}
/// Attempts a cast from a `MonotonicTime` to a protobuf `Timestamp`.
///
/// This will fail if the time is outside the protobuf-specified range for
/// timestamps (0001-01-01 00:00:00 to 9999-12-31 23:59:59).
fn monotonic_to_timestamp(monotonic_time: MonotonicTime) -> Option<Timestamp> {
// Unix timestamp for 0001-01-01 00:00:00, the minimum accepted by
// protobuf's specification for the `Timestamp` type.
const MIN_SECS: i64 = -62135596800;
// Unix timestamp for 9999-12-31 23:59:59, the maximum accepted by
// protobuf's specification for the `Timestamp` type.
const MAX_SECS: i64 = 253402300799;
let secs = monotonic_time.as_secs();
if !(MIN_SECS..=MAX_SECS).contains(&secs) {
return None;
}
Some(Timestamp {
seconds: secs,
nanos: monotonic_time.subsec_nanos() as i32,
})
}
/// Attempts a cast from a protobuf `Timestamp` to a `MonotonicTime`.
///
/// This should never fail provided that the `Timestamp` complies with the
/// protobuf specification. It can only fail if the nanosecond part is negative
/// or greater than 999'999'999.
fn timestamp_to_monotonic(timestamp: Timestamp) -> Option<MonotonicTime> {
let nanos: u32 = timestamp.nanos.try_into().ok()?;
MonotonicTime::new(timestamp.seconds, nanos)
}
/// Attempts a cast from a protobuf `Duration` to a `std::time::Duration`.
///
/// If the `Duration` complies with the protobuf specification, this can only
/// fail if the duration is negative.
fn to_positive_duration(duration: prost_types::Duration) -> Option<Duration> {
if duration.seconds < 0 || duration.nanos < 0 {
return None;
}
Some(Duration::new(
duration.seconds as u64,
duration.nanos as u32,
))
}
/// Attempts a cast from a protobuf `Duration` to a strictly positive
/// `std::time::Duration`.
///
/// If the `Duration` complies with the protobuf specification, this can only
/// fail if the duration is negative or null.
fn to_strictly_positive_duration(duration: prost_types::Duration) -> Option<Duration> {
if duration.seconds < 0 || duration.nanos < 0 || (duration.seconds == 0 && duration.nanos == 0)
{
return None;
}
Some(Duration::new(
duration.seconds as u64,
duration.nanos as u32,
))
}

View File

@ -1,122 +0,0 @@
use std::error;
use std::fmt;
use crate::rpc::SinkRegistry;
use super::super::codegen::simulation::*;
/// Protobuf-based simulation monitor.
///
/// A `MonitoringService` enables the monitoring of the event sinks of a
/// [`Simulation`](crate::simulation::Simulation).
///
/// Its methods map the various RPC monitoring service methods defined in
/// `simulation.proto`.
pub(crate) struct MonitoringService {
sink_registry: SinkRegistry,
}
impl MonitoringService {
/// Creates a new `MonitoringService`.
pub(crate) fn new(sink_registry: SinkRegistry) -> Self {
Self { sink_registry }
}
/// Read all events from an event sink.
pub(crate) fn read_events(&mut self, request: ReadEventsRequest) -> ReadEventsReply {
let reply = move || -> Result<Vec<Vec<u8>>, (ErrorCode, String)> {
let sink_name = &request.sink_name;
let sink = self.sink_registry.get_event_sink_mut(sink_name).ok_or((
ErrorCode::SinkNotFound,
"no sink is registered with the name '{}'".to_string(),
))?;
sink.collect().map_err(|_| {
(
ErrorCode::InvalidMessage,
format!(
"the event could not be serialized from type '{}'",
sink.event_type_name()
),
)
})
}();
match reply {
Ok(events) => ReadEventsReply {
events,
result: Some(read_events_reply::Result::Empty(())),
},
Err((code, message)) => ReadEventsReply {
events: Vec::new(),
result: Some(read_events_reply::Result::Error(Error {
code: code as i32,
message,
})),
},
}
}
/// Opens an event sink.
pub(crate) fn open_sink(&mut self, request: OpenSinkRequest) -> OpenSinkReply {
let reply = move || -> Result<(), (ErrorCode, String)> {
let sink_name = &request.sink_name;
let sink = self.sink_registry.get_event_sink_mut(sink_name).ok_or((
ErrorCode::SinkNotFound,
"no sink is registered with the name '{}'".to_string(),
))?;
sink.open();
Ok(())
}();
match reply {
Ok(()) => OpenSinkReply {
result: Some(open_sink_reply::Result::Empty(())),
},
Err((code, message)) => OpenSinkReply {
result: Some(open_sink_reply::Result::Error(Error {
code: code as i32,
message,
})),
},
}
}
/// Closes an event sink.
pub(crate) fn close_sink(&mut self, request: CloseSinkRequest) -> CloseSinkReply {
let reply = move || -> Result<(), (ErrorCode, String)> {
let sink_name = &request.sink_name;
let sink = self.sink_registry.get_event_sink_mut(sink_name).ok_or((
ErrorCode::SinkNotFound,
"no sink is registered with the name '{}'".to_string(),
))?;
sink.close();
Ok(())
}();
match reply {
Ok(()) => CloseSinkReply {
result: Some(close_sink_reply::Result::Empty(())),
},
Err((code, message)) => CloseSinkReply {
result: Some(close_sink_reply::Result::Error(Error {
code: code as i32,
message,
})),
},
}
}
}
impl fmt::Debug for MonitoringService {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SimulationService").finish_non_exhaustive()
}
}

View File

@ -1,243 +0,0 @@
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::fmt;
use std::time::Duration;
use rmp_serde::decode::Error as RmpDecodeError;
use rmp_serde::encode::Error as RmpEncodeError;
use serde::de::DeserializeOwned;
use serde::Serialize;
use crate::ports::{EventSinkStream, EventSource, QuerySource, ReplyReceiver};
use crate::simulation::{Action, ActionKey};
/// A registry that holds all sources and sinks meant to be accessed through
/// remote procedure calls.
#[derive(Default)]
pub struct SinkRegistry {
sinks: HashMap<String, Box<dyn EventSinkStreamAny>>,
}
impl SinkRegistry {
/// Creates an empty `EndpointRegistry`.
pub fn new() -> Self {
Self::default()
}
/// Adds a sink to the registry.
///
/// If the specified name is already in use for another sink, the sink
/// provided as argument is returned in the error.
pub fn add_event_sink<S>(&mut self, sink: S, name: impl Into<String>) -> Result<(), S>
where
S: EventSinkStream + Send + 'static,
S::Item: Serialize,
{
match self.sinks.entry(name.into()) {
Entry::Vacant(s) => {
s.insert(Box::new(sink));
Ok(())
}
Entry::Occupied(_) => Err(sink),
}
}
/// Returns a mutable reference to the specified sink if it is in the
/// registry.
pub(crate) fn get_event_sink_mut(&mut self, name: &str) -> Option<&mut dyn EventSinkStreamAny> {
self.sinks.get_mut(name).map(|s| s.as_mut())
}
}
impl fmt::Debug for SinkRegistry {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "SinkRegistry ({} sinks)", self.sinks.len())
}
}
/// A type-erased `EventSource` that operates on MessagePack-encoded serialized
/// events.
pub(crate) trait EventSourceAny: Send + 'static {
/// Returns an action which, when processed, broadcasts an event to all
/// connected input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn event(&mut self, msgpack_arg: &[u8]) -> Result<Action, RmpDecodeError>;
/// Returns a cancellable action and a cancellation key; when processed, the
/// action broadcasts an event to all connected input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn keyed_event(&mut self, msgpack_arg: &[u8]) -> Result<(Action, ActionKey), RmpDecodeError>;
/// Returns a periodically recurring action which, when processed,
/// broadcasts an event to all connected input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<Action, RmpDecodeError>;
/// Returns a cancellable, periodically recurring action and a cancellation
/// key; when processed, the action broadcasts an event to all connected
/// input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn keyed_periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<(Action, ActionKey), RmpDecodeError>;
/// Human-readable name of the event type, as returned by
/// `any::type_name()`.
fn event_type_name(&self) -> &'static str;
}
impl<T> EventSourceAny for EventSource<T>
where
T: DeserializeOwned + Clone + Send + 'static,
{
fn event(&mut self, msgpack_arg: &[u8]) -> Result<Action, RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.event(arg))
}
fn keyed_event(&mut self, msgpack_arg: &[u8]) -> Result<(Action, ActionKey), RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.keyed_event(arg))
}
fn periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<Action, RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.periodic_event(period, arg))
}
fn keyed_periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<(Action, ActionKey), RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.keyed_periodic_event(period, arg))
}
fn event_type_name(&self) -> &'static str {
std::any::type_name::<T>()
}
}
/// A type-erased `QuerySource` that operates on MessagePack-encoded serialized
/// queries and returns MessagePack-encoded replies.
pub(crate) trait QuerySourceAny: Send + 'static {
/// Returns an action which, when processed, broadcasts a query to all
/// connected replier ports.
///
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn query(
&mut self,
msgpack_arg: &[u8],
) -> Result<(Action, Box<dyn ReplyReceiverAny>), RmpDecodeError>;
/// Human-readable name of the request type, as returned by
/// `any::type_name()`.
fn request_type_name(&self) -> &'static str;
/// Human-readable name of the reply type, as returned by
/// `any::type_name()`.
fn reply_type_name(&self) -> &'static str;
}
impl<T, R> QuerySourceAny for QuerySource<T, R>
where
T: DeserializeOwned + Clone + Send + 'static,
R: Serialize + Send + 'static,
{
fn query(
&mut self,
msgpack_arg: &[u8],
) -> Result<(Action, Box<dyn ReplyReceiverAny>), RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| {
let (action, reply_recv) = self.query(arg);
let reply_recv: Box<dyn ReplyReceiverAny> = Box::new(reply_recv);
(action, reply_recv)
})
}
fn request_type_name(&self) -> &'static str {
std::any::type_name::<T>()
}
fn reply_type_name(&self) -> &'static str {
std::any::type_name::<R>()
}
}
/// A type-erased `EventSinkStream`.
pub(crate) trait EventSinkStreamAny: Send + 'static {
/// Human-readable name of the event type, as returned by
/// `any::type_name()`.
fn event_type_name(&self) -> &'static str;
/// Starts or resumes the collection of new events.
fn open(&mut self);
/// Pauses the collection of new events.
fn close(&mut self);
/// Encode and collect all events in a vector.
fn collect(&mut self) -> Result<Vec<Vec<u8>>, RmpEncodeError>;
}
impl<E> EventSinkStreamAny for E
where
E: EventSinkStream + Send + 'static,
E::Item: Serialize,
{
fn event_type_name(&self) -> &'static str {
std::any::type_name::<E::Item>()
}
fn open(&mut self) {
self.open();
}
fn close(&mut self) {
self.close();
}
fn collect(&mut self) -> Result<Vec<Vec<u8>>, RmpEncodeError> {
self.__try_fold(Vec::new(), |mut encoded_events, event| {
rmp_serde::to_vec_named(&event).map(|encoded_event| {
encoded_events.push(encoded_event);
encoded_events
})
})
}
}
/// A type-erased `ReplyReceiver` that returns MessagePack-encoded replies..
pub(crate) trait ReplyReceiverAny {
/// Take the replies, if any, encode them and collect them in a vector.
fn take_collect(&mut self) -> Option<Result<Vec<Vec<u8>>, RmpEncodeError>>;
}
impl<R: Serialize + 'static> ReplyReceiverAny for ReplyReceiver<R> {
fn take_collect(&mut self) -> Option<Result<Vec<Vec<u8>>, RmpEncodeError>> {
let replies = self.take()?;
let encoded_replies = (move || {
let mut encoded_replies = Vec::new();
for reply in replies {
let encoded_reply = rmp_serde::to_vec_named(&reply)?;
encoded_replies.push(encoded_reply);
}
Ok(encoded_replies)
})();
Some(encoded_replies)
}
}

View File

@ -1,237 +0,0 @@
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::fmt;
use std::time::Duration;
use rmp_serde::decode::Error as RmpDecodeError;
use rmp_serde::encode::Error as RmpEncodeError;
use serde::de::DeserializeOwned;
use serde::Serialize;
use crate::ports::{EventSource, QuerySource, ReplyReceiver};
use crate::simulation::{Action, ActionKey};
/// A registry that holds all sources and sinks meant to be accessed through
/// remote procedure calls.
#[derive(Default)]
pub struct SourceRegistry {
event_sources: HashMap<String, Box<dyn EventSourceAny>>,
query_sources: HashMap<String, Box<dyn QuerySourceAny>>,
}
impl SourceRegistry {
/// Creates an empty `EndpointRegistry`.
pub fn new() -> Self {
Self::default()
}
/// Adds an event source to the registry.
///
/// If the specified name is already in use for another event source, the source
/// provided as argument is returned in the error.
pub fn add_event_source<T>(
&mut self,
source: EventSource<T>,
name: impl Into<String>,
) -> Result<(), EventSource<T>>
where
T: DeserializeOwned + Clone + Send + 'static,
{
match self.event_sources.entry(name.into()) {
Entry::Vacant(s) => {
s.insert(Box::new(source));
Ok(())
}
Entry::Occupied(_) => Err(source),
}
}
/// Returns a mutable reference to the specified event source if it is in
/// the registry.
pub(crate) fn get_event_source_mut(&mut self, name: &str) -> Option<&mut dyn EventSourceAny> {
self.event_sources.get_mut(name).map(|s| s.as_mut())
}
/// Adds a query source to the registry.
///
/// If the specified name is already in use for another query source, the
/// source provided as argument is returned in the error.
pub fn add_query_source<T, R>(
&mut self,
source: QuerySource<T, R>,
name: impl Into<String>,
) -> Result<(), QuerySource<T, R>>
where
T: DeserializeOwned + Clone + Send + 'static,
R: Serialize + Send + 'static,
{
match self.query_sources.entry(name.into()) {
Entry::Vacant(s) => {
s.insert(Box::new(source));
Ok(())
}
Entry::Occupied(_) => Err(source),
}
}
/// Returns a mutable reference to the specified query source if it is in
/// the registry.
pub(crate) fn get_query_source_mut(&mut self, name: &str) -> Option<&mut dyn QuerySourceAny> {
self.query_sources.get_mut(name).map(|s| s.as_mut())
}
}
impl fmt::Debug for SourceRegistry {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"SourceRegistry ({} event sources, {} query sources)",
self.event_sources.len(),
self.query_sources.len()
)
}
}
/// A type-erased `EventSource` that operates on MessagePack-encoded serialized
/// events.
pub(crate) trait EventSourceAny: Send + 'static {
/// Returns an action which, when processed, broadcasts an event to all
/// connected input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn event(&mut self, msgpack_arg: &[u8]) -> Result<Action, RmpDecodeError>;
/// Returns a cancellable action and a cancellation key; when processed, the
/// action broadcasts an event to all connected input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn keyed_event(&mut self, msgpack_arg: &[u8]) -> Result<(Action, ActionKey), RmpDecodeError>;
/// Returns a periodically recurring action which, when processed,
/// broadcasts an event to all connected input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<Action, RmpDecodeError>;
/// Returns a cancellable, periodically recurring action and a cancellation
/// key; when processed, the action broadcasts an event to all connected
/// input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn keyed_periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<(Action, ActionKey), RmpDecodeError>;
/// Human-readable name of the event type, as returned by
/// `any::type_name()`.
fn event_type_name(&self) -> &'static str;
}
impl<T> EventSourceAny for EventSource<T>
where
T: DeserializeOwned + Clone + Send + 'static,
{
fn event(&mut self, msgpack_arg: &[u8]) -> Result<Action, RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.event(arg))
}
fn keyed_event(&mut self, msgpack_arg: &[u8]) -> Result<(Action, ActionKey), RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.keyed_event(arg))
}
fn periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<Action, RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.periodic_event(period, arg))
}
fn keyed_periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<(Action, ActionKey), RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.keyed_periodic_event(period, arg))
}
fn event_type_name(&self) -> &'static str {
std::any::type_name::<T>()
}
}
/// A type-erased `QuerySource` that operates on MessagePack-encoded serialized
/// queries and returns MessagePack-encoded replies.
pub(crate) trait QuerySourceAny: Send + 'static {
/// Returns an action which, when processed, broadcasts a query to all
/// connected replier ports.
///
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn query(
&mut self,
msgpack_arg: &[u8],
) -> Result<(Action, Box<dyn ReplyReceiverAny>), RmpDecodeError>;
/// Human-readable name of the request type, as returned by
/// `any::type_name()`.
fn request_type_name(&self) -> &'static str;
/// Human-readable name of the reply type, as returned by
/// `any::type_name()`.
fn reply_type_name(&self) -> &'static str;
}
impl<T, R> QuerySourceAny for QuerySource<T, R>
where
T: DeserializeOwned + Clone + Send + 'static,
R: Serialize + Send + 'static,
{
fn query(
&mut self,
msgpack_arg: &[u8],
) -> Result<(Action, Box<dyn ReplyReceiverAny>), RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| {
let (action, reply_recv) = self.query(arg);
let reply_recv: Box<dyn ReplyReceiverAny> = Box::new(reply_recv);
(action, reply_recv)
})
}
fn request_type_name(&self) -> &'static str {
std::any::type_name::<T>()
}
fn reply_type_name(&self) -> &'static str {
std::any::type_name::<R>()
}
}
/// A type-erased `ReplyReceiver` that returns MessagePack-encoded replies..
pub(crate) trait ReplyReceiverAny {
/// Take the replies, if any, encode them and collect them in a vector.
fn take_collect(&mut self) -> Option<Result<Vec<Vec<u8>>, RmpEncodeError>>;
}
impl<R: Serialize + 'static> ReplyReceiverAny for ReplyReceiver<R> {
fn take_collect(&mut self) -> Option<Result<Vec<Vec<u8>>, RmpEncodeError>> {
let replies = self.take()?;
let encoded_replies = (move || {
let mut encoded_replies = Vec::new();
for reply in replies {
let encoded_reply = rmp_serde::to_vec_named(&reply)?;
encoded_replies.push(encoded_reply);
}
Ok(encoded_replies)
})();
Some(encoded_replies)
}
}

View File

@ -20,9 +20,11 @@
use wasm_bindgen::prelude::*;
use super::{SimulationService, SinkRegistry};
use crate::registry::EndpointRegistry;
use crate::simulation::SimInit;
use super::protobuf::ProtobufService;
/// A simulation service that can be used from JavaScript.
///
/// This would typically be used by implementing a `run` function in Rust and
@ -49,7 +51,7 @@ use crate::simulation::SimInit;
/// ```
#[wasm_bindgen(js_name = SimulationService)]
#[derive(Debug)]
pub struct WasmSimulationService(SimulationService);
pub struct WasmSimulationService(ProtobufService);
#[wasm_bindgen(js_class = SimulationService)]
impl WasmSimulationService {
@ -75,8 +77,8 @@ impl WasmSimulationService {
/// interface.
pub fn new<F>(sim_gen: F) -> Self
where
F: FnMut() -> (SimInit, SinkRegistry) + Send + 'static,
F: FnMut() -> (SimInit, EndpointRegistry) + Send + 'static,
{
Self(SimulationService::new(sim_gen))
Self(ProtobufService::new(sim_gen))
}
}