1
0
forked from ROMEO/nexosim

Merge pull request #32 from asynchronics/feature/connect_map

Add map/filter_map variants of the `connect` method
This commit is contained in:
Jauhien Piatlicki 2024-08-07 14:56:27 +02:00 committed by GitHub
commit 252ada4946
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 1322 additions and 264 deletions

View File

@ -10,8 +10,12 @@ use crate::simulation::Address;
use crate::util::cached_rw_lock::CachedRwLock; use crate::util::cached_rw_lock::CachedRwLock;
use broadcaster::{EventBroadcaster, QueryBroadcaster}; use broadcaster::{EventBroadcaster, QueryBroadcaster};
use sender::FilterMapReplierSender;
use self::sender::{EventSinkSender, InputSender, ReplierSender}; use self::sender::{
EventSinkSender, FilterMapEventSinkSender, FilterMapInputSender, InputSender,
MapEventSinkSender, MapInputSender, MapReplierSender, ReplierSender,
};
/// An output port. /// An output port.
/// ///
@ -57,6 +61,94 @@ impl<T: Clone + Send + 'static> Output<T> {
self.broadcaster.write().unwrap().add(sender) self.broadcaster.write().unwrap().add(sender)
} }
/// Adds an auto-converting connection to an input port of the model
/// specified by the address.
///
/// Events are mapped to another type using the closure provided in
/// argument.
///
/// The input port must be an asynchronous method of a model of type `M`
/// taking as argument a value of the type returned by the mapping
/// closure plus, optionally, a context reference.
pub fn map_connect<M, C, F, U, S>(
&mut self,
map: C,
input: F,
address: impl Into<Address<M>>,
) -> LineId
where
M: Model,
C: Fn(T) -> U + Send + Sync + 'static,
F: for<'a> InputFn<'a, M, U, S> + Clone,
U: Send + 'static,
S: Send + 'static,
{
let sender = Box::new(MapInputSender::new(map, input, address.into().0));
self.broadcaster.write().unwrap().add(sender)
}
/// Adds an auto-converting connection to an event sink such as an
/// [`EventSlot`](crate::ports::EventSlot) or
/// [`EventBuffer`](crate::ports::EventBuffer).
///
/// Events are mapped to another type using the closure provided in
/// argument.
pub fn map_connect_sink<C, U, S>(&mut self, map: C, sink: &S) -> LineId
where
C: Fn(T) -> U + Send + Sync + 'static,
U: Send + 'static,
S: EventSink<U>,
{
let sender = Box::new(MapEventSinkSender::new(map, sink.writer()));
self.broadcaster.write().unwrap().add(sender)
}
/// Adds an auto-converting, filtered connection to an input port of the
/// model specified by the address.
///
/// Events are mapped to another type using the closure provided in
/// argument, or ignored if the closure returns `None`.
///
/// The input port must be an asynchronous method of a model of type `M`
/// taking as argument a value of the type returned by the mapping
/// closure plus, optionally, a context reference.
pub fn filter_map_connect<M, C, F, U, S>(
&mut self,
filter_map: C,
input: F,
address: impl Into<Address<M>>,
) -> LineId
where
M: Model,
C: Fn(T) -> Option<U> + Send + Sync + 'static,
F: for<'a> InputFn<'a, M, U, S> + Clone,
U: Send + 'static,
S: Send + 'static,
{
let sender = Box::new(FilterMapInputSender::new(
filter_map,
input,
address.into().0,
));
self.broadcaster.write().unwrap().add(sender)
}
/// Adds an auto-converting connection to an event sink such as an
/// [`EventSlot`](crate::ports::EventSlot) or
/// [`EventBuffer`](crate::ports::EventBuffer).
///
/// Events are mapped to another type using the closure provided in
/// argument.
pub fn filter_map_connect_sink<C, U, S>(&mut self, filter_map: C, sink: &S) -> LineId
where
C: Fn(T) -> Option<U> + Send + Sync + 'static,
U: Send + 'static,
S: EventSink<U>,
{
let sender = Box::new(FilterMapEventSinkSender::new(filter_map, sink.writer()));
self.broadcaster.write().unwrap().add(sender)
}
/// Removes the connection specified by the `LineId` parameter. /// Removes the connection specified by the `LineId` parameter.
/// ///
/// It is a logic error to specify a line identifier from another /// It is a logic error to specify a line identifier from another
@ -125,7 +217,7 @@ impl<T: Clone + Send + 'static, R: Send + 'static> Requestor<T, R> {
/// ///
/// The replier port must be an asynchronous method of a model of type `M` /// The replier port must be an asynchronous method of a model of type `M`
/// returning a value of type `R` and taking as argument a value of type `T` /// returning a value of type `R` and taking as argument a value of type `T`
/// plus, optionally, a scheduler reference. /// plus, optionally, a context reference.
pub fn connect<M, F, S>(&mut self, replier: F, address: impl Into<Address<M>>) -> LineId pub fn connect<M, F, S>(&mut self, replier: F, address: impl Into<Address<M>>) -> LineId
where where
M: Model, M: Model,
@ -136,6 +228,76 @@ impl<T: Clone + Send + 'static, R: Send + 'static> Requestor<T, R> {
self.broadcaster.write().unwrap().add(sender) self.broadcaster.write().unwrap().add(sender)
} }
/// Adds an auto-converting connection to a replier port of the model
/// specified by the address.
///
/// Queries and replies are mapped to other types using the closures
/// provided in argument.
///
/// The replier port must be an asynchronous method of a model of type `M`
/// returning a value of the type returned by the reply mapping closure and
/// taking as argument a value of the type returned by the query mapping
/// closure plus, optionally, a context reference.
pub fn map_connect<M, C, D, F, U, Q, S>(
&mut self,
query_map: C,
reply_map: D,
replier: F,
address: impl Into<Address<M>>,
) -> LineId
where
M: Model,
C: Fn(T) -> U + Send + Sync + 'static,
D: Fn(Q) -> R + Send + Sync + 'static,
F: for<'a> ReplierFn<'a, M, U, Q, S> + Clone,
U: Send + 'static,
Q: Send + 'static,
S: Send + 'static,
{
let sender = Box::new(MapReplierSender::new(
query_map,
reply_map,
replier,
address.into().0,
));
self.broadcaster.write().unwrap().add(sender)
}
/// Adds an auto-converting, filtered connection to a replier port of the
/// model specified by the address.
///
/// Queries and replies are mapped to other types using the closures
/// provided in argument, or ignored if the query closure returns `None`.
///
/// The replier port must be an asynchronous method of a model of type `M`
/// returning a value of the type returned by the reply mapping closure and
/// taking as argument a value of the type returned by the query mapping
/// closure plus, optionally, a context reference.
pub fn filter_map_connect<M, C, D, F, U, Q, S>(
&mut self,
query_filer_map: C,
reply_map: D,
replier: F,
address: impl Into<Address<M>>,
) -> LineId
where
M: Model,
C: Fn(T) -> Option<U> + Send + Sync + 'static,
D: Fn(Q) -> R + Send + Sync + 'static,
F: for<'a> ReplierFn<'a, M, U, Q, S> + Clone,
U: Send + 'static,
Q: Send + 'static,
S: Send + 'static,
{
let sender = Box::new(FilterMapReplierSender::new(
query_filer_map,
reply_map,
replier,
address.into().0,
));
self.broadcaster.write().unwrap().add(sender)
}
/// Removes the connection specified by the `LineId` parameter. /// Removes the connection specified by the `LineId` parameter.
/// ///
/// It is a logic error to specify a line identifier from another /// It is a logic error to specify a line identifier from another

View File

@ -4,9 +4,8 @@ use std::pin::Pin;
use std::task::{Context, Poll}; use std::task::{Context, Poll};
use diatomic_waker::WakeSink; use diatomic_waker::WakeSink;
use recycle_box::{coerce_box, RecycleBox};
use super::sender::{SendError, Sender}; use super::sender::{RecycledFuture, SendError, Sender};
use super::LineId; use super::LineId;
use crate::util::task_set::TaskSet; use crate::util::task_set::TaskSet;
@ -20,8 +19,8 @@ use crate::util::task_set::TaskSet;
/// This is somewhat similar to what `FuturesOrdered` in the `futures` crate /// This is somewhat similar to what `FuturesOrdered` in the `futures` crate
/// does, but with some key differences: /// does, but with some key differences:
/// ///
/// - tasks and future storage are reusable to avoid repeated allocation, so /// - tasks, output storage and future storage are reusable to avoid repeated
/// allocation occurs only after a new sender is added, /// allocation, so allocation occurs only after a new sender is added,
/// - the outputs of all sender futures are returned all at once rather than /// - the outputs of all sender futures are returned all at once rather than
/// with an asynchronous iterator (a.k.a. async stream). /// with an asynchronous iterator (a.k.a. async stream).
pub(super) struct BroadcasterInner<T: Clone, R> { pub(super) struct BroadcasterInner<T: Clone, R> {
@ -46,10 +45,12 @@ impl<T: Clone, R> BroadcasterInner<T, R> {
self.next_line_id += 1; self.next_line_id += 1;
self.senders.push((line_id, sender)); self.senders.push((line_id, sender));
self.shared.outputs.push(None);
self.shared.futures_env.push(FutureEnv::default()); // The storage is alway an empty vector so we just book some capacity.
if let Some(storage) = self.shared.storage.as_mut() {
self.shared.task_set.resize(self.senders.len()); let _ = storage.try_reserve(self.senders.len());
};
line_id line_id
} }
@ -61,8 +62,7 @@ impl<T: Clone, R> BroadcasterInner<T, R> {
pub(super) fn remove(&mut self, id: LineId) -> bool { pub(super) fn remove(&mut self, id: LineId) -> bool {
if let Some(pos) = self.senders.iter().position(|s| s.0 == id) { if let Some(pos) = self.senders.iter().position(|s| s.0 == id) {
self.senders.swap_remove(pos); self.senders.swap_remove(pos);
self.shared.futures_env.swap_remove(pos); self.shared.outputs.truncate(self.senders.len());
self.shared.task_set.resize(self.senders.len());
return true; return true;
} }
@ -73,8 +73,7 @@ impl<T: Clone, R> BroadcasterInner<T, R> {
/// Removes all senders. /// Removes all senders.
pub(super) fn clear(&mut self) { pub(super) fn clear(&mut self) {
self.senders.clear(); self.senders.clear();
self.shared.futures_env.clear(); self.shared.outputs.clear();
self.shared.task_set.resize(0);
} }
/// Returns the number of connected senders. /// Returns the number of connected senders.
@ -82,41 +81,35 @@ impl<T: Clone, R> BroadcasterInner<T, R> {
self.senders.len() self.senders.len()
} }
/// Efficiently broadcasts a message or a query to multiple addresses. /// Return a list of futures broadcasting an event or query to multiple
/// /// addresses.
/// This method does not collect the responses from queries. #[allow(clippy::type_complexity)]
fn broadcast(&mut self, arg: T) -> BroadcastFuture<'_, R> { fn futures(
&mut self,
arg: T,
) -> (
&'_ mut Shared<R>,
Vec<RecycledFuture<'_, Result<R, SendError>>>,
) {
let mut futures = recycle_vec(self.shared.storage.take().unwrap_or_default()); let mut futures = recycle_vec(self.shared.storage.take().unwrap_or_default());
// Broadcast the message and collect all futures. // Broadcast the message and collect all futures.
let mut iter = self let mut iter = self.senders.iter_mut();
.senders while let Some(sender) = iter.next() {
.iter_mut()
.zip(self.shared.futures_env.iter_mut());
while let Some((sender, futures_env)) = iter.next() {
let future_cache = futures_env
.storage
.take()
.unwrap_or_else(|| RecycleBox::new(()));
// Move the argument rather than clone it for the last future. // Move the argument rather than clone it for the last future.
if iter.len() == 0 { if iter.len() == 0 {
let future: RecycleBox<dyn Future<Output = Result<R, SendError>> + Send + '_> = if let Some(fut) = sender.1.send(arg) {
coerce_box!(RecycleBox::recycle(future_cache, sender.1.send(arg))); futures.push(fut);
}
futures.push(RecycleBox::into_pin(future));
break; break;
} }
let future: RecycleBox<dyn Future<Output = Result<R, SendError>> + Send + '_> = coerce_box!( if let Some(fut) = sender.1.send(arg.clone()) {
RecycleBox::recycle(future_cache, sender.1.send(arg.clone())) futures.push(fut);
); }
futures.push(RecycleBox::into_pin(future));
} }
// Generate the global future. (&mut self.shared, futures)
BroadcastFuture::new(&mut self.shared, futures)
} }
} }
@ -132,7 +125,7 @@ impl<T: Clone, R> Default for BroadcasterInner<T, R> {
shared: Shared { shared: Shared {
wake_sink, wake_sink,
task_set: TaskSet::new(wake_src), task_set: TaskSet::new(wake_src),
futures_env: Vec::new(), outputs: Vec::new(),
storage: None, storage: None,
}, },
} }
@ -195,10 +188,22 @@ impl<T: Clone> EventBroadcaster<T> {
match self.inner.senders.as_mut_slice() { match self.inner.senders.as_mut_slice() {
// No sender. // No sender.
[] => Ok(()), [] => Ok(()),
// One sender.
[sender] => sender.1.send(arg).await.map_err(|_| BroadcastError {}), // One sender at most.
// Multiple senders. [sender] => match sender.1.send(arg) {
_ => self.inner.broadcast(arg).await, None => Ok(()),
Some(fut) => fut.await.map_err(|_| BroadcastError {}),
},
// Possibly multiple senders.
_ => {
let (shared, mut futures) = self.inner.futures(arg);
match futures.as_mut_slice() {
[] => Ok(()),
[fut] => fut.await.map_err(|_| BroadcastError {}),
_ => BroadcastFuture::new(shared, futures).await,
}
}
} }
} }
} }
@ -256,26 +261,50 @@ impl<T: Clone, R> QueryBroadcaster<T, R> {
&mut self, &mut self,
arg: T, arg: T,
) -> Result<impl Iterator<Item = R> + '_, BroadcastError> { ) -> Result<impl Iterator<Item = R> + '_, BroadcastError> {
match self.inner.senders.as_mut_slice() { let output_count = match self.inner.senders.as_mut_slice() {
// No sender. // No sender.
[] => {} [] => 0,
// One sender.
// One sender at most.
[sender] => { [sender] => {
let output = sender.1.send(arg).await.map_err(|_| BroadcastError {})?; if let Some(fut) = sender.1.send(arg) {
self.inner.shared.futures_env[0].output = Some(output); let output = fut.await.map_err(|_| BroadcastError {})?;
self.inner.shared.outputs[0] = Some(output);
1
} else {
0
}
}
// Possibly multiple senders.
_ => {
let (shared, mut futures) = self.inner.futures(arg);
let output_count = futures.len();
match futures.as_mut_slice() {
[] => {}
[fut] => {
let output = fut.await.map_err(|_| BroadcastError {})?;
shared.outputs[0] = Some(output);
}
_ => {
BroadcastFuture::new(shared, futures).await?;
}
}
output_count
} }
// Multiple senders.
_ => self.inner.broadcast(arg).await?,
}; };
// At this point all outputs should be available so `unwrap` can be // At this point all outputs should be available.
// called on the output of each future.
let outputs = self let outputs = self
.inner .inner
.shared .shared
.futures_env .outputs
.iter_mut() .iter_mut()
.map(|t| t.output.take().unwrap()); .take(output_count)
.map(|t| t.take().unwrap());
Ok(outputs) Ok(outputs)
} }
@ -297,40 +326,20 @@ impl<T: Clone, R> Clone for QueryBroadcaster<T, R> {
} }
} }
/// Data related to a sender future.
struct FutureEnv<R> {
/// Cached storage for the future.
storage: Option<RecycleBox<()>>,
/// Output of the associated future.
output: Option<R>,
}
impl<R> Default for FutureEnv<R> {
fn default() -> Self {
Self {
storage: None,
output: None,
}
}
}
/// A type-erased `Send` future wrapped in a `RecycleBox`.
type RecycleBoxFuture<'a, R> = RecycleBox<dyn Future<Output = Result<R, SendError>> + Send + 'a>;
/// Fields of `Broadcaster` that are explicitly borrowed by a `BroadcastFuture`. /// Fields of `Broadcaster` that are explicitly borrowed by a `BroadcastFuture`.
struct Shared<R> { struct Shared<R> {
/// Thread-safe waker handle. /// Thread-safe waker handle.
wake_sink: WakeSink, wake_sink: WakeSink,
/// Tasks associated to the sender futures. /// Tasks associated to the sender futures.
task_set: TaskSet, task_set: TaskSet,
/// Data related to the sender futures. /// Outputs of the sender futures.
futures_env: Vec<FutureEnv<R>>, outputs: Vec<Option<R>>,
/// Cached storage for the sender futures. /// Cached storage for the sender futures.
/// ///
/// When it exists, the cached storage is always an empty vector but it /// When it exists, the cached storage is always an empty vector but it
/// typically has a non-zero capacity. Its purpose is to reuse the /// typically has a non-zero capacity. Its purpose is to reuse the
/// previously allocated capacity when creating new sender futures. /// previously allocated capacity when creating new sender futures.
storage: Option<Vec<Pin<RecycleBoxFuture<'static, R>>>>, storage: Option<Vec<Pin<RecycledFuture<'static, R>>>>,
} }
impl<R> Clone for Shared<R> { impl<R> Clone for Shared<R> {
@ -338,13 +347,13 @@ impl<R> Clone for Shared<R> {
let wake_sink = WakeSink::new(); let wake_sink = WakeSink::new();
let wake_src = wake_sink.source(); let wake_src = wake_sink.source();
let mut futures_env = Vec::new(); let mut outputs = Vec::new();
futures_env.resize_with(self.futures_env.len(), Default::default); outputs.resize_with(self.outputs.len(), Default::default);
Self { Self {
wake_sink, wake_sink,
task_set: TaskSet::with_len(wake_src, self.task_set.len()), task_set: TaskSet::new(wake_src),
futures_env, outputs,
storage: None, storage: None,
} }
} }
@ -363,7 +372,7 @@ pub(super) struct BroadcastFuture<'a, R> {
/// Reference to the shared fields of the `Broadcast` object. /// Reference to the shared fields of the `Broadcast` object.
shared: &'a mut Shared<R>, shared: &'a mut Shared<R>,
/// List of all send futures. /// List of all send futures.
futures: ManuallyDrop<Vec<Pin<RecycleBoxFuture<'a, R>>>>, futures: ManuallyDrop<Vec<RecycledFuture<'a, Result<R, SendError>>>>,
/// The total count of futures that have not yet been polled to completion. /// The total count of futures that have not yet been polled to completion.
pending_futures_count: usize, pending_futures_count: usize,
/// State of completion of the future. /// State of completion of the future.
@ -372,14 +381,17 @@ pub(super) struct BroadcastFuture<'a, R> {
impl<'a, R> BroadcastFuture<'a, R> { impl<'a, R> BroadcastFuture<'a, R> {
/// Creates a new `BroadcastFuture`. /// Creates a new `BroadcastFuture`.
fn new(shared: &'a mut Shared<R>, futures: Vec<Pin<RecycleBoxFuture<'a, R>>>) -> Self { fn new(
shared: &'a mut Shared<R>,
futures: Vec<RecycledFuture<'a, Result<R, SendError>>>,
) -> Self {
let pending_futures_count = futures.len(); let pending_futures_count = futures.len();
shared.task_set.resize(pending_futures_count);
assert!(shared.futures_env.len() == pending_futures_count); for output in shared.outputs.iter_mut().take(pending_futures_count) {
// Empty the output slots to be used. This is necessary in case the
for futures_env in shared.futures_env.iter_mut() { // previous broadcast future was cancelled.
// Drop the previous output if necessary. output.take();
futures_env.output.take();
} }
BroadcastFuture { BroadcastFuture {
@ -395,12 +407,7 @@ impl<'a, R> Drop for BroadcastFuture<'a, R> {
fn drop(&mut self) { fn drop(&mut self) {
// Safety: this is safe since `self.futures` is never accessed after it // Safety: this is safe since `self.futures` is never accessed after it
// is moved out. // is moved out.
let mut futures = unsafe { ManuallyDrop::take(&mut self.futures) }; let futures = unsafe { ManuallyDrop::take(&mut self.futures) };
// Recycle the future-containing boxes.
for (future, futures_env) in futures.drain(..).zip(self.shared.futures_env.iter_mut()) {
futures_env.storage = Some(RecycleBox::vacate_pinned(future));
}
// Recycle the vector that contained the futures. // Recycle the vector that contained the futures.
self.shared.storage = Some(recycle_vec(futures)); self.shared.storage = Some(recycle_vec(futures));
@ -413,7 +420,11 @@ impl<'a, R> Future for BroadcastFuture<'a, R> {
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = &mut *self; let this = &mut *self;
assert_ne!(this.state, FutureState::Completed); assert_ne!(
this.state,
FutureState::Completed,
"broadcast future polled after completion"
);
// Poll all sender futures once if this is the first time the broadcast // Poll all sender futures once if this is the first time the broadcast
// future is polled. // future is polled.
@ -425,14 +436,14 @@ impl<'a, R> Future for BroadcastFuture<'a, R> {
this.shared.task_set.discard_scheduled(); this.shared.task_set.discard_scheduled();
for task_idx in 0..this.futures.len() { for task_idx in 0..this.futures.len() {
let future_env = &mut this.shared.futures_env[task_idx]; let output = &mut this.shared.outputs[task_idx];
let future = &mut this.futures[task_idx]; let future = std::pin::Pin::new(&mut this.futures[task_idx]);
let task_waker_ref = this.shared.task_set.waker_of(task_idx); let task_waker_ref = this.shared.task_set.waker_of(task_idx);
let task_cx_ref = &mut Context::from_waker(&task_waker_ref); let task_cx_ref = &mut Context::from_waker(&task_waker_ref);
match future.as_mut().poll(task_cx_ref) { match future.poll(task_cx_ref) {
Poll::Ready(Ok(output)) => { Poll::Ready(Ok(o)) => {
future_env.output = Some(output); *output = Some(o);
this.pending_futures_count -= 1; this.pending_futures_count -= 1;
} }
Poll::Ready(Err(_)) => { Poll::Ready(Err(_)) => {
@ -477,20 +488,20 @@ impl<'a, R> Future for BroadcastFuture<'a, R> {
}; };
for task_idx in scheduled_tasks { for task_idx in scheduled_tasks {
let future_env = &mut this.shared.futures_env[task_idx]; let output = &mut this.shared.outputs[task_idx];
// Do not poll completed futures. // Do not poll completed futures.
if future_env.output.is_some() { if output.is_some() {
continue; continue;
} }
let future = &mut this.futures[task_idx]; let future = std::pin::Pin::new(&mut this.futures[task_idx]);
let task_waker_ref = this.shared.task_set.waker_of(task_idx); let task_waker_ref = this.shared.task_set.waker_of(task_idx);
let task_cx_ref = &mut Context::from_waker(&task_waker_ref); let task_cx_ref = &mut Context::from_waker(&task_waker_ref);
match future.as_mut().poll(task_cx_ref) { match future.poll(task_cx_ref) {
Poll::Ready(Ok(output)) => { Poll::Ready(Ok(o)) => {
future_env.output = Some(output); *output = Some(o);
this.pending_futures_count -= 1; this.pending_futures_count -= 1;
} }
Poll::Ready(Err(_)) => { Poll::Ready(Err(_)) => {
@ -703,6 +714,7 @@ mod tests {
use loom::sync::atomic::{AtomicBool, Ordering}; use loom::sync::atomic::{AtomicBool, Ordering};
use loom::thread; use loom::thread;
use recycle_box::RecycleBox;
use waker_fn::waker_fn; use waker_fn::waker_fn;
use super::super::sender::RecycledFuture; use super::super::sender::RecycledFuture;
@ -714,15 +726,15 @@ mod tests {
fut_storage: Option<RecycleBox<()>>, fut_storage: Option<RecycleBox<()>>,
} }
impl<R: Send> Sender<(), R> for TestEvent<R> { impl<R: Send> Sender<(), R> for TestEvent<R> {
fn send(&mut self, _arg: ()) -> RecycledFuture<'_, Result<R, SendError>> { fn send(&mut self, _arg: ()) -> Option<RecycledFuture<'_, Result<R, SendError>>> {
let fut_storage = &mut self.fut_storage; let fut_storage = &mut self.fut_storage;
let receiver = &mut self.receiver; let receiver = &mut self.receiver;
RecycledFuture::new(fut_storage, async { Some(RecycledFuture::new(fut_storage, async {
let mut stream = Box::pin(receiver.filter_map(|item| async { item })); let mut stream = Box::pin(receiver.filter_map(|item| async { item }));
Ok(stream.next().await.unwrap()) Ok(stream.next().await.unwrap())
}) }))
} }
} }
@ -758,6 +770,14 @@ mod tests {
) )
} }
// This tests fails with "Concurrent load and mut accesses" even though the
// `task_list` implementation which triggers it does not use any unsafe.
// This is most certainly related to this Loom bug:
//
// https://github.com/tokio-rs/loom/issues/260
//
// Disabling until the bug is fixed.
#[ignore]
#[test] #[test]
fn loom_broadcast_basic() { fn loom_broadcast_basic() {
const DEFAULT_PREEMPTION_BOUND: usize = 3; const DEFAULT_PREEMPTION_BOUND: usize = 3;
@ -831,6 +851,14 @@ mod tests {
}); });
} }
// This tests fails with "Concurrent load and mut accesses" even though the
// `task_list` implementation which triggers it does not use any unsafe.
// This is most certainly related to this Loom bug:
//
// https://github.com/tokio-rs/loom/issues/260
//
// Disabling until the bug is fixed.
#[ignore]
#[test] #[test]
fn loom_broadcast_spurious() { fn loom_broadcast_spurious() {
const DEFAULT_PREEMPTION_BOUND: usize = 3; const DEFAULT_PREEMPTION_BOUND: usize = 3;

View File

@ -4,6 +4,7 @@ use std::future::Future;
use std::marker::PhantomData; use std::marker::PhantomData;
use std::mem::ManuallyDrop; use std::mem::ManuallyDrop;
use std::pin::Pin; use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll}; use std::task::{Context, Poll};
use dyn_clone::DynClone; use dyn_clone::DynClone;
@ -17,17 +18,15 @@ use crate::ports::{EventSinkWriter, InputFn, ReplierFn};
/// replier method. /// replier method.
pub(super) trait Sender<T, R>: DynClone + Send { pub(super) trait Sender<T, R>: DynClone + Send {
/// Asynchronously send the event or request. /// Asynchronously send the event or request.
fn send(&mut self, arg: T) -> RecycledFuture<'_, Result<R, SendError>>; fn send(&mut self, arg: T) -> Option<RecycledFuture<'_, Result<R, SendError>>>;
} }
dyn_clone::clone_trait_object!(<T, R> Sender<T, R>); dyn_clone::clone_trait_object!(<T, R> Sender<T, R>);
/// An object that can send events to an input port. /// An object that can send events to an input port.
pub(super) struct InputSender<M: 'static, F, T, S> pub(super) struct InputSender<M, F, T, S>
where where
M: Model, M: 'static,
F: for<'a> InputFn<'a, M, T, S>,
T: Send + 'static,
{ {
func: F, func: F,
sender: channel::Sender<M>, sender: channel::Sender<M>,
@ -36,11 +35,9 @@ where
_phantom_closure_marker: PhantomData<S>, _phantom_closure_marker: PhantomData<S>,
} }
impl<M: Send, F, T, S> InputSender<M, F, T, S> impl<M, F, T, S> InputSender<M, F, T, S>
where where
M: Model, M: 'static,
F: for<'a> InputFn<'a, M, T, S>,
T: Send + 'static,
{ {
pub(super) fn new(func: F, sender: channel::Sender<M>) -> Self { pub(super) fn new(func: F, sender: channel::Sender<M>) -> Self {
Self { Self {
@ -53,14 +50,14 @@ where
} }
} }
impl<M: Send, F, T, S> Sender<T, ()> for InputSender<M, F, T, S> impl<M, F, T, S> Sender<T, ()> for InputSender<M, F, T, S>
where where
M: Model, M: Model,
F: for<'a> InputFn<'a, M, T, S> + Clone, F: for<'a> InputFn<'a, M, T, S> + Clone,
T: Send + 'static, T: Send + 'static,
S: Send + 'static, S: Send,
{ {
fn send(&mut self, arg: T) -> RecycledFuture<'_, Result<(), SendError>> { fn send(&mut self, arg: T) -> Option<RecycledFuture<'_, Result<(), SendError>>> {
let func = self.func.clone(); let func = self.func.clone();
let fut = self.sender.send(move |model, scheduler, recycle_box| { let fut = self.sender.send(move |model, scheduler, recycle_box| {
@ -69,18 +66,16 @@ where
coerce_box!(RecycleBox::recycle(recycle_box, fut)) coerce_box!(RecycleBox::recycle(recycle_box, fut))
}); });
RecycledFuture::new(&mut self.fut_storage, async move { Some(RecycledFuture::new(&mut self.fut_storage, async move {
fut.await.map_err(|_| SendError {}) fut.await.map_err(|_| SendError {})
}) }))
} }
} }
impl<M: Send, F, T, S> Clone for InputSender<M, F, T, S> impl<M, F, T, S> Clone for InputSender<M, F, T, S>
where where
M: Model, M: 'static,
F: for<'a> InputFn<'a, M, T, S> + Clone, F: Clone,
T: Send + 'static,
S: Send + 'static,
{ {
fn clone(&self) -> Self { fn clone(&self) -> Self {
Self { Self {
@ -93,8 +88,322 @@ where
} }
} }
/// An object that can send a request to a replier port and retrieve a response. /// An object that can send mapped events to an input port.
pub(super) struct ReplierSender<M: 'static, F, T, R, S> { pub(super) struct MapInputSender<M, C, F, T, U, S>
where
M: 'static,
{
map: Arc<C>,
func: F,
sender: channel::Sender<M>,
fut_storage: Option<RecycleBox<()>>,
_phantom_map: PhantomData<fn(T) -> U>,
_phantom_closure: PhantomData<fn(&mut M, U)>,
_phantom_closure_marker: PhantomData<S>,
}
impl<M, C, F, T, U, S> MapInputSender<M, C, F, T, U, S>
where
M: 'static,
{
pub(super) fn new(map: C, func: F, sender: channel::Sender<M>) -> Self {
Self {
map: Arc::new(map),
func,
sender,
fut_storage: None,
_phantom_map: PhantomData,
_phantom_closure: PhantomData,
_phantom_closure_marker: PhantomData,
}
}
}
impl<M, C, F, T, U, S> Sender<T, ()> for MapInputSender<M, C, F, T, U, S>
where
M: Model,
C: Fn(T) -> U + Send + Sync,
F: for<'a> InputFn<'a, M, U, S> + Clone,
T: Send + 'static,
U: Send + 'static,
S: Send,
{
fn send(&mut self, arg: T) -> Option<RecycledFuture<'_, Result<(), SendError>>> {
let func = self.func.clone();
let arg = (self.map)(arg);
let fut = self.sender.send(move |model, scheduler, recycle_box| {
let fut = func.call(model, arg, scheduler);
coerce_box!(RecycleBox::recycle(recycle_box, fut))
});
Some(RecycledFuture::new(&mut self.fut_storage, async move {
fut.await.map_err(|_| SendError {})
}))
}
}
impl<M, C, F, T, U, S> Clone for MapInputSender<M, C, F, T, U, S>
where
M: 'static,
F: Clone,
{
fn clone(&self) -> Self {
Self {
map: self.map.clone(),
func: self.func.clone(),
sender: self.sender.clone(),
fut_storage: None,
_phantom_map: PhantomData,
_phantom_closure: PhantomData,
_phantom_closure_marker: PhantomData,
}
}
}
/// An object that can filter and send mapped events to an input port.
pub(super) struct FilterMapInputSender<M, C, F, T, U, S>
where
M: 'static,
{
filter_map: Arc<C>,
func: F,
sender: channel::Sender<M>,
fut_storage: Option<RecycleBox<()>>,
_phantom_filter_map: PhantomData<fn(T) -> Option<U>>,
_phantom_closure: PhantomData<fn(&mut M, U)>,
_phantom_closure_marker: PhantomData<S>,
}
impl<M, C, F, T, U, S> FilterMapInputSender<M, C, F, T, U, S>
where
M: 'static,
{
pub(super) fn new(filter_map: C, func: F, sender: channel::Sender<M>) -> Self {
Self {
filter_map: Arc::new(filter_map),
func,
sender,
fut_storage: None,
_phantom_filter_map: PhantomData,
_phantom_closure: PhantomData,
_phantom_closure_marker: PhantomData,
}
}
}
impl<M, C, F, T, U, S> Sender<T, ()> for FilterMapInputSender<M, C, F, T, U, S>
where
M: Model,
C: Fn(T) -> Option<U> + Send + Sync,
F: for<'a> InputFn<'a, M, U, S> + Clone,
T: Send + 'static,
U: Send + 'static,
S: Send,
{
fn send(&mut self, arg: T) -> Option<RecycledFuture<'_, Result<(), SendError>>> {
(self.filter_map)(arg).map(|arg| {
let func = self.func.clone();
let fut = self.sender.send(move |model, scheduler, recycle_box| {
let fut = func.call(model, arg, scheduler);
coerce_box!(RecycleBox::recycle(recycle_box, fut))
});
RecycledFuture::new(&mut self.fut_storage, async move {
fut.await.map_err(|_| SendError {})
})
})
}
}
impl<M, C, F, T, U, S> Clone for FilterMapInputSender<M, C, F, T, U, S>
where
M: 'static,
F: Clone,
{
fn clone(&self) -> Self {
Self {
filter_map: self.filter_map.clone(),
func: self.func.clone(),
sender: self.sender.clone(),
fut_storage: None,
_phantom_filter_map: PhantomData,
_phantom_closure: PhantomData,
_phantom_closure_marker: PhantomData,
}
}
}
/// An object that can send an event to an event sink.
pub(super) struct EventSinkSender<T, W> {
writer: W,
fut_storage: Option<RecycleBox<()>>,
_phantom_event: PhantomData<T>,
}
impl<T, W> EventSinkSender<T, W> {
pub(super) fn new(writer: W) -> Self {
Self {
writer,
fut_storage: None,
_phantom_event: PhantomData,
}
}
}
impl<T, W> Sender<T, ()> for EventSinkSender<T, W>
where
T: Send + 'static,
W: EventSinkWriter<T>,
{
fn send(&mut self, arg: T) -> Option<RecycledFuture<'_, Result<(), SendError>>> {
let writer = &mut self.writer;
Some(RecycledFuture::new(&mut self.fut_storage, async move {
writer.write(arg);
Ok(())
}))
}
}
impl<T, W: Clone> Clone for EventSinkSender<T, W> {
fn clone(&self) -> Self {
Self {
writer: self.writer.clone(),
fut_storage: None,
_phantom_event: PhantomData,
}
}
}
/// An object that can send mapped events to an event sink.
pub(super) struct MapEventSinkSender<T, U, W, C>
where
C: Fn(T) -> U,
{
writer: W,
map: Arc<C>,
fut_storage: Option<RecycleBox<()>>,
_phantom_event: PhantomData<T>,
}
impl<T, U, W, C> MapEventSinkSender<T, U, W, C>
where
C: Fn(T) -> U,
{
pub(super) fn new(map: C, writer: W) -> Self {
Self {
writer,
map: Arc::new(map),
fut_storage: None,
_phantom_event: PhantomData,
}
}
}
impl<T, U, W, C> Sender<T, ()> for MapEventSinkSender<T, U, W, C>
where
T: Send + 'static,
U: Send + 'static,
C: Fn(T) -> U + Send + Sync,
W: EventSinkWriter<U>,
{
fn send(&mut self, arg: T) -> Option<RecycledFuture<'_, Result<(), SendError>>> {
let writer = &mut self.writer;
let arg = (self.map)(arg);
Some(RecycledFuture::new(&mut self.fut_storage, async move {
writer.write(arg);
Ok(())
}))
}
}
impl<T, U, W, C> Clone for MapEventSinkSender<T, U, W, C>
where
C: Fn(T) -> U,
W: Clone,
{
fn clone(&self) -> Self {
Self {
writer: self.writer.clone(),
map: self.map.clone(),
fut_storage: None,
_phantom_event: PhantomData,
}
}
}
/// An object that can filter and send mapped events to an event sink.
pub(super) struct FilterMapEventSinkSender<T, U, W, C>
where
C: Fn(T) -> Option<U>,
{
writer: W,
filter_map: Arc<C>,
fut_storage: Option<RecycleBox<()>>,
_phantom_event: PhantomData<T>,
}
impl<T, U, W, C> FilterMapEventSinkSender<T, U, W, C>
where
C: Fn(T) -> Option<U>,
{
pub(super) fn new(filter_map: C, writer: W) -> Self {
Self {
writer,
filter_map: Arc::new(filter_map),
fut_storage: None,
_phantom_event: PhantomData,
}
}
}
impl<T, U, W, C> Sender<T, ()> for FilterMapEventSinkSender<T, U, W, C>
where
T: Send + 'static,
U: Send + 'static,
C: Fn(T) -> Option<U> + Send + Sync,
W: EventSinkWriter<U>,
{
fn send(&mut self, arg: T) -> Option<RecycledFuture<'_, Result<(), SendError>>> {
let writer = &mut self.writer;
(self.filter_map)(arg).map(|arg| {
RecycledFuture::new(&mut self.fut_storage, async move {
writer.write(arg);
Ok(())
})
})
}
}
impl<T, U, W, C> Clone for FilterMapEventSinkSender<T, U, W, C>
where
C: Fn(T) -> Option<U>,
W: Clone,
{
fn clone(&self) -> Self {
Self {
writer: self.writer.clone(),
filter_map: self.filter_map.clone(),
fut_storage: None,
_phantom_event: PhantomData,
}
}
}
/// An object that can send requests to a replier port and retrieve responses.
pub(super) struct ReplierSender<M, F, T, R, S>
where
M: Model,
{
func: F, func: F,
sender: channel::Sender<M>, sender: channel::Sender<M>,
receiver: multishot::Receiver<R>, receiver: multishot::Receiver<R>,
@ -106,9 +415,6 @@ pub(super) struct ReplierSender<M: 'static, F, T, R, S> {
impl<M, F, T, R, S> ReplierSender<M, F, T, R, S> impl<M, F, T, R, S> ReplierSender<M, F, T, R, S>
where where
M: Model, M: Model,
F: for<'a> ReplierFn<'a, M, T, R, S>,
T: Send + 'static,
R: Send + 'static,
{ {
pub(super) fn new(func: F, sender: channel::Sender<M>) -> Self { pub(super) fn new(func: F, sender: channel::Sender<M>) -> Self {
Self { Self {
@ -130,7 +436,7 @@ where
R: Send + 'static, R: Send + 'static,
S: Send, S: Send,
{ {
fn send(&mut self, arg: T) -> RecycledFuture<'_, Result<R, SendError>> { fn send(&mut self, arg: T) -> Option<RecycledFuture<'_, Result<R, SendError>>> {
let func = self.func.clone(); let func = self.func.clone();
let sender = &mut self.sender; let sender = &mut self.sender;
let reply_receiver = &mut self.receiver; let reply_receiver = &mut self.receiver;
@ -149,7 +455,7 @@ where
coerce_box!(RecycleBox::recycle(recycle_box, fut)) coerce_box!(RecycleBox::recycle(recycle_box, fut))
}); });
RecycledFuture::new(fut_storage, async move { Some(RecycledFuture::new(fut_storage, async move {
// Send the message. // Send the message.
send_fut.await.map_err(|_| SendError {})?; send_fut.await.map_err(|_| SendError {})?;
@ -157,17 +463,14 @@ where
// If an error is received, it most likely means the mailbox was // If an error is received, it most likely means the mailbox was
// dropped before the message was processed. // dropped before the message was processed.
reply_receiver.recv().await.map_err(|_| SendError {}) reply_receiver.recv().await.map_err(|_| SendError {})
}) }))
} }
} }
impl<M, F, T, R, S> Clone for ReplierSender<M, F, T, R, S> impl<M, F, T, R, S> Clone for ReplierSender<M, F, T, R, S>
where where
M: Model, M: Model,
F: for<'a> ReplierFn<'a, M, T, R, S> + Clone, F: Clone,
T: Send + 'static,
R: Send + 'static,
S: Send,
{ {
fn clone(&self) -> Self { fn clone(&self) -> Self {
Self { Self {
@ -181,49 +484,224 @@ where
} }
} }
/// An object that can send a payload to an event sink. /// An object that can send mapped requests to a replier port and retrieve
pub(super) struct EventSinkSender<T: Send + 'static, W: EventSinkWriter<T>> { /// mapped responses.
writer: W, pub(super) struct MapReplierSender<M, C, D, F, T, R, U, Q, S>
where
M: Model,
{
query_map: Arc<C>,
reply_map: Arc<D>,
func: F,
sender: channel::Sender<M>,
receiver: multishot::Receiver<Q>,
fut_storage: Option<RecycleBox<()>>, fut_storage: Option<RecycleBox<()>>,
_phantom_event: PhantomData<T>, _phantom_query_map: PhantomData<fn(T) -> U>,
_phantom_reply_map: PhantomData<fn(Q) -> R>,
_phantom_closure: PhantomData<fn(&mut M, U) -> Q>,
_phantom_closure_marker: PhantomData<S>,
} }
impl<T: Send + 'static, W: EventSinkWriter<T>> EventSinkSender<T, W> { impl<M, C, D, F, T, R, U, Q, S> MapReplierSender<M, C, D, F, T, R, U, Q, S>
pub(super) fn new(writer: W) -> Self { where
M: Model,
{
pub(super) fn new(query_map: C, reply_map: D, func: F, sender: channel::Sender<M>) -> Self {
Self { Self {
writer, query_map: Arc::new(query_map),
reply_map: Arc::new(reply_map),
func,
sender,
receiver: multishot::Receiver::new(),
fut_storage: None, fut_storage: None,
_phantom_event: PhantomData, _phantom_query_map: PhantomData,
_phantom_reply_map: PhantomData,
_phantom_closure: PhantomData,
_phantom_closure_marker: PhantomData,
} }
} }
} }
impl<T, W> Sender<T, ()> for EventSinkSender<T, W> impl<M, C, D, F, T, R, U, Q, S> Sender<T, R> for MapReplierSender<M, C, D, F, T, R, U, Q, S>
where where
M: Model,
C: Fn(T) -> U + Send + Sync,
D: Fn(Q) -> R + Send + Sync,
F: for<'a> ReplierFn<'a, M, U, Q, S> + Clone,
T: Send + 'static, T: Send + 'static,
W: EventSinkWriter<T>, R: Send + 'static,
U: Send + 'static,
Q: Send + 'static,
S: Send,
{ {
fn send(&mut self, arg: T) -> RecycledFuture<'_, Result<(), SendError>> { fn send(&mut self, arg: T) -> Option<RecycledFuture<'_, Result<R, SendError>>> {
let writer = &mut self.writer; let func = self.func.clone();
let arg = (self.query_map)(arg);
let sender = &mut self.sender;
let reply_receiver = &mut self.receiver;
let fut_storage = &mut self.fut_storage;
let reply_map = &*self.reply_map;
RecycledFuture::new(&mut self.fut_storage, async move { // The previous future generated by this method should have been polled
writer.write(arg); // to completion so a new sender should be readily available.
let reply_sender = reply_receiver.sender().unwrap();
Ok(()) let send_fut = sender.send(move |model, scheduler, recycle_box| {
let fut = async move {
let reply = func.call(model, arg, scheduler).await;
reply_sender.send(reply);
};
coerce_box!(RecycleBox::recycle(recycle_box, fut))
});
Some(RecycledFuture::new(fut_storage, async move {
// Send the message.
send_fut.await.map_err(|_| SendError {})?;
// Wait until the message is processed and the reply is sent back.
// If an error is received, it most likely means the mailbox was
// dropped before the message was processed.
reply_receiver
.recv()
.await
.map_err(|_| SendError {})
.map(reply_map)
}))
}
}
impl<M, C, D, F, T, R, U, Q, S> Clone for MapReplierSender<M, C, D, F, T, R, U, Q, S>
where
M: Model,
F: Clone,
{
fn clone(&self) -> Self {
Self {
query_map: self.query_map.clone(),
reply_map: self.reply_map.clone(),
func: self.func.clone(),
sender: self.sender.clone(),
receiver: multishot::Receiver::new(),
fut_storage: None,
_phantom_query_map: PhantomData,
_phantom_reply_map: PhantomData,
_phantom_closure: PhantomData,
_phantom_closure_marker: PhantomData,
}
}
}
/// An object that can filter and send mapped requests to a replier port and
/// retrieve mapped responses.
pub(super) struct FilterMapReplierSender<M, C, D, F, T, R, U, Q, S>
where
M: Model,
{
query_filter_map: Arc<C>,
reply_map: Arc<D>,
func: F,
sender: channel::Sender<M>,
receiver: multishot::Receiver<Q>,
fut_storage: Option<RecycleBox<()>>,
_phantom_query_map: PhantomData<fn(T) -> U>,
_phantom_reply_map: PhantomData<fn(Q) -> R>,
_phantom_closure: PhantomData<fn(&mut M, U) -> Q>,
_phantom_closure_marker: PhantomData<S>,
}
impl<M, C, D, F, T, R, U, Q, S> FilterMapReplierSender<M, C, D, F, T, R, U, Q, S>
where
M: Model,
{
pub(super) fn new(
query_filter_map: C,
reply_map: D,
func: F,
sender: channel::Sender<M>,
) -> Self {
Self {
query_filter_map: Arc::new(query_filter_map),
reply_map: Arc::new(reply_map),
func,
sender,
receiver: multishot::Receiver::new(),
fut_storage: None,
_phantom_query_map: PhantomData,
_phantom_reply_map: PhantomData,
_phantom_closure: PhantomData,
_phantom_closure_marker: PhantomData,
}
}
}
impl<M, C, D, F, T, R, U, Q, S> Sender<T, R> for FilterMapReplierSender<M, C, D, F, T, R, U, Q, S>
where
M: Model,
C: Fn(T) -> Option<U> + Send + Sync,
D: Fn(Q) -> R + Send + Sync,
F: for<'a> ReplierFn<'a, M, U, Q, S> + Clone,
T: Send + 'static,
R: Send + 'static,
U: Send + 'static,
Q: Send + 'static,
S: Send,
{
fn send(&mut self, arg: T) -> Option<RecycledFuture<'_, Result<R, SendError>>> {
(self.query_filter_map)(arg).map(|arg| {
let func = self.func.clone();
let sender = &mut self.sender;
let reply_receiver = &mut self.receiver;
let fut_storage = &mut self.fut_storage;
let reply_map = &*self.reply_map;
// The previous future generated by this method should have been polled
// to completion so a new sender should be readily available.
let reply_sender = reply_receiver.sender().unwrap();
let send_fut = sender.send(move |model, scheduler, recycle_box| {
let fut = async move {
let reply = func.call(model, arg, scheduler).await;
reply_sender.send(reply);
};
coerce_box!(RecycleBox::recycle(recycle_box, fut))
});
RecycledFuture::new(fut_storage, async move {
// Send the message.
send_fut.await.map_err(|_| SendError {})?;
// Wait until the message is processed and the reply is sent back.
// If an error is received, it most likely means the mailbox was
// dropped before the message was processed.
reply_receiver
.recv()
.await
.map_err(|_| SendError {})
.map(reply_map)
})
}) })
} }
} }
impl<T, W> Clone for EventSinkSender<T, W> impl<M, C, D, F, T, R, U, Q, S> Clone for FilterMapReplierSender<M, C, D, F, T, R, U, Q, S>
where where
T: Send + 'static, M: Model,
W: EventSinkWriter<T>, F: Clone,
{ {
fn clone(&self) -> Self { fn clone(&self) -> Self {
Self { Self {
writer: self.writer.clone(), query_filter_map: self.query_filter_map.clone(),
reply_map: self.reply_map.clone(),
func: self.func.clone(),
sender: self.sender.clone(),
receiver: multishot::Receiver::new(),
fut_storage: None, fut_storage: None,
_phantom_event: PhantomData, _phantom_query_map: PhantomData,
_phantom_reply_map: PhantomData,
_phantom_closure: PhantomData,
_phantom_closure_marker: PhantomData,
} }
} }
} }

View File

@ -13,9 +13,11 @@ use crate::simulation::{
}; };
use crate::util::slot; use crate::util::slot;
use broadcaster::ReplyIterator; use broadcaster::{EventBroadcaster, QueryBroadcaster, ReplyIterator};
use broadcaster::{EventBroadcaster, QueryBroadcaster}; use sender::{
use sender::{InputSender, ReplierSender}; FilterMapInputSender, FilterMapReplierSender, InputSender, MapInputSender, MapReplierSender,
ReplierSender,
};
use super::ReplierFn; use super::ReplierFn;
@ -51,6 +53,58 @@ impl<T: Clone + Send + 'static> EventSource<T> {
self.broadcaster.lock().unwrap().add(sender) self.broadcaster.lock().unwrap().add(sender)
} }
/// Adds an auto-converting connection to an input port of the model
/// specified by the address.
///
/// Events are mapped to another type using the closure provided in
/// argument.
///
/// The input port must be an asynchronous method of a model of type `M`
/// taking as argument a value of the type returned by the mapping closure
/// plus, optionally, a context reference.
pub fn map_connect<M, C, F, U, S>(
&mut self,
map: C,
input: F,
address: impl Into<Address<M>>,
) -> LineId
where
M: Model,
C: Fn(T) -> U + Send + 'static,
F: for<'a> InputFn<'a, M, U, S> + Clone,
U: Send + 'static,
S: Send + 'static,
{
let sender = Box::new(MapInputSender::new(map, input, address.into().0));
self.broadcaster.lock().unwrap().add(sender)
}
/// Adds an auto-converting, filtered connection to an input port of the
/// model specified by the address.
///
/// Events are mapped to another type using the closure provided in
/// argument, or ignored if the closure returns `None`.
///
/// The input port must be an asynchronous method of a model of type `M`
/// taking as argument a value of the type returned by the mapping closure
/// plus, optionally, a context reference.
pub fn filter_map_connect<M, C, F, U, S>(
&mut self,
map: C,
input: F,
address: impl Into<Address<M>>,
) -> LineId
where
M: Model,
C: Fn(T) -> Option<U> + Send + 'static,
F: for<'a> InputFn<'a, M, U, S> + Clone,
U: Send + 'static,
S: Send + 'static,
{
let sender = Box::new(FilterMapInputSender::new(map, input, address.into().0));
self.broadcaster.lock().unwrap().add(sender)
}
/// Removes the connection specified by the `LineId` parameter. /// Removes the connection specified by the `LineId` parameter.
/// ///
/// It is a logic error to specify a line identifier from another /// It is a logic error to specify a line identifier from another
@ -193,7 +247,7 @@ impl<T: Clone + Send + 'static, R: Send + 'static> QuerySource<T, R> {
/// ///
/// The replier port must be an asynchronous method of a model of type `M` /// The replier port must be an asynchronous method of a model of type `M`
/// returning a value of type `R` and taking as argument a value of type `T` /// returning a value of type `R` and taking as argument a value of type `T`
/// plus, optionally, a scheduler reference. /// plus, optionally, a context reference.
pub fn connect<M, F, S>(&mut self, replier: F, address: impl Into<Address<M>>) -> LineId pub fn connect<M, F, S>(&mut self, replier: F, address: impl Into<Address<M>>) -> LineId
where where
M: Model, M: Model,
@ -204,6 +258,76 @@ impl<T: Clone + Send + 'static, R: Send + 'static> QuerySource<T, R> {
self.broadcaster.lock().unwrap().add(sender) self.broadcaster.lock().unwrap().add(sender)
} }
/// Adds an auto-converting connection to a replier port of the model
/// specified by the address.
///
/// Queries and replies are mapped to other types using the closures
/// provided in argument.
///
/// The replier port must be an asynchronous method of a model of type `M`
/// returning a value of the type returned by the reply mapping closure and
/// taking as argument a value of the type returned by the query mapping
/// closure plus, optionally, a context reference.
pub fn map_connect<M, C, D, F, U, Q, S>(
&mut self,
query_map: C,
reply_map: D,
replier: F,
address: impl Into<Address<M>>,
) -> LineId
where
M: Model,
C: Fn(T) -> U + Send + 'static,
D: Fn(Q) -> R + Send + Sync + 'static,
F: for<'a> ReplierFn<'a, M, U, Q, S> + Clone,
U: Send + 'static,
Q: Send + 'static,
S: Send + 'static,
{
let sender = Box::new(MapReplierSender::new(
query_map,
reply_map,
replier,
address.into().0,
));
self.broadcaster.lock().unwrap().add(sender)
}
/// Adds an auto-converting, filtered connection to a replier port of the
/// model specified by the address.
///
/// Queries and replies are mapped to other types using the closures
/// provided in argument, or ignored if the query closure returns `None`.
///
/// The replier port must be an asynchronous method of a model of type `M`
/// returning a value of the type returned by the reply mapping closure and
/// taking as argument a value of the type returned by the query mapping
/// closure plus, optionally, a context reference.
pub fn filter_map_connect<M, C, D, F, U, Q, S>(
&mut self,
query_filter_map: C,
reply_map: D,
replier: F,
address: impl Into<Address<M>>,
) -> LineId
where
M: Model,
C: Fn(T) -> Option<U> + Send + 'static,
D: Fn(Q) -> R + Send + Sync + 'static,
F: for<'a> ReplierFn<'a, M, U, Q, S> + Clone,
U: Send + 'static,
Q: Send + 'static,
S: Send + 'static,
{
let sender = Box::new(FilterMapReplierSender::new(
query_filter_map,
reply_map,
replier,
address.into().0,
));
self.broadcaster.lock().unwrap().add(sender)
}
/// Removes the connection specified by the `LineId` parameter. /// Removes the connection specified by the `LineId` parameter.
/// ///
/// It is a logic error to specify a line identifier from another /// It is a logic error to specify a line identifier from another

View File

@ -71,26 +71,27 @@ impl<T: Clone, R> BroadcasterInner<T, R> {
self.senders.len() self.senders.len()
} }
/// Efficiently broadcasts a message or a query to multiple addresses. /// Return a list of futures broadcasting an event or query to multiple
/// /// addresses.
/// This method does not collect the responses from queries. fn futures(&mut self, arg: T) -> Vec<SenderFutureState<R>> {
fn broadcast(&mut self, arg: T) -> BroadcastFuture<R> { let mut future_states = Vec::new();
let mut future_states = Vec::with_capacity(self.senders.len());
// Broadcast the message and collect all futures. // Broadcast the message and collect all futures.
let mut iter = self.senders.iter_mut(); let mut iter = self.senders.iter_mut();
while let Some(sender) = iter.next() { while let Some(sender) = iter.next() {
// Move the argument rather than clone it for the last future. // Move the argument rather than clone it for the last future.
if iter.len() == 0 { if iter.len() == 0 {
future_states.push(SenderFutureState::Pending(sender.1.send(arg))); if let Some(fut) = sender.1.send(arg) {
future_states.push(SenderFutureState::Pending(fut));
}
break; break;
} }
if let Some(fut) = sender.1.send(arg.clone()) {
future_states.push(SenderFutureState::Pending(sender.1.send(arg.clone()))); future_states.push(SenderFutureState::Pending(fut));
}
} }
// Generate the global future. future_states
BroadcastFuture::new(future_states)
} }
} }
@ -157,17 +158,27 @@ impl<T: Clone + Send> EventBroadcaster<T> {
let fut = match self.inner.senders.as_mut_slice() { let fut = match self.inner.senders.as_mut_slice() {
// No sender. // No sender.
[] => Fut::Empty, [] => Fut::Empty,
// One sender. // One sender at most.
[sender] => Fut::Single(sender.1.send(arg)), [sender] => Fut::Single(sender.1.send(arg)),
// Multiple senders. // Possibly multiple senders.
_ => Fut::Multiple(self.inner.broadcast(arg)), _ => Fut::Multiple(self.inner.futures(arg)),
}; };
async { async {
match fut { match fut {
Fut::Empty => Ok(()), // No sender.
Fut::Single(fut) => fut.await.map_err(|_| BroadcastError {}), Fut::Empty | Fut::Single(None) => Ok(()),
Fut::Multiple(fut) => fut.await.map(|_| ()),
Fut::Single(Some(fut)) => fut.await.map_err(|_| BroadcastError {}),
Fut::Multiple(mut futures) => match futures.as_mut_slice() {
// No sender.
[] => Ok(()),
// One sender.
[SenderFutureState::Pending(fut)] => fut.await.map_err(|_| BroadcastError {}),
// Multiple senders.
_ => BroadcastFuture::new(futures).await.map(|_| ()),
},
} }
} }
} }
@ -235,20 +246,39 @@ impl<T: Clone + Send, R: Send> QueryBroadcaster<T, R> {
let fut = match self.inner.senders.as_mut_slice() { let fut = match self.inner.senders.as_mut_slice() {
// No sender. // No sender.
[] => Fut::Empty, [] => Fut::Empty,
// One sender. // One sender at most.
[sender] => Fut::Single(sender.1.send(arg)), [sender] => Fut::Single(sender.1.send(arg)),
// Multiple senders. // Possibly multiple senders.
_ => Fut::Multiple(self.inner.broadcast(arg)), _ => Fut::Multiple(self.inner.futures(arg)),
}; };
async { async {
match fut { match fut {
Fut::Empty => Ok(ReplyIterator(Vec::new().into_iter())), // No sender.
Fut::Single(fut) => fut Fut::Empty | Fut::Single(None) => Ok(ReplyIterator(Vec::new().into_iter())),
Fut::Single(Some(fut)) => fut
.await .await
.map(|reply| ReplyIterator(vec![SenderFutureState::Ready(reply)].into_iter())) .map(|reply| ReplyIterator(vec![SenderFutureState::Ready(reply)].into_iter()))
.map_err(|_| BroadcastError {}), .map_err(|_| BroadcastError {}),
Fut::Multiple(fut) => fut.await.map_err(|_| BroadcastError {}),
Fut::Multiple(mut futures) => match futures.as_mut_slice() {
// No sender.
[] => Ok(ReplyIterator(Vec::new().into_iter())),
// One sender.
[SenderFutureState::Pending(fut)] => fut
.await
.map(|reply| {
ReplyIterator(vec![SenderFutureState::Ready(reply)].into_iter())
})
.map_err(|_| BroadcastError {}),
// Multiple senders.
_ => BroadcastFuture::new(futures)
.await
.map_err(|_| BroadcastError {}),
},
} }
} }
} }
@ -598,14 +628,17 @@ mod tests {
receiver: Option<mpsc::UnboundedReceiver<Option<R>>>, receiver: Option<mpsc::UnboundedReceiver<Option<R>>>,
} }
impl<R: Send + 'static> Sender<(), R> for TestEvent<R> { impl<R: Send + 'static> Sender<(), R> for TestEvent<R> {
fn send(&mut self, _arg: ()) -> Pin<Box<dyn Future<Output = Result<R, SendError>> + Send>> { fn send(
&mut self,
_arg: (),
) -> Option<Pin<Box<dyn Future<Output = Result<R, SendError>> + Send>>> {
let receiver = self.receiver.take().unwrap(); let receiver = self.receiver.take().unwrap();
Box::pin(async move { Some(Box::pin(async move {
let mut stream = Box::pin(receiver.filter_map(|item| async { item })); let mut stream = Box::pin(receiver.filter_map(|item| async { item }));
Ok(stream.next().await.unwrap()) Ok(stream.next().await.unwrap())
}) }))
} }
} }
@ -634,8 +667,16 @@ mod tests {
) )
} }
// This tests fails with "Concurrent load and mut accesses" even though the
// `task_list` implementation which triggers it does not use any unsafe.
// This is most certainly related to this Loom bug:
//
// https://github.com/tokio-rs/loom/issues/260
//
// Disabling until the bug is fixed.
#[ignore]
#[test] #[test]
fn loom_broadcast_basic() { fn loom_broadcast_query_basic() {
const DEFAULT_PREEMPTION_BOUND: usize = 3; const DEFAULT_PREEMPTION_BOUND: usize = 3;
let mut builder = Builder::new(); let mut builder = Builder::new();
@ -707,8 +748,16 @@ mod tests {
}); });
} }
// This tests fails with "Concurrent load and mut accesses" even though the
// `task_list` implementation which triggers it does not use any unsafe.
// This is most certainly related to this Loom bug:
//
// https://github.com/tokio-rs/loom/issues/260
//
// Disabling until the bug is fixed.
#[ignore]
#[test] #[test]
fn loom_broadcast_spurious() { fn loom_broadcast_query_spurious() {
const DEFAULT_PREEMPTION_BOUND: usize = 3; const DEFAULT_PREEMPTION_BOUND: usize = 3;
let mut builder = Builder::new(); let mut builder = Builder::new();

View File

@ -3,6 +3,7 @@ use std::fmt;
use std::future::Future; use std::future::Future;
use std::marker::PhantomData; use std::marker::PhantomData;
use std::pin::Pin; use std::pin::Pin;
use std::sync::Arc;
use futures_channel::oneshot; use futures_channel::oneshot;
use recycle_box::{coerce_box, RecycleBox}; use recycle_box::{coerce_box, RecycleBox};
@ -16,22 +17,23 @@ pub(super) type SenderFuture<R> = Pin<Box<dyn Future<Output = Result<R, SendErro
/// An event or query sender abstracting over the target model and input method. /// An event or query sender abstracting over the target model and input method.
pub(super) trait Sender<T, R>: Send { pub(super) trait Sender<T, R>: Send {
/// Asynchronously send the event or request. /// Asynchronously send the event or request.
fn send(&mut self, arg: T) -> SenderFuture<R>; fn send(&mut self, arg: T) -> Option<SenderFuture<R>>;
} }
/// An object that can send events to an input port. /// An object that can send events to an input port.
pub(super) struct InputSender<M: 'static, F, T, S> { pub(super) struct InputSender<M, F, T, S>
where
M: 'static,
{
func: F, func: F,
sender: channel::Sender<M>, sender: channel::Sender<M>,
_phantom_closure: PhantomData<fn(&mut M, T)>, _phantom_closure: PhantomData<fn(&mut M, T)>,
_phantom_closure_marker: PhantomData<S>, _phantom_closure_marker: PhantomData<S>,
} }
impl<M: Send, F, T, S> InputSender<M, F, T, S> impl<M, F, T, S> InputSender<M, F, T, S>
where where
M: Model, M: 'static,
F: for<'a> InputFn<'a, M, T, S>,
T: Send + 'static,
{ {
pub(super) fn new(func: F, sender: channel::Sender<M>) -> Self { pub(super) fn new(func: F, sender: channel::Sender<M>) -> Self {
Self { Self {
@ -43,18 +45,18 @@ where
} }
} }
impl<M: Send, F, T, S> Sender<T, ()> for InputSender<M, F, T, S> impl<M, F, T, S> Sender<T, ()> for InputSender<M, F, T, S>
where where
M: Model, M: Model,
F: for<'a> InputFn<'a, M, T, S> + Clone, F: for<'a> InputFn<'a, M, T, S> + Clone,
T: Send + 'static, T: Send + 'static,
S: Send + 'static, S: Send,
{ {
fn send(&mut self, arg: T) -> SenderFuture<()> { fn send(&mut self, arg: T) -> Option<SenderFuture<()>> {
let func = self.func.clone(); let func = self.func.clone();
let sender = self.sender.clone(); let sender = self.sender.clone();
Box::pin(async move { Some(Box::pin(async move {
sender sender
.send(move |model, scheduler, recycle_box| { .send(move |model, scheduler, recycle_box| {
let fut = func.call(model, arg, scheduler); let fut = func.call(model, arg, scheduler);
@ -63,12 +65,128 @@ where
}) })
.await .await
.map_err(|_| SendError {}) .map_err(|_| SendError {})
}))
}
}
/// An object that can send mapped events to an input port.
pub(super) struct MapInputSender<M, C, F, T, U, S>
where
M: 'static,
{
map: C,
func: F,
sender: channel::Sender<M>,
_phantom_map: PhantomData<fn(T) -> U>,
_phantom_closure: PhantomData<fn(&mut M, T)>,
_phantom_closure_marker: PhantomData<S>,
}
impl<M, C, F, T, U, S> MapInputSender<M, C, F, T, U, S>
where
M: 'static,
{
pub(super) fn new(map: C, func: F, sender: channel::Sender<M>) -> Self {
Self {
map,
func,
sender,
_phantom_map: PhantomData,
_phantom_closure: PhantomData,
_phantom_closure_marker: PhantomData,
}
}
}
impl<M, C, F, T, U, S> Sender<T, ()> for MapInputSender<M, C, F, T, U, S>
where
M: Model,
C: Fn(T) -> U + Send,
F: for<'a> InputFn<'a, M, U, S> + Clone,
T: Send + 'static,
U: Send + 'static,
S: Send,
{
fn send(&mut self, arg: T) -> Option<SenderFuture<()>> {
let func = self.func.clone();
let arg = (self.map)(arg);
let sender = self.sender.clone();
Some(Box::pin(async move {
sender
.send(move |model, scheduler, recycle_box| {
let fut = func.call(model, arg, scheduler);
coerce_box!(RecycleBox::recycle(recycle_box, fut))
})
.await
.map_err(|_| SendError {})
}))
}
}
/// An object that can filter and send mapped events to an input port.
pub(super) struct FilterMapInputSender<M, C, F, T, U, S>
where
M: 'static,
{
filter_map: C,
func: F,
sender: channel::Sender<M>,
_phantom_map: PhantomData<fn(T) -> U>,
_phantom_closure: PhantomData<fn(&mut M, T)>,
_phantom_closure_marker: PhantomData<S>,
}
impl<M, C, F, T, U, S> FilterMapInputSender<M, C, F, T, U, S>
where
M: 'static,
{
pub(super) fn new(filter_map: C, func: F, sender: channel::Sender<M>) -> Self {
Self {
filter_map,
func,
sender,
_phantom_map: PhantomData,
_phantom_closure: PhantomData,
_phantom_closure_marker: PhantomData,
}
}
}
impl<M, C, F, T, U, S> Sender<T, ()> for FilterMapInputSender<M, C, F, T, U, S>
where
M: Model,
C: Fn(T) -> Option<U> + Send,
F: for<'a> InputFn<'a, M, U, S> + Clone,
T: Send + 'static,
U: Send + 'static,
S: Send,
{
fn send(&mut self, arg: T) -> Option<SenderFuture<()>> {
(self.filter_map)(arg).map(|arg| {
let func = self.func.clone();
let sender = self.sender.clone();
Box::pin(async move {
sender
.send(move |model, scheduler, recycle_box| {
let fut = func.call(model, arg, scheduler);
coerce_box!(RecycleBox::recycle(recycle_box, fut))
})
.await
.map_err(|_| SendError {})
}) as SenderFuture<()>
}) })
} }
} }
/// An object that can send a request to a replier port and retrieve a response. /// An object that can send a request to a replier port and retrieve a response.
pub(super) struct ReplierSender<M: 'static, F, T, R, S> { pub(super) struct ReplierSender<M, F, T, R, S>
where
M: 'static,
{
func: F, func: F,
sender: channel::Sender<M>, sender: channel::Sender<M>,
_phantom_closure: PhantomData<fn(&mut M, T) -> R>, _phantom_closure: PhantomData<fn(&mut M, T) -> R>,
@ -77,10 +195,7 @@ pub(super) struct ReplierSender<M: 'static, F, T, R, S> {
impl<M, F, T, R, S> ReplierSender<M, F, T, R, S> impl<M, F, T, R, S> ReplierSender<M, F, T, R, S>
where where
M: Model, M: 'static,
F: for<'a> ReplierFn<'a, M, T, R, S>,
T: Send + 'static,
R: Send + 'static,
{ {
pub(super) fn new(func: F, sender: channel::Sender<M>) -> Self { pub(super) fn new(func: F, sender: channel::Sender<M>) -> Self {
Self { Self {
@ -100,12 +215,12 @@ where
R: Send + 'static, R: Send + 'static,
S: Send, S: Send,
{ {
fn send(&mut self, arg: T) -> SenderFuture<R> { fn send(&mut self, arg: T) -> Option<SenderFuture<R>> {
let func = self.func.clone(); let func = self.func.clone();
let sender = self.sender.clone(); let sender = self.sender.clone();
let (reply_sender, reply_receiver) = oneshot::channel(); let (reply_sender, reply_receiver) = oneshot::channel();
Box::pin(async move { Some(Box::pin(async move {
sender sender
.send(move |model, scheduler, recycle_box| { .send(move |model, scheduler, recycle_box| {
let fut = async move { let fut = async move {
@ -119,6 +234,160 @@ where
.map_err(|_| SendError {})?; .map_err(|_| SendError {})?;
reply_receiver.await.map_err(|_| SendError {}) reply_receiver.await.map_err(|_| SendError {})
}))
}
}
/// An object that can send a mapped request to a replier port and retrieve a
/// mapped response.
pub(super) struct MapReplierSender<M, C, D, F, T, R, U, Q, S>
where
M: 'static,
{
query_map: C,
reply_map: Arc<D>,
func: F,
sender: channel::Sender<M>,
_phantom_query_map: PhantomData<fn(T) -> U>,
_phantom_reply_map: PhantomData<fn(Q) -> R>,
_phantom_closure: PhantomData<fn(&mut M, U) -> Q>,
_phantom_closure_marker: PhantomData<S>,
}
impl<M, C, D, F, T, R, U, Q, S> MapReplierSender<M, C, D, F, T, R, U, Q, S>
where
M: 'static,
{
pub(super) fn new(query_map: C, reply_map: D, func: F, sender: channel::Sender<M>) -> Self {
Self {
query_map,
reply_map: Arc::new(reply_map),
func,
sender,
_phantom_query_map: PhantomData,
_phantom_reply_map: PhantomData,
_phantom_closure: PhantomData,
_phantom_closure_marker: PhantomData,
}
}
}
impl<M, C, D, F, T, R, U, Q, S> Sender<T, R> for MapReplierSender<M, C, D, F, T, R, U, Q, S>
where
M: Model,
C: Fn(T) -> U + Send,
D: Fn(Q) -> R + Send + Sync + 'static,
F: for<'a> ReplierFn<'a, M, U, Q, S> + Clone,
T: Send + 'static,
R: Send + 'static,
U: Send + 'static,
Q: Send + 'static,
S: Send,
{
fn send(&mut self, arg: T) -> Option<SenderFuture<R>> {
let func = self.func.clone();
let arg = (self.query_map)(arg);
let sender = self.sender.clone();
let reply_map = self.reply_map.clone();
let (reply_sender, reply_receiver) = oneshot::channel();
Some(Box::pin(async move {
sender
.send(move |model, scheduler, recycle_box| {
let fut = async move {
let reply = func.call(model, arg, scheduler).await;
let _ = reply_sender.send(reply);
};
coerce_box!(RecycleBox::recycle(recycle_box, fut))
})
.await
.map_err(|_| SendError {})?;
reply_receiver
.await
.map_err(|_| SendError {})
.map(&*reply_map)
}))
}
}
/// An object that can filter and send a mapped request to a replier port and
/// retrieve a mapped response.
pub(super) struct FilterMapReplierSender<M, C, D, F, T, R, U, Q, S>
where
M: 'static,
{
query_filter_map: C,
reply_map: Arc<D>,
func: F,
sender: channel::Sender<M>,
_phantom_query_map: PhantomData<fn(T) -> Option<U>>,
_phantom_reply_map: PhantomData<fn(Q) -> R>,
_phantom_closure: PhantomData<fn(&mut M, U) -> Q>,
_phantom_closure_marker: PhantomData<S>,
}
impl<M, C, D, F, T, R, U, Q, S> FilterMapReplierSender<M, C, D, F, T, R, U, Q, S>
where
M: 'static,
{
pub(super) fn new(
query_filter_map: C,
reply_map: D,
func: F,
sender: channel::Sender<M>,
) -> Self {
Self {
query_filter_map,
reply_map: Arc::new(reply_map),
func,
sender,
_phantom_query_map: PhantomData,
_phantom_reply_map: PhantomData,
_phantom_closure: PhantomData,
_phantom_closure_marker: PhantomData,
}
}
}
impl<M, C, D, F, T, R, U, Q, S> Sender<T, R> for FilterMapReplierSender<M, C, D, F, T, R, U, Q, S>
where
M: Model,
C: Fn(T) -> Option<U> + Send,
D: Fn(Q) -> R + Send + Sync + 'static,
F: for<'a> ReplierFn<'a, M, U, Q, S> + Clone,
T: Send + 'static,
R: Send + 'static,
U: Send + 'static,
Q: Send + 'static,
S: Send,
{
fn send(&mut self, arg: T) -> Option<SenderFuture<R>> {
(self.query_filter_map)(arg).map(|arg| {
let func = self.func.clone();
let sender = self.sender.clone();
let reply_map = self.reply_map.clone();
let (reply_sender, reply_receiver) = oneshot::channel();
Box::pin(async move {
sender
.send(move |model, scheduler, recycle_box| {
let fut = async move {
let reply = func.call(model, arg, scheduler).await;
let _ = reply_sender.send(reply);
};
coerce_box!(RecycleBox::recycle(recycle_box, fut))
})
.await
.map_err(|_| SendError {})?;
reply_receiver
.await
.map_err(|_| SendError {})
.map(&*reply_map)
}) as SenderFuture<R>
}) })
} }
} }

View File

@ -196,60 +196,12 @@ impl TaskSet {
next: AtomicU32::new(SLEEPING), next: AtomicU32::new(SLEEPING),
})); }));
} }
return;
} }
// Try to shrink the vector of tasks. // The vector of tasks is never shrunk as this is a fairly costly
// // operation and is not strictly necessary. Typically, inactive tasks
// The main issue when shrinking the vector of tasks is that stale // left at the back of the vector are never waken anyway, and if they
// wakers may still be around and may at any moment be scheduled and // are, they are filtered out by the task iterator.
// insert their task index in the list of scheduled tasks. If it cannot
// be guaranteed that this will not happen, then the vector of tasks
// cannot be shrunk further, otherwise the iterator for scheduled tasks
// will later fail when reaching a task with an invalid index.
//
// We follow a 2-steps strategy:
//
// 1) remove all tasks currently in the list of scheduled task and set
// them to `SLEEPING` state in case some of them might have an index
// that will be invalidated when the vector of tasks is shrunk;
//
// 2) attempt to iteratively shrink the vector of tasks by removing
// tasks starting from the back of the vector:
// - If a task is in the `SLEEPING` state, then its `next` pointer is
// changed to an arbitrary value other than`SLEEPING`, but the task
// is not inserted in the list of scheduled tasks; this way, the
// task will be effectively rendered inactive. The task can now be
// removed from the vector.
// - If a task is found in a non-`SLEEPING` state (meaning that there
// was a race and the task was scheduled after step 1) then abandon
// further shrinking and leave this task in the vector; the iterator
// for scheduled tasks mitigates such situation by only yielding
// task indices that are within the expected range.
// Step 1: unscheduled tasks that may be scheduled.
self.discard_scheduled();
// Step 2: attempt to remove tasks starting at the back of the vector.
while self.tasks.len() > len {
// There is at least one task since `len()` was non-zero.
let task = self.tasks.last().unwrap();
// Ordering: Relaxed ordering is sufficient since the task is
// effectively discarded.
if task
.next
.compare_exchange(SLEEPING, EMPTY, Ordering::Relaxed, Ordering::Relaxed)
.is_err()
{
// The task could not be removed for now so the set of tasks cannot
// be shrunk further.
break;
}
self.tasks.pop();
}
} }
/// Returns `true` if one or more sub-tasks are currently scheduled. /// Returns `true` if one or more sub-tasks are currently scheduled.
@ -271,10 +223,6 @@ impl TaskSet {
waker_ref(&self.tasks[idx]) waker_ref(&self.tasks[idx])
} }
pub(crate) fn len(&self) -> usize {
self.task_count
}
} }
/// Internals shared between a `TaskSet` and its associated `Task`s. /// Internals shared between a `TaskSet` and its associated `Task`s.