1
0
forked from ROMEO/nexosim

Add tests for periodic/key events

This commit is contained in:
Serge Barral 2023-08-14 12:31:35 +02:00
parent b0f7e69039
commit 484b74b3ec
2 changed files with 432 additions and 0 deletions

View File

@ -0,0 +1,233 @@
//! Event scheduling within `Model` input methods.
use std::time::Duration;
use asynchronix::model::{Model, Output};
use asynchronix::simulation::{Mailbox, SimInit};
use asynchronix::time::{EventKey, MonotonicTime, Scheduler};
#[test]
fn model_schedule_event() {
#[derive(Default)]
struct TestModel {
output: Output<()>,
}
impl TestModel {
fn trigger(&mut self, _: (), scheduler: &Scheduler<Self>) {
scheduler
.schedule_event_at(scheduler.time() + Duration::from_secs(2), Self::action, ())
.unwrap();
}
async fn action(&mut self) {
self.output.send(()).await;
}
}
impl Model for TestModel {}
let mut model = TestModel::default();
let mbox = Mailbox::new();
let mut output = model.output.connect_stream().0;
let addr = mbox.address();
let t0 = MonotonicTime::EPOCH;
let mut simu = SimInit::new().add_model(model, mbox).init(t0);
simu.send_event(TestModel::trigger, (), addr);
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(2));
assert!(output.next().is_some());
simu.step();
assert!(output.next().is_none());
}
#[test]
fn model_cancel_future_keyed_event() {
#[derive(Default)]
struct TestModel {
output: Output<i32>,
key: Option<EventKey>,
}
impl TestModel {
fn trigger(&mut self, _: (), scheduler: &Scheduler<Self>) {
scheduler
.schedule_event_at(scheduler.time() + Duration::from_secs(1), Self::action1, ())
.unwrap();
self.key = scheduler
.schedule_keyed_event_at(
scheduler.time() + Duration::from_secs(2),
Self::action2,
(),
)
.ok();
}
async fn action1(&mut self) {
self.output.send(1).await;
// Cancel the call to `action2`.
self.key.take().unwrap().cancel();
}
async fn action2(&mut self) {
self.output.send(2).await;
}
}
impl Model for TestModel {}
let mut model = TestModel::default();
let mbox = Mailbox::new();
let mut output = model.output.connect_stream().0;
let addr = mbox.address();
let t0 = MonotonicTime::EPOCH;
let mut simu = SimInit::new().add_model(model, mbox).init(t0);
simu.send_event(TestModel::trigger, (), addr);
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(1));
assert_eq!(output.next(), Some(1));
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(1));
assert!(output.next().is_none());
}
#[test]
fn model_cancel_same_time_keyed_event() {
#[derive(Default)]
struct TestModel {
output: Output<i32>,
key: Option<EventKey>,
}
impl TestModel {
fn trigger(&mut self, _: (), scheduler: &Scheduler<Self>) {
scheduler
.schedule_event_at(scheduler.time() + Duration::from_secs(2), Self::action1, ())
.unwrap();
self.key = scheduler
.schedule_keyed_event_at(
scheduler.time() + Duration::from_secs(2),
Self::action2,
(),
)
.ok();
}
async fn action1(&mut self) {
self.output.send(1).await;
// Cancel the call to `action2`.
self.key.take().unwrap().cancel();
}
async fn action2(&mut self) {
self.output.send(2).await;
}
}
impl Model for TestModel {}
let mut model = TestModel::default();
let mbox = Mailbox::new();
let mut output = model.output.connect_stream().0;
let addr = mbox.address();
let t0 = MonotonicTime::EPOCH;
let mut simu = SimInit::new().add_model(model, mbox).init(t0);
simu.send_event(TestModel::trigger, (), addr);
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(2));
assert_eq!(output.next(), Some(1));
assert!(output.next().is_none());
simu.step();
assert!(output.next().is_none());
}
#[test]
fn model_schedule_periodic_event() {
#[derive(Default)]
struct TestModel {
output: Output<i32>,
}
impl TestModel {
fn trigger(&mut self, _: (), scheduler: &Scheduler<Self>) {
scheduler
.schedule_periodic_event_at(
scheduler.time() + Duration::from_secs(2),
Duration::from_secs(3),
Self::action,
42,
)
.unwrap();
}
async fn action(&mut self, payload: i32) {
self.output.send(payload).await;
}
}
impl Model for TestModel {}
let mut model = TestModel::default();
let mbox = Mailbox::new();
let mut output = model.output.connect_stream().0;
let addr = mbox.address();
let t0 = MonotonicTime::EPOCH;
let mut simu = SimInit::new().add_model(model, mbox).init(t0);
simu.send_event(TestModel::trigger, (), addr);
// Move to the next events at t0 + 2s + k*3s.
for k in 0..10 {
simu.step();
assert_eq!(
simu.time(),
t0 + Duration::from_secs(2) + k * Duration::from_secs(3)
);
assert_eq!(output.next(), Some(42));
assert!(output.next().is_none());
}
}
#[test]
fn model_cancel_periodic_event() {
#[derive(Default)]
struct TestModel {
output: Output<()>,
key: Option<EventKey>,
}
impl TestModel {
fn trigger(&mut self, _: (), scheduler: &Scheduler<Self>) {
self.key = scheduler
.schedule_periodic_keyed_event_at(
scheduler.time() + Duration::from_secs(2),
Duration::from_secs(3),
Self::action,
(),
)
.ok();
}
async fn action(&mut self) {
self.output.send(()).await;
// Cancel the next events.
self.key.take().unwrap().cancel();
}
}
impl Model for TestModel {}
let mut model = TestModel::default();
let mbox = Mailbox::new();
let mut output = model.output.connect_stream().0;
let addr = mbox.address();
let t0 = MonotonicTime::EPOCH;
let mut simu = SimInit::new().add_model(model, mbox).init(t0);
simu.send_event(TestModel::trigger, (), addr);
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(2));
assert!(output.next().is_some());
assert!(output.next().is_none());
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(2));
assert!(output.next().is_none());
}

View File

@ -0,0 +1,199 @@
//! Event scheduling from a `Simulation` instance.
use std::time::Duration;
use asynchronix::model::{Model, Output};
use asynchronix::simulation::{Address, EventStream, Mailbox, SimInit, Simulation};
use asynchronix::time::MonotonicTime;
// Simple input-to-output pass-through model.
struct PassThroughModel<T: Clone + Send + 'static> {
pub output: Output<T>,
}
impl<T: Clone + Send + 'static> PassThroughModel<T> {
pub fn new() -> Self {
Self {
output: Output::default(),
}
}
pub async fn input(&mut self, arg: T) {
self.output.send(arg).await;
}
}
impl<T: Clone + Send + 'static> Model for PassThroughModel<T> {}
/// A simple bench containing a single pass-through model (input forwarded to
/// output).
fn simple_bench<T: Clone + Send + 'static>() -> (
Simulation,
MonotonicTime,
Address<PassThroughModel<T>>,
EventStream<T>,
) {
// Bench assembly.
let mut model = PassThroughModel::new();
let mbox = Mailbox::new();
let out_stream = model.output.connect_stream().0;
let addr = mbox.address();
let t0 = MonotonicTime::EPOCH;
let simu = SimInit::new().add_model(model, mbox).init(t0);
(simu, t0, addr, out_stream)
}
#[test]
fn simulation_schedule_events() {
let (mut simu, t0, addr, mut output) = simple_bench();
// Queue 2 events at t0+3s and t0+2s, in reverse order.
simu.schedule_event_in(Duration::from_secs(3), PassThroughModel::input, (), &addr)
.unwrap();
simu.schedule_event_at(
t0 + Duration::from_secs(2),
PassThroughModel::input,
(),
&addr,
)
.unwrap();
// Move to the 1st event at t0+2s.
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(2));
assert!(output.next().is_some());
// Schedule another event in 4s (at t0+6s).
simu.schedule_event_in(Duration::from_secs(4), PassThroughModel::input, (), &addr)
.unwrap();
// Move to the 2nd event at t0+3s.
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(3));
assert!(output.next().is_some());
// Move to the 3rd event at t0+6s.
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(6));
assert!(output.next().is_some());
assert!(output.next().is_none());
}
#[test]
fn simulation_schedule_keyed_events() {
let (mut simu, t0, addr, mut output) = simple_bench();
let event_t1 = simu
.schedule_keyed_event_at(
t0 + Duration::from_secs(1),
PassThroughModel::input,
1,
&addr,
)
.unwrap();
let event_t2_1 = simu
.schedule_keyed_event_in(Duration::from_secs(2), PassThroughModel::input, 21, &addr)
.unwrap();
simu.schedule_event_in(Duration::from_secs(2), PassThroughModel::input, 22, &addr)
.unwrap();
// Move to the 1st event at t0+1.
simu.step();
// Try to cancel the 1st event after it has already taken place and check
// that the cancellation had no effect.
event_t1.cancel();
assert_eq!(simu.time(), t0 + Duration::from_secs(1));
assert_eq!(output.next(), Some(1));
// Cancel the second event (t0+2) before it is meant to takes place and
// check that we move directly to the 3rd event.
event_t2_1.cancel();
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(2));
assert_eq!(output.next(), Some(22));
assert!(output.next().is_none());
}
#[test]
fn simulation_schedule_periodic_events() {
let (mut simu, t0, addr, mut output) = simple_bench();
// Queue 2 periodic events at t0 + 3s + k*2s.
simu.schedule_periodic_event_in(
Duration::from_secs(3),
Duration::from_secs(2),
PassThroughModel::input,
1,
&addr,
)
.unwrap();
simu.schedule_periodic_event_at(
t0 + Duration::from_secs(3),
Duration::from_secs(2),
PassThroughModel::input,
2,
&addr,
)
.unwrap();
// Move to the next events at t0 + 3s + k*2s.
for k in 0..10 {
simu.step();
assert_eq!(
simu.time(),
t0 + Duration::from_secs(3) + k * Duration::from_secs(2)
);
assert_eq!(output.next(), Some(1));
assert_eq!(output.next(), Some(2));
assert!(output.next().is_none());
}
}
#[test]
fn simulation_schedule_periodic_keyed_events() {
let (mut simu, t0, addr, mut output) = simple_bench();
// Queue 2 periodic events at t0 + 3s + k*2s.
simu.schedule_periodic_event_in(
Duration::from_secs(3),
Duration::from_secs(2),
PassThroughModel::input,
1,
&addr,
)
.unwrap();
let event2_key = simu
.schedule_periodic_keyed_event_at(
t0 + Duration::from_secs(3),
Duration::from_secs(2),
PassThroughModel::input,
2,
&addr,
)
.unwrap();
// Move to the next event at t0+3s.
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(3));
assert_eq!(output.next(), Some(1));
assert_eq!(output.next(), Some(2));
assert!(output.next().is_none());
// Cancel the second event.
event2_key.cancel();
// Move to the next events at t0 + 3s + k*2s.
for k in 1..10 {
simu.step();
assert_eq!(
simu.time(),
t0 + Duration::from_secs(3) + k * Duration::from_secs(2)
);
assert_eq!(output.next(), Some(1));
assert!(output.next().is_none());
}
}