forked from ROMEO/nexosim
patches for romeo
This commit is contained in:
parent
c984202005
commit
93e643a5fd
@ -131,7 +131,7 @@ use std::error::Error;
|
|||||||
use std::fmt;
|
use std::fmt;
|
||||||
use std::future::Future;
|
use std::future::Future;
|
||||||
use std::sync::{Arc, Mutex, MutexGuard};
|
use std::sync::{Arc, Mutex, MutexGuard};
|
||||||
use std::time::Duration;
|
use std::time::{Duration, Instant};
|
||||||
|
|
||||||
use recycle_box::{coerce_box, RecycleBox};
|
use recycle_box::{coerce_box, RecycleBox};
|
||||||
|
|
||||||
@ -238,6 +238,155 @@ impl Simulation {
|
|||||||
self.step_to_next_bounded(MonotonicTime::MAX);
|
self.step_to_next_bounded(MonotonicTime::MAX);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Advances simulation until the idle worker returns or times out
|
||||||
|
///
|
||||||
|
/// If the idle worker returns event data, the data is schduled to be immediately
|
||||||
|
/// handled by the event handler method using the handler address. After handling
|
||||||
|
/// all of these events, this method returns with the simulation time set to the
|
||||||
|
/// time of the idle worker's return.
|
||||||
|
///
|
||||||
|
/// If the idle worker returns no event data it is assumed to be timed out and
|
||||||
|
/// simulation time is advanced to that of the next scheduled event, processing
|
||||||
|
/// that event as well as all other event scheduled for the same time.
|
||||||
|
///
|
||||||
|
/// The idle worker method MUST return after the timeout passed to it (plus or
|
||||||
|
/// minus OS inaccuracies, which are handled by this method)
|
||||||
|
pub fn step_with_idle_worker<M, F, T, S, G>(
|
||||||
|
&mut self,
|
||||||
|
event_handler: F,
|
||||||
|
handler_address: impl Into<Address<M>> + Clone,
|
||||||
|
idle_worker: G,
|
||||||
|
) where
|
||||||
|
M: Model,
|
||||||
|
F: for<'a> InputFn<'a, M, T, S> + Clone,
|
||||||
|
T: Send + Clone + 'static,
|
||||||
|
S: Send + 'static,
|
||||||
|
G: FnOnce(Duration) -> Vec<T>,
|
||||||
|
{
|
||||||
|
let upper_time_bound = MonotonicTime::MAX;
|
||||||
|
|
||||||
|
// Function pulling the next event. If the event is periodic, it is
|
||||||
|
// immediately re-scheduled.
|
||||||
|
fn pull_next_event(
|
||||||
|
scheduler_queue: &mut MutexGuard<SchedulerQueue>,
|
||||||
|
) -> Box<dyn ScheduledEvent> {
|
||||||
|
let ((time, channel_id), event) = scheduler_queue.pull().unwrap();
|
||||||
|
if let Some((event_clone, period)) = event.next() {
|
||||||
|
scheduler_queue.insert((time + period, channel_id), event_clone);
|
||||||
|
}
|
||||||
|
|
||||||
|
event
|
||||||
|
}
|
||||||
|
|
||||||
|
// Closure returning the next key which time stamp is no older than the
|
||||||
|
// upper bound, if any. Cancelled events are pulled and discarded.
|
||||||
|
let peek_next_key = |scheduler_queue: &mut MutexGuard<SchedulerQueue>| {
|
||||||
|
loop {
|
||||||
|
match scheduler_queue.peek() {
|
||||||
|
Some((&k, t)) if k.0 <= upper_time_bound => {
|
||||||
|
if !t.is_cancelled() {
|
||||||
|
break Some(k);
|
||||||
|
}
|
||||||
|
// Discard cancelled events.
|
||||||
|
scheduler_queue.pull();
|
||||||
|
}
|
||||||
|
_ => break None,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// Move to the next scheduled time.
|
||||||
|
let mut scheduler_queue = self.scheduler_queue.lock().unwrap();
|
||||||
|
let current_key_opt = peek_next_key(&mut scheduler_queue);
|
||||||
|
let next_step = match current_key_opt {
|
||||||
|
Some((time, _)) => time,
|
||||||
|
None => upper_time_bound,
|
||||||
|
};
|
||||||
|
// so we can alter the queue
|
||||||
|
drop(scheduler_queue);
|
||||||
|
|
||||||
|
let block_timeout = self.clock.duration_until(next_step);
|
||||||
|
|
||||||
|
let sleeper = spin_sleep::SpinSleeper::default();
|
||||||
|
let accuracy = Duration::new(0, sleeper.native_accuracy_ns());
|
||||||
|
|
||||||
|
// only let worker run if it has a chance to return in time
|
||||||
|
// insert events returned by worker into queue
|
||||||
|
if block_timeout > accuracy {
|
||||||
|
let event_data = idle_worker(block_timeout - accuracy);
|
||||||
|
|
||||||
|
if !event_data.is_empty() {
|
||||||
|
let sim_now = self.clock.current_sim_time();
|
||||||
|
for element in event_data {
|
||||||
|
self.schedule_event(
|
||||||
|
sim_now,
|
||||||
|
event_handler.clone(),
|
||||||
|
element,
|
||||||
|
handler_address.clone(),
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Start over finding the next event, as queue might have been altered by idle worker
|
||||||
|
|
||||||
|
let mut scheduler_queue = self.scheduler_queue.lock().unwrap();
|
||||||
|
let current_key_opt = peek_next_key(&mut scheduler_queue);
|
||||||
|
|
||||||
|
let mut current_key = match current_key_opt {
|
||||||
|
Some(key) => key,
|
||||||
|
// TODO I think, here we should adjust sim time first
|
||||||
|
None => return (),
|
||||||
|
};
|
||||||
|
|
||||||
|
self.time.write(current_key.0);
|
||||||
|
|
||||||
|
loop {
|
||||||
|
let event = pull_next_event(&mut scheduler_queue);
|
||||||
|
let mut next_key = peek_next_key(&mut scheduler_queue);
|
||||||
|
if next_key != Some(current_key) {
|
||||||
|
// Since there are no other events targeting the same mailbox
|
||||||
|
// and the same time, the event is spawned immediately.
|
||||||
|
event.spawn_and_forget(&self.executor);
|
||||||
|
} else {
|
||||||
|
// To ensure that their relative order of execution is
|
||||||
|
// preserved, all event targeting the same mailbox are executed
|
||||||
|
// sequentially within a single compound future.
|
||||||
|
let mut event_sequence = SeqFuture::new();
|
||||||
|
event_sequence.push(event.into_future());
|
||||||
|
loop {
|
||||||
|
let event = pull_next_event(&mut scheduler_queue);
|
||||||
|
event_sequence.push(event.into_future());
|
||||||
|
next_key = peek_next_key(&mut scheduler_queue);
|
||||||
|
if next_key != Some(current_key) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Spawn a compound future that sequentially polls all events
|
||||||
|
// targeting the same mailbox.
|
||||||
|
self.executor.spawn_and_forget(event_sequence);
|
||||||
|
}
|
||||||
|
|
||||||
|
current_key = match next_key {
|
||||||
|
// If the next event is scheduled at the same time, update the
|
||||||
|
// key and continue.
|
||||||
|
Some(k) if k.0 == current_key.0 => k,
|
||||||
|
// Otherwise wait until all events have completed and return.
|
||||||
|
_ => {
|
||||||
|
drop(scheduler_queue); // make sure the queue's mutex is released.
|
||||||
|
let current_time = current_key.0;
|
||||||
|
// TODO: check synchronization status?
|
||||||
|
self.clock.synchronize(current_time);
|
||||||
|
self.executor.run();
|
||||||
|
|
||||||
|
return ();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/// Iteratively advances the simulation time by the specified duration, as
|
/// Iteratively advances the simulation time by the specified duration, as
|
||||||
/// if by calling [`Simulation::step()`] repeatedly.
|
/// if by calling [`Simulation::step()`] repeatedly.
|
||||||
///
|
///
|
||||||
@ -536,7 +685,18 @@ impl Simulation {
|
|||||||
|
|
||||||
// Move to the next scheduled time.
|
// Move to the next scheduled time.
|
||||||
let mut scheduler_queue = self.scheduler_queue.lock().unwrap();
|
let mut scheduler_queue = self.scheduler_queue.lock().unwrap();
|
||||||
let mut current_key = peek_next_key(&mut scheduler_queue)?;
|
let current_key_opt = peek_next_key(&mut scheduler_queue);
|
||||||
|
let next_step = match current_key_opt {
|
||||||
|
Some((time, _)) => time,
|
||||||
|
None => upper_time_bound,
|
||||||
|
};
|
||||||
|
self.clock.synchronize(next_step);
|
||||||
|
|
||||||
|
let mut current_key = match current_key_opt {
|
||||||
|
Some(key) => key,
|
||||||
|
None => return Some(upper_time_bound),
|
||||||
|
};
|
||||||
|
|
||||||
self.time.write(current_key.0);
|
self.time.write(current_key.0);
|
||||||
|
|
||||||
loop {
|
loop {
|
||||||
@ -575,7 +735,7 @@ impl Simulation {
|
|||||||
drop(scheduler_queue); // make sure the queue's mutex is released.
|
drop(scheduler_queue); // make sure the queue's mutex is released.
|
||||||
let current_time = current_key.0;
|
let current_time = current_key.0;
|
||||||
// TODO: check synchronization status?
|
// TODO: check synchronization status?
|
||||||
self.clock.synchronize(current_time);
|
//self.clock.synchronize(current_time);
|
||||||
self.executor.run();
|
self.executor.run();
|
||||||
|
|
||||||
return Some(current_time);
|
return Some(current_time);
|
||||||
|
@ -12,6 +12,13 @@ use crate::time::MonotonicTime;
|
|||||||
pub trait Clock: Send {
|
pub trait Clock: Send {
|
||||||
/// Blocks until the deadline.
|
/// Blocks until the deadline.
|
||||||
fn synchronize(&mut self, deadline: MonotonicTime) -> SyncStatus;
|
fn synchronize(&mut self, deadline: MonotonicTime) -> SyncStatus;
|
||||||
|
|
||||||
|
/// returns duration until specified sim time
|
||||||
|
fn duration_until(&mut self, sim_time: MonotonicTime) -> Duration;
|
||||||
|
|
||||||
|
/// returns sim time corresponding to current real time, adjusted
|
||||||
|
/// to the reference time of the clock
|
||||||
|
fn current_sim_time(&mut self) -> MonotonicTime;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// The current synchronization status of a clock.
|
/// The current synchronization status of a clock.
|
||||||
@ -42,6 +49,15 @@ impl Clock for NoClock {
|
|||||||
fn synchronize(&mut self, _: MonotonicTime) -> SyncStatus {
|
fn synchronize(&mut self, _: MonotonicTime) -> SyncStatus {
|
||||||
SyncStatus::Synchronized
|
SyncStatus::Synchronized
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn duration_until(&mut self, _deadline: MonotonicTime) -> Duration {
|
||||||
|
Duration::new(0, 0)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn current_sim_time(&mut self) -> MonotonicTime {
|
||||||
|
//TODO broken
|
||||||
|
panic!("you should not do this")
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// A real-time [`Clock`] based on the system's monotonic clock.
|
/// A real-time [`Clock`] based on the system's monotonic clock.
|
||||||
@ -196,6 +212,26 @@ impl Clock for SystemClock {
|
|||||||
None => SyncStatus::OutOfSync(now.duration_since(target_time)),
|
None => SyncStatus::OutOfSync(now.duration_since(target_time)),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn duration_until(&mut self, deadline: MonotonicTime) -> Duration {
|
||||||
|
let target_time = if deadline >= self.simulation_ref {
|
||||||
|
self.wall_clock_ref + deadline.duration_since(self.simulation_ref)
|
||||||
|
} else {
|
||||||
|
self.wall_clock_ref - self.simulation_ref.duration_since(deadline)
|
||||||
|
};
|
||||||
|
|
||||||
|
let now = Instant::now();
|
||||||
|
|
||||||
|
match target_time.checked_duration_since(now) {
|
||||||
|
Some(sleep_duration) => sleep_duration,
|
||||||
|
None => panic!("invalid times"),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn current_sim_time(&mut self) -> MonotonicTime {
|
||||||
|
// TODO handle now() < wall_clock_ref?
|
||||||
|
self.simulation_ref + Instant::now().duration_since(self.wall_clock_ref)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// An automatically initialized real-time [`Clock`] based on the system's
|
/// An automatically initialized real-time [`Clock`] based on the system's
|
||||||
@ -232,4 +268,25 @@ impl Clock for AutoSystemClock {
|
|||||||
Some(clock) => clock.synchronize(deadline),
|
Some(clock) => clock.synchronize(deadline),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn duration_until(&mut self, deadline: MonotonicTime) -> Duration {
|
||||||
|
match self.inner {
|
||||||
|
None => {
|
||||||
|
let now = Instant::now();
|
||||||
|
self.inner = Some(SystemClock::from_instant(deadline, now));
|
||||||
|
Duration::new(0, 0)
|
||||||
|
}
|
||||||
|
Some(mut clock) => clock.duration_until(deadline),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn current_sim_time(&mut self) -> MonotonicTime {
|
||||||
|
//TODO This is broken
|
||||||
|
match self.inner {
|
||||||
|
None => {
|
||||||
|
panic!("I do not know what to do now")
|
||||||
|
}
|
||||||
|
Some(mut clock) => clock.current_sim_time(),
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user