1
0
forked from ROMEO/nexosim

patches for romeo

This commit is contained in:
Ulrich Mohr 2024-07-31 01:07:18 +02:00
parent c984202005
commit 93e643a5fd
2 changed files with 220 additions and 3 deletions

View File

@ -131,7 +131,7 @@ use std::error::Error;
use std::fmt;
use std::future::Future;
use std::sync::{Arc, Mutex, MutexGuard};
use std::time::Duration;
use std::time::{Duration, Instant};
use recycle_box::{coerce_box, RecycleBox};
@ -238,6 +238,155 @@ impl Simulation {
self.step_to_next_bounded(MonotonicTime::MAX);
}
/// Advances simulation until the idle worker returns or times out
///
/// If the idle worker returns event data, the data is schduled to be immediately
/// handled by the event handler method using the handler address. After handling
/// all of these events, this method returns with the simulation time set to the
/// time of the idle worker's return.
///
/// If the idle worker returns no event data it is assumed to be timed out and
/// simulation time is advanced to that of the next scheduled event, processing
/// that event as well as all other event scheduled for the same time.
///
/// The idle worker method MUST return after the timeout passed to it (plus or
/// minus OS inaccuracies, which are handled by this method)
pub fn step_with_idle_worker<M, F, T, S, G>(
&mut self,
event_handler: F,
handler_address: impl Into<Address<M>> + Clone,
idle_worker: G,
) where
M: Model,
F: for<'a> InputFn<'a, M, T, S> + Clone,
T: Send + Clone + 'static,
S: Send + 'static,
G: FnOnce(Duration) -> Vec<T>,
{
let upper_time_bound = MonotonicTime::MAX;
// Function pulling the next event. If the event is periodic, it is
// immediately re-scheduled.
fn pull_next_event(
scheduler_queue: &mut MutexGuard<SchedulerQueue>,
) -> Box<dyn ScheduledEvent> {
let ((time, channel_id), event) = scheduler_queue.pull().unwrap();
if let Some((event_clone, period)) = event.next() {
scheduler_queue.insert((time + period, channel_id), event_clone);
}
event
}
// Closure returning the next key which time stamp is no older than the
// upper bound, if any. Cancelled events are pulled and discarded.
let peek_next_key = |scheduler_queue: &mut MutexGuard<SchedulerQueue>| {
loop {
match scheduler_queue.peek() {
Some((&k, t)) if k.0 <= upper_time_bound => {
if !t.is_cancelled() {
break Some(k);
}
// Discard cancelled events.
scheduler_queue.pull();
}
_ => break None,
}
}
};
// Move to the next scheduled time.
let mut scheduler_queue = self.scheduler_queue.lock().unwrap();
let current_key_opt = peek_next_key(&mut scheduler_queue);
let next_step = match current_key_opt {
Some((time, _)) => time,
None => upper_time_bound,
};
// so we can alter the queue
drop(scheduler_queue);
let block_timeout = self.clock.duration_until(next_step);
let sleeper = spin_sleep::SpinSleeper::default();
let accuracy = Duration::new(0, sleeper.native_accuracy_ns());
// only let worker run if it has a chance to return in time
// insert events returned by worker into queue
if block_timeout > accuracy {
let event_data = idle_worker(block_timeout - accuracy);
if !event_data.is_empty() {
let sim_now = self.clock.current_sim_time();
for element in event_data {
self.schedule_event(
sim_now,
event_handler.clone(),
element,
handler_address.clone(),
)
.unwrap();
}
}
}
// Start over finding the next event, as queue might have been altered by idle worker
let mut scheduler_queue = self.scheduler_queue.lock().unwrap();
let current_key_opt = peek_next_key(&mut scheduler_queue);
let mut current_key = match current_key_opt {
Some(key) => key,
// TODO I think, here we should adjust sim time first
None => return (),
};
self.time.write(current_key.0);
loop {
let event = pull_next_event(&mut scheduler_queue);
let mut next_key = peek_next_key(&mut scheduler_queue);
if next_key != Some(current_key) {
// Since there are no other events targeting the same mailbox
// and the same time, the event is spawned immediately.
event.spawn_and_forget(&self.executor);
} else {
// To ensure that their relative order of execution is
// preserved, all event targeting the same mailbox are executed
// sequentially within a single compound future.
let mut event_sequence = SeqFuture::new();
event_sequence.push(event.into_future());
loop {
let event = pull_next_event(&mut scheduler_queue);
event_sequence.push(event.into_future());
next_key = peek_next_key(&mut scheduler_queue);
if next_key != Some(current_key) {
break;
}
}
// Spawn a compound future that sequentially polls all events
// targeting the same mailbox.
self.executor.spawn_and_forget(event_sequence);
}
current_key = match next_key {
// If the next event is scheduled at the same time, update the
// key and continue.
Some(k) if k.0 == current_key.0 => k,
// Otherwise wait until all events have completed and return.
_ => {
drop(scheduler_queue); // make sure the queue's mutex is released.
let current_time = current_key.0;
// TODO: check synchronization status?
self.clock.synchronize(current_time);
self.executor.run();
return ();
}
};
}
}
/// Iteratively advances the simulation time by the specified duration, as
/// if by calling [`Simulation::step()`] repeatedly.
///
@ -536,7 +685,18 @@ impl Simulation {
// Move to the next scheduled time.
let mut scheduler_queue = self.scheduler_queue.lock().unwrap();
let mut current_key = peek_next_key(&mut scheduler_queue)?;
let current_key_opt = peek_next_key(&mut scheduler_queue);
let next_step = match current_key_opt {
Some((time, _)) => time,
None => upper_time_bound,
};
self.clock.synchronize(next_step);
let mut current_key = match current_key_opt {
Some(key) => key,
None => return Some(upper_time_bound),
};
self.time.write(current_key.0);
loop {
@ -575,7 +735,7 @@ impl Simulation {
drop(scheduler_queue); // make sure the queue's mutex is released.
let current_time = current_key.0;
// TODO: check synchronization status?
self.clock.synchronize(current_time);
//self.clock.synchronize(current_time);
self.executor.run();
return Some(current_time);

View File

@ -12,6 +12,13 @@ use crate::time::MonotonicTime;
pub trait Clock: Send {
/// Blocks until the deadline.
fn synchronize(&mut self, deadline: MonotonicTime) -> SyncStatus;
/// returns duration until specified sim time
fn duration_until(&mut self, sim_time: MonotonicTime) -> Duration;
/// returns sim time corresponding to current real time, adjusted
/// to the reference time of the clock
fn current_sim_time(&mut self) -> MonotonicTime;
}
/// The current synchronization status of a clock.
@ -42,6 +49,15 @@ impl Clock for NoClock {
fn synchronize(&mut self, _: MonotonicTime) -> SyncStatus {
SyncStatus::Synchronized
}
fn duration_until(&mut self, _deadline: MonotonicTime) -> Duration {
Duration::new(0, 0)
}
fn current_sim_time(&mut self) -> MonotonicTime {
//TODO broken
panic!("you should not do this")
}
}
/// A real-time [`Clock`] based on the system's monotonic clock.
@ -196,6 +212,26 @@ impl Clock for SystemClock {
None => SyncStatus::OutOfSync(now.duration_since(target_time)),
}
}
fn duration_until(&mut self, deadline: MonotonicTime) -> Duration {
let target_time = if deadline >= self.simulation_ref {
self.wall_clock_ref + deadline.duration_since(self.simulation_ref)
} else {
self.wall_clock_ref - self.simulation_ref.duration_since(deadline)
};
let now = Instant::now();
match target_time.checked_duration_since(now) {
Some(sleep_duration) => sleep_duration,
None => panic!("invalid times"),
}
}
fn current_sim_time(&mut self) -> MonotonicTime {
// TODO handle now() < wall_clock_ref?
self.simulation_ref + Instant::now().duration_since(self.wall_clock_ref)
}
}
/// An automatically initialized real-time [`Clock`] based on the system's
@ -232,4 +268,25 @@ impl Clock for AutoSystemClock {
Some(clock) => clock.synchronize(deadline),
}
}
fn duration_until(&mut self, deadline: MonotonicTime) -> Duration {
match self.inner {
None => {
let now = Instant::now();
self.inner = Some(SystemClock::from_instant(deadline, now));
Duration::new(0, 0)
}
Some(mut clock) => clock.duration_until(deadline),
}
}
fn current_sim_time(&mut self) -> MonotonicTime {
//TODO This is broken
match self.inner {
None => {
panic!("I do not know what to do now")
}
Some(mut clock) => clock.current_sim_time(),
}
}
}