1
0
forked from ROMEO/nexosim

Initial (g)RPC implementation

This commit is contained in:
Serge Barral
2024-04-25 11:12:54 +02:00
parent c984202005
commit e84e802f09
55 changed files with 5814 additions and 1996 deletions

View File

@ -0,0 +1,50 @@
// Additional types for transport implementations which, unlike gRPC, do not
// support auto-generation from the `Simulation` service description.
syntax = "proto3";
package custom_transport;
import "simulation.proto";
enum ServerErrorCode {
UNKNOWN_REQUEST = 0;
EMPTY_REQUEST = 1;
}
message ServerError {
ServerErrorCode code = 1;
string message = 2;
}
message AnyRequest {
oneof request { // Expects exactly 1 variant.
simulation.InitRequest init_request = 1;
simulation.TimeRequest time_request = 2;
simulation.StepRequest step_request = 3;
simulation.StepUntilRequest step_until_request = 4;
simulation.ScheduleEventRequest schedule_event_request = 5;
simulation.CancelEventRequest cancel_event_request = 6;
simulation.ProcessEventRequest process_event_request = 7;
simulation.ProcessQueryRequest process_query_request = 8;
simulation.ReadEventsRequest read_events_request = 9;
simulation.OpenSinkRequest open_sink_request = 10;
simulation.CloseSinkRequest close_sink_request = 11;
}
}
message AnyReply {
oneof reply { // Contains exactly 1 variant.
simulation.InitReply init_reply = 1;
simulation.TimeReply time_reply = 2;
simulation.StepReply step_reply = 3;
simulation.StepUntilReply step_until_reply = 4;
simulation.ScheduleEventReply schedule_event_reply = 5;
simulation.CancelEventReply cancel_event_reply = 6;
simulation.ProcessEventReply process_event_reply = 7;
simulation.ProcessQueryReply process_query_reply = 8;
simulation.ReadEventsReply read_events_reply = 9;
simulation.OpenSinkReply open_sink_reply = 10;
simulation.CloseSinkReply close_sink_reply = 11;
ServerError error = 100;
}
}

View File

@ -0,0 +1,161 @@
// The main simulation protocol.
syntax = "proto3";
package simulation;
import "google/protobuf/duration.proto";
import "google/protobuf/timestamp.proto";
import "google/protobuf/empty.proto";
enum ErrorCode {
INTERNAL_ERROR = 0;
SIMULATION_NOT_STARTED = 1;
MISSING_ARGUMENT = 2;
INVALID_TIME = 3;
INVALID_DURATION = 4;
INVALID_MESSAGE = 5;
INVALID_KEY = 6;
SOURCE_NOT_FOUND = 10;
SINK_NOT_FOUND = 11;
KEY_NOT_FOUND = 12;
SIMULATION_TIME_OUT_OF_RANGE = 13;
}
message Error {
ErrorCode code = 1;
string message = 2;
}
message EventKey {
uint64 subkey1 = 1;
uint64 subkey2 = 2;
}
message InitRequest { optional google.protobuf.Timestamp time = 1; }
message InitReply {
oneof result { // Always returns exactly 1 variant.
google.protobuf.Empty empty = 1;
Error error = 100;
}
}
message TimeRequest {}
message TimeReply {
oneof result { // Always returns exactly 1 variant.
google.protobuf.Timestamp time = 1;
Error error = 100;
}
}
message StepRequest {}
message StepReply {
oneof result { // Always returns exactly 1 variant.
google.protobuf.Timestamp time = 1;
Error error = 100;
}
}
message StepUntilRequest {
oneof deadline { // Always returns exactly 1 variant.
google.protobuf.Timestamp time = 1;
google.protobuf.Duration duration = 2;
}
}
message StepUntilReply {
oneof result { // Always returns exactly 1 variant.
google.protobuf.Timestamp time = 1;
Error error = 100;
}
}
message ScheduleEventRequest {
oneof deadline { // Expects exactly 1 variant.
google.protobuf.Timestamp time = 1;
google.protobuf.Duration duration = 2;
}
string source_name = 3;
bytes event = 4;
optional google.protobuf.Duration period = 5;
optional bool with_key = 6;
}
message ScheduleEventReply {
oneof result { // Always returns exactly 1 variant.
google.protobuf.Empty empty = 1;
EventKey key = 2;
Error error = 100;
}
}
message CancelEventRequest { EventKey key = 1; }
message CancelEventReply {
oneof result { // Always returns exactly 1 variant.
google.protobuf.Empty empty = 1;
Error error = 100;
}
}
message ProcessEventRequest {
string source_name = 1;
bytes event = 2;
}
message ProcessEventReply {
oneof result { // Always returns exactly 1 variant.
google.protobuf.Empty empty = 1;
Error error = 100;
}
}
message ProcessQueryRequest {
string source_name = 1;
bytes request = 2;
}
message ProcessQueryReply {
// This field is hoisted because protobuf3 does not support `repeated` within
// a `oneof`. It is Always empty if an error is returned
repeated bytes replies = 1;
oneof result { // Always returns exactly 1 variant.
google.protobuf.Empty empty = 10;
Error error = 100;
}
}
message ReadEventsRequest { string sink_name = 1; }
message ReadEventsReply {
// This field is hoisted because protobuf3 does not support `repeated` within
// a `oneof`. It is Always empty if an error is returned
repeated bytes events = 1;
oneof result { // Always returns exactly 1 variant.
google.protobuf.Empty empty = 10;
Error error = 100;
}
}
message OpenSinkRequest { string sink_name = 1; }
message OpenSinkReply {
oneof result { // Always returns exactly 1 variant.
google.protobuf.Empty empty = 10;
Error error = 100;
}
}
message CloseSinkRequest { string sink_name = 1; }
message CloseSinkReply {
oneof result { // Always returns exactly 1 variant.
google.protobuf.Empty empty = 10;
Error error = 100;
}
}
service Simulation {
rpc Init(InitRequest) returns (InitReply);
rpc Time(TimeRequest) returns (TimeReply);
rpc Step(StepRequest) returns (StepReply);
rpc StepUntil(StepUntilRequest) returns (StepUntilReply);
rpc ScheduleEvent(ScheduleEventRequest) returns (ScheduleEventReply);
rpc CancelEvent(CancelEventRequest) returns (CancelEventReply);
rpc ProcessEvent(ProcessEventRequest) returns (ProcessEventReply);
rpc ProcessQuery(ProcessQueryRequest) returns (ProcessQueryReply);
rpc ReadEvents(ReadEventsRequest) returns (ReadEventsReply);
rpc OpenSink(OpenSinkRequest) returns (OpenSinkReply);
rpc CloseSink(CloseSinkRequest) returns (CloseSinkReply);
}

View File

@ -0,0 +1,5 @@
#![allow(unreachable_pub)]
#![allow(clippy::enum_variant_names)]
pub(crate) mod custom_transport;
pub(crate) mod simulation;

View File

View File

@ -0,0 +1,111 @@
// This file is @generated by prost-build.
#[allow(clippy::derive_partial_eq_without_eq)]
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ServerError {
#[prost(enumeration = "ServerErrorCode", tag = "1")]
pub code: i32,
#[prost(string, tag = "2")]
pub message: ::prost::alloc::string::String,
}
#[allow(clippy::derive_partial_eq_without_eq)]
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AnyRequest {
/// Expects exactly 1 variant.
#[prost(oneof = "any_request::Request", tags = "1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11")]
pub request: ::core::option::Option<any_request::Request>,
}
/// Nested message and enum types in `AnyRequest`.
pub mod any_request {
/// Expects exactly 1 variant.
#[allow(clippy::derive_partial_eq_without_eq)]
#[derive(Clone, PartialEq, ::prost::Oneof)]
pub enum Request {
#[prost(message, tag = "1")]
InitRequest(super::super::simulation::InitRequest),
#[prost(message, tag = "2")]
TimeRequest(super::super::simulation::TimeRequest),
#[prost(message, tag = "3")]
StepRequest(super::super::simulation::StepRequest),
#[prost(message, tag = "4")]
StepUntilRequest(super::super::simulation::StepUntilRequest),
#[prost(message, tag = "5")]
ScheduleEventRequest(super::super::simulation::ScheduleEventRequest),
#[prost(message, tag = "6")]
CancelEventRequest(super::super::simulation::CancelEventRequest),
#[prost(message, tag = "7")]
ProcessEventRequest(super::super::simulation::ProcessEventRequest),
#[prost(message, tag = "8")]
ProcessQueryRequest(super::super::simulation::ProcessQueryRequest),
#[prost(message, tag = "9")]
ReadEventsRequest(super::super::simulation::ReadEventsRequest),
#[prost(message, tag = "10")]
OpenSinkRequest(super::super::simulation::OpenSinkRequest),
#[prost(message, tag = "11")]
CloseSinkRequest(super::super::simulation::CloseSinkRequest),
}
}
#[allow(clippy::derive_partial_eq_without_eq)]
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AnyReply {
/// Contains exactly 1 variant.
#[prost(oneof = "any_reply::Reply", tags = "1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 100")]
pub reply: ::core::option::Option<any_reply::Reply>,
}
/// Nested message and enum types in `AnyReply`.
pub mod any_reply {
/// Contains exactly 1 variant.
#[allow(clippy::derive_partial_eq_without_eq)]
#[derive(Clone, PartialEq, ::prost::Oneof)]
pub enum Reply {
#[prost(message, tag = "1")]
InitReply(super::super::simulation::InitReply),
#[prost(message, tag = "2")]
TimeReply(super::super::simulation::TimeReply),
#[prost(message, tag = "3")]
StepReply(super::super::simulation::StepReply),
#[prost(message, tag = "4")]
StepUntilReply(super::super::simulation::StepUntilReply),
#[prost(message, tag = "5")]
ScheduleEventReply(super::super::simulation::ScheduleEventReply),
#[prost(message, tag = "6")]
CancelEventReply(super::super::simulation::CancelEventReply),
#[prost(message, tag = "7")]
ProcessEventReply(super::super::simulation::ProcessEventReply),
#[prost(message, tag = "8")]
ProcessQueryReply(super::super::simulation::ProcessQueryReply),
#[prost(message, tag = "9")]
ReadEventsReply(super::super::simulation::ReadEventsReply),
#[prost(message, tag = "10")]
OpenSinkReply(super::super::simulation::OpenSinkReply),
#[prost(message, tag = "11")]
CloseSinkReply(super::super::simulation::CloseSinkReply),
#[prost(message, tag = "100")]
Error(super::ServerError),
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
#[repr(i32)]
pub enum ServerErrorCode {
UnknownRequest = 0,
EmptyRequest = 1,
}
impl ServerErrorCode {
/// String value of the enum field names used in the ProtoBuf definition.
///
/// The values are not transformed in any way and thus are considered stable
/// (if the ProtoBuf definition does not change) and safe for programmatic use.
pub fn as_str_name(&self) -> &'static str {
match self {
ServerErrorCode::UnknownRequest => "UNKNOWN_REQUEST",
ServerErrorCode::EmptyRequest => "EMPTY_REQUEST",
}
}
/// Creates an enum from field names used in the ProtoBuf definition.
pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
match value {
"UNKNOWN_REQUEST" => Some(Self::UnknownRequest),
"EMPTY_REQUEST" => Some(Self::EmptyRequest),
_ => None,
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,307 @@
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::fmt;
use std::time::Duration;
use rmp_serde::decode::Error as RmpDecodeError;
use rmp_serde::encode::Error as RmpEncodeError;
use serde::de::DeserializeOwned;
use serde::Serialize;
use crate::ports::{EventSinkStream, EventSource, QuerySource, ReplyReceiver};
use crate::time::{Action, ActionKey};
/// A registry that holds all sources and sinks meant to be accessed through
/// remote procedure calls.
#[derive(Default)]
pub struct EndpointRegistry {
event_sources: HashMap<String, Box<dyn EventSourceAny>>,
query_sources: HashMap<String, Box<dyn QuerySourceAny>>,
sinks: HashMap<String, Box<dyn EventSinkStreamAny>>,
}
impl EndpointRegistry {
/// Creates an empty `EndpointRegistry`.
pub fn new() -> Self {
Self::default()
}
/// Adds an event source to the registry.
///
/// If the specified name is already in use for another event source, the source
/// provided as argument is returned in the error.
pub fn add_event_source<T>(
&mut self,
source: EventSource<T>,
name: impl Into<String>,
) -> Result<(), EventSource<T>>
where
T: DeserializeOwned + Clone + Send + 'static,
{
match self.event_sources.entry(name.into()) {
Entry::Vacant(s) => {
s.insert(Box::new(source));
Ok(())
}
Entry::Occupied(_) => Err(source),
}
}
/// Returns a mutable reference to the specified event source if it is in
/// the registry.
pub(crate) fn get_event_source_mut(&mut self, name: &str) -> Option<&mut dyn EventSourceAny> {
self.event_sources.get_mut(name).map(|s| s.as_mut())
}
/// Adds an query source to the registry.
///
/// If the specified name is already in use for another query source, the source
/// provided as argument is returned in the error.
pub fn add_query_source<T, R>(
&mut self,
source: QuerySource<T, R>,
name: impl Into<String>,
) -> Result<(), QuerySource<T, R>>
where
T: DeserializeOwned + Clone + Send + 'static,
R: Serialize + Send + 'static,
{
match self.query_sources.entry(name.into()) {
Entry::Vacant(s) => {
s.insert(Box::new(source));
Ok(())
}
Entry::Occupied(_) => Err(source),
}
}
/// Returns a mutable reference to the specified query source if it is in
/// the registry.
pub(crate) fn get_query_source_mut(&mut self, name: &str) -> Option<&mut dyn QuerySourceAny> {
self.query_sources.get_mut(name).map(|s| s.as_mut())
}
/// Adds a sink to the registry.
///
/// If the specified name is already in use for another sink, the sink
/// provided as argument is returned in the error.
pub fn add_sink<S>(&mut self, sink: S, name: impl Into<String>) -> Result<(), S>
where
S: EventSinkStream + Send + 'static,
S::Item: Serialize,
{
match self.sinks.entry(name.into()) {
Entry::Vacant(s) => {
s.insert(Box::new(sink));
Ok(())
}
Entry::Occupied(_) => Err(sink),
}
}
/// Returns a mutable reference to the specified sink if it is in the
/// registry.
pub(crate) fn get_sink_mut(&mut self, name: &str) -> Option<&mut dyn EventSinkStreamAny> {
self.sinks.get_mut(name).map(|s| s.as_mut())
}
}
impl fmt::Debug for EndpointRegistry {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"EndpointRegistry ({} sources, {} sinks)",
self.event_sources.len(),
self.sinks.len()
)
}
}
/// A type-erased `EventSource` that operates on MessagePack-encoded serialized
/// events.
pub(crate) trait EventSourceAny: Send + 'static {
/// Returns an action which, when processed, broadcasts an event to all
/// connected input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn event(&mut self, msgpack_arg: &[u8]) -> Result<Action, RmpDecodeError>;
/// Returns a cancellable action and a cancellation key; when processed, the
/// action broadcasts an event to all connected input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn keyed_event(&mut self, msgpack_arg: &[u8]) -> Result<(Action, ActionKey), RmpDecodeError>;
/// Returns a periodically recurring action which, when processed,
/// broadcasts an event to all connected input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<Action, RmpDecodeError>;
/// Returns a cancellable, periodically recurring action and a cancellation
/// key; when processed, the action broadcasts an event to all connected
/// input ports.
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn keyed_periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<(Action, ActionKey), RmpDecodeError>;
/// Human-readable name of the event type, as returned by
/// `any::type_name()`.
fn event_type_name(&self) -> &'static str;
}
impl<T> EventSourceAny for EventSource<T>
where
T: DeserializeOwned + Clone + Send + 'static,
{
fn event(&mut self, msgpack_arg: &[u8]) -> Result<Action, RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.event(arg))
}
fn keyed_event(&mut self, msgpack_arg: &[u8]) -> Result<(Action, ActionKey), RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.keyed_event(arg))
}
fn periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<Action, RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.periodic_event(period, arg))
}
fn keyed_periodic_event(
&mut self,
period: Duration,
msgpack_arg: &[u8],
) -> Result<(Action, ActionKey), RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| self.keyed_periodic_event(period, arg))
}
fn event_type_name(&self) -> &'static str {
std::any::type_name::<T>()
}
}
/// A type-erased `QuerySource` that operates on MessagePack-encoded serialized
/// queries and returns MessagePack-encoded replies.
pub(crate) trait QuerySourceAny: Send + 'static {
/// Returns an action which, when processed, broadcasts a query to all
/// connected replier ports.
///
///
/// The argument is expected to conform to the serde MessagePack encoding.
fn query(
&mut self,
msgpack_arg: &[u8],
) -> Result<(Action, Box<dyn ReplyReceiverAny>), RmpDecodeError>;
/// Human-readable name of the request type, as returned by
/// `any::type_name()`.
fn request_type_name(&self) -> &'static str;
/// Human-readable name of the reply type, as returned by
/// `any::type_name()`.
fn reply_type_name(&self) -> &'static str;
}
impl<T, R> QuerySourceAny for QuerySource<T, R>
where
T: DeserializeOwned + Clone + Send + 'static,
R: Serialize + Send + 'static,
{
fn query(
&mut self,
msgpack_arg: &[u8],
) -> Result<(Action, Box<dyn ReplyReceiverAny>), RmpDecodeError> {
rmp_serde::from_read(msgpack_arg).map(|arg| {
let (action, reply_recv) = self.query(arg);
let reply_recv: Box<dyn ReplyReceiverAny> = Box::new(reply_recv);
(action, reply_recv)
})
}
fn request_type_name(&self) -> &'static str {
std::any::type_name::<T>()
}
fn reply_type_name(&self) -> &'static str {
std::any::type_name::<R>()
}
}
/// A type-erased `EventSinkStream`.
pub(crate) trait EventSinkStreamAny: Send + 'static {
/// Human-readable name of the event type, as returned by
/// `any::type_name()`.
fn event_type_name(&self) -> &'static str;
/// Starts or resumes the collection of new events.
fn open(&mut self);
/// Pauses the collection of new events.
fn close(&mut self);
/// Encode and collect all events in a vector.
fn collect(&mut self) -> Result<Vec<Vec<u8>>, RmpEncodeError>;
}
impl<E> EventSinkStreamAny for E
where
E: EventSinkStream + Send + 'static,
E::Item: Serialize,
{
fn event_type_name(&self) -> &'static str {
std::any::type_name::<E::Item>()
}
fn open(&mut self) {
self.open();
}
fn close(&mut self) {
self.close();
}
fn collect(&mut self) -> Result<Vec<Vec<u8>>, RmpEncodeError> {
EventSinkStream::try_fold(self, Vec::new(), |mut encoded_events, event| {
rmp_serde::to_vec_named(&event).map(|encoded_event| {
encoded_events.push(encoded_event);
encoded_events
})
})
}
}
/// A type-erased `ReplyReceiver` that returns MessagePack-encoded replies..
pub(crate) trait ReplyReceiverAny {
/// Take the replies, if any, encode them and collect them in a vector.
fn take_collect(&mut self) -> Option<Result<Vec<Vec<u8>>, RmpEncodeError>>;
}
impl<R: Serialize + 'static> ReplyReceiverAny for ReplyReceiver<R> {
fn take_collect(&mut self) -> Option<Result<Vec<Vec<u8>>, RmpEncodeError>> {
let replies = self.take()?;
let encoded_replies = (move || {
let mut encoded_replies = Vec::new();
for reply in replies {
let encoded_reply = rmp_serde::to_vec_named(&reply)?;
encoded_replies.push(encoded_reply);
}
Ok(encoded_replies)
})();
Some(encoded_replies)
}
}

View File

@ -0,0 +1,673 @@
use std::time::Duration;
use bytes::Buf;
use prost::Message;
use prost_types::Timestamp;
use tai_time::MonotonicTime;
use crate::rpc::key_registry::{KeyRegistry, KeyRegistryId};
use crate::rpc::EndpointRegistry;
use crate::simulation::{SimInit, Simulation};
use super::codegen::custom_transport::*;
use super::codegen::simulation::*;
/// Transport-independent server implementation.
///
/// This implementation implements the protobuf services without any
/// transport-specific management.
pub(crate) struct GenericServer<F> {
sim_gen: F,
sim_context: Option<(Simulation, EndpointRegistry, KeyRegistry)>,
}
impl<F> GenericServer<F>
where
F: FnMut() -> (SimInit, EndpointRegistry) + Send + 'static,
{
/// Creates a new `GenericServer` without any active simulation.
pub(crate) fn new(sim_gen: F) -> Self {
Self {
sim_gen,
sim_context: None,
}
}
/// Processes an encoded `AnyRequest` message and returns an encoded
/// `AnyReply`.
#[allow(dead_code)]
pub(crate) fn service_request<B>(&mut self, request_buf: B) -> Vec<u8>
where
B: Buf,
{
let reply = match AnyRequest::decode(request_buf) {
Ok(AnyRequest { request: Some(req) }) => match req {
any_request::Request::InitRequest(request) => {
any_reply::Reply::InitReply(self.init(request))
}
any_request::Request::TimeRequest(request) => {
any_reply::Reply::TimeReply(self.time(request))
}
any_request::Request::StepRequest(request) => {
any_reply::Reply::StepReply(self.step(request))
}
any_request::Request::StepUntilRequest(request) => {
any_reply::Reply::StepUntilReply(self.step_until(request))
}
any_request::Request::ScheduleEventRequest(request) => {
any_reply::Reply::ScheduleEventReply(self.schedule_event(request))
}
any_request::Request::CancelEventRequest(request) => {
any_reply::Reply::CancelEventReply(self.cancel_event(request))
}
any_request::Request::ProcessEventRequest(request) => {
any_reply::Reply::ProcessEventReply(self.process_event(request))
}
any_request::Request::ProcessQueryRequest(request) => {
any_reply::Reply::ProcessQueryReply(self.process_query(request))
}
any_request::Request::ReadEventsRequest(request) => {
any_reply::Reply::ReadEventsReply(self.read_events(request))
}
any_request::Request::OpenSinkRequest(request) => {
any_reply::Reply::OpenSinkReply(self.open_sink(request))
}
any_request::Request::CloseSinkRequest(request) => {
any_reply::Reply::CloseSinkReply(self.close_sink(request))
}
},
Ok(AnyRequest { request: None }) => any_reply::Reply::Error(ServerError {
code: ServerErrorCode::EmptyRequest as i32,
message: "the message did not contain any request".to_string(),
}),
Err(err) => any_reply::Reply::Error(ServerError {
code: ServerErrorCode::UnknownRequest as i32,
message: format!("bad request: {}", err),
}),
};
let reply = AnyReply { reply: Some(reply) };
reply.encode_to_vec()
}
/// Initialize a simulation with the provided time.
///
/// If a simulation is already active, it is destructed and replaced with a
/// new simulation.
///
/// If the initialization time is not provided, it is initialized with the
/// epoch of `MonotonicTime` (1970-01-01 00:00:00 TAI).
pub(crate) fn init(&mut self, request: InitRequest) -> InitReply {
let start_time = request.time.unwrap_or_default();
let reply = if let Some(start_time) = timestamp_to_monotonic(start_time) {
let (sim_init, endpoint_registry) = (self.sim_gen)();
let simulation = sim_init.init(start_time);
self.sim_context = Some((simulation, endpoint_registry, KeyRegistry::default()));
init_reply::Result::Empty(())
} else {
init_reply::Result::Error(Error {
code: ErrorCode::InvalidTime as i32,
message: "out-of-range nanosecond field".to_string(),
})
};
InitReply {
result: Some(reply),
}
}
/// Returns the current simulation time.
pub(crate) fn time(&mut self, _request: TimeRequest) -> TimeReply {
let reply = match &self.sim_context {
Some((simulation, ..)) => {
if let Some(timestamp) = monotonic_to_timestamp(simulation.time()) {
time_reply::Result::Time(timestamp)
} else {
time_reply::Result::Error(Error {
code: ErrorCode::SimulationTimeOutOfRange as i32,
message: "the final simulation time is out of range".to_string(),
})
}
}
None => time_reply::Result::Error(Error {
code: ErrorCode::SimulationNotStarted as i32,
message: "the simulation was not started".to_string(),
}),
};
TimeReply {
result: Some(reply),
}
}
/// Advances simulation time to that of the next scheduled event, processing
/// that event as well as all other event scheduled for the same time.
///
/// Processing is gated by a (possibly blocking) call to
/// [`Clock::synchronize()`](crate::time::Clock::synchronize) on the
/// configured simulation clock. This method blocks until all newly
/// processed events have completed.
pub(crate) fn step(&mut self, _request: StepRequest) -> StepReply {
let reply = match &mut self.sim_context {
Some((simulation, ..)) => {
simulation.step();
if let Some(timestamp) = monotonic_to_timestamp(simulation.time()) {
step_reply::Result::Time(timestamp)
} else {
step_reply::Result::Error(Error {
code: ErrorCode::SimulationTimeOutOfRange as i32,
message: "the final simulation time is out of range".to_string(),
})
}
}
None => step_reply::Result::Error(Error {
code: ErrorCode::SimulationNotStarted as i32,
message: "the simulation was not started".to_string(),
}),
};
StepReply {
result: Some(reply),
}
}
/// Iteratively advances the simulation time until the specified deadline,
/// as if by calling
/// [`Simulation::step()`](crate::simulation::Simulation::step) repeatedly.
///
/// This method blocks until all events scheduled up to the specified target
/// time have completed. The simulation time upon completion is equal to the
/// specified target time, whether or not an event was scheduled for that
/// time.
pub(crate) fn step_until(&mut self, request: StepUntilRequest) -> StepUntilReply {
let reply = move || -> Result<Timestamp, (ErrorCode, &str)> {
let deadline = request
.deadline
.ok_or((ErrorCode::MissingArgument, "missing deadline argument"))?;
let simulation = match deadline {
step_until_request::Deadline::Time(time) => {
let time = timestamp_to_monotonic(time)
.ok_or((ErrorCode::InvalidTime, "out-of-range nanosecond field"))?;
let (simulation, ..) = self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started",
))?;
simulation.step_until(time).map_err(|_| {
(
ErrorCode::InvalidTime,
"the specified deadline lies in the past",
)
})?;
simulation
}
step_until_request::Deadline::Duration(duration) => {
let duration = to_positive_duration(duration).ok_or((
ErrorCode::InvalidDuration,
"the specified deadline lies in the past",
))?;
let (simulation, ..) = self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started",
))?;
simulation.step_by(duration);
simulation
}
};
let timestamp = monotonic_to_timestamp(simulation.time()).ok_or((
ErrorCode::SimulationTimeOutOfRange,
"the final simulation time is out of range",
))?;
Ok(timestamp)
}();
StepUntilReply {
result: Some(match reply {
Ok(timestamp) => step_until_reply::Result::Time(timestamp),
Err((code, message)) => step_until_reply::Result::Error(Error {
code: code as i32,
message: message.to_string(),
}),
}),
}
}
/// Schedules an event at a future time.
pub(crate) fn schedule_event(&mut self, request: ScheduleEventRequest) -> ScheduleEventReply {
let reply = move || -> Result<Option<KeyRegistryId>, (ErrorCode, String)> {
let source_name = &request.source_name;
let msgpack_event = &request.event;
let with_key = request.with_key.unwrap_or_default();
let period = request
.period
.map(|period| {
to_strictly_positive_duration(period).ok_or((
ErrorCode::InvalidDuration,
"the specified event period is not strictly positive".to_string(),
))
})
.transpose()?;
let (simulation, endpoint_registry, key_registry) =
self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started".to_string(),
))?;
let deadline = request.deadline.ok_or((
ErrorCode::MissingArgument,
"missing deadline argument".to_string(),
))?;
let deadline = match deadline {
schedule_event_request::Deadline::Time(time) => timestamp_to_monotonic(time)
.ok_or((
ErrorCode::InvalidTime,
"out-of-range nanosecond field".to_string(),
))?,
schedule_event_request::Deadline::Duration(duration) => {
let duration = to_strictly_positive_duration(duration).ok_or((
ErrorCode::InvalidDuration,
"the specified scheduling deadline is not in the future".to_string(),
))?;
simulation.time() + duration
}
};
let source = endpoint_registry.get_event_source_mut(source_name).ok_or((
ErrorCode::SourceNotFound,
"no event source is registered with the name '{}'".to_string(),
))?;
let (action, action_key) = match (with_key, period) {
(false, None) => source.event(msgpack_event).map(|action| (action, None)),
(false, Some(period)) => source
.periodic_event(period, msgpack_event)
.map(|action| (action, None)),
(true, None) => source
.keyed_event(msgpack_event)
.map(|(action, key)| (action, Some(key))),
(true, Some(period)) => source
.keyed_periodic_event(period, msgpack_event)
.map(|(action, key)| (action, Some(key))),
}
.map_err(|_| {
(
ErrorCode::InvalidMessage,
format!(
"the event could not be deserialized as type '{}'",
source.event_type_name()
),
)
})?;
let key_id = action_key.map(|action_key| {
// Free stale keys from the registry.
key_registry.remove_expired_keys(simulation.time());
if period.is_some() {
key_registry.insert_eternal_key(action_key)
} else {
key_registry.insert_key(action_key, deadline)
}
});
simulation.process(action);
Ok(key_id)
}();
ScheduleEventReply {
result: Some(match reply {
Ok(Some(key_id)) => {
let (subkey1, subkey2) = key_id.into_raw_parts();
schedule_event_reply::Result::Key(EventKey {
subkey1: subkey1
.try_into()
.expect("action key index is too large to be serialized"),
subkey2,
})
}
Ok(None) => schedule_event_reply::Result::Empty(()),
Err((code, message)) => schedule_event_reply::Result::Error(Error {
code: code as i32,
message,
}),
}),
}
}
/// Cancels a keyed event.
pub(crate) fn cancel_event(&mut self, request: CancelEventRequest) -> CancelEventReply {
let reply = move || -> Result<(), (ErrorCode, String)> {
let key = request.key.ok_or((
ErrorCode::MissingArgument,
"missing key argument".to_string(),
))?;
let subkey1: usize = key
.subkey1
.try_into()
.map_err(|_| (ErrorCode::InvalidKey, "invalid event key".to_string()))?;
let subkey2 = key.subkey2;
let (simulation, _, key_registry) = self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started".to_string(),
))?;
let key_id = KeyRegistryId::from_raw_parts(subkey1, subkey2);
key_registry.remove_expired_keys(simulation.time());
let key = key_registry.extract_key(key_id).ok_or((
ErrorCode::InvalidKey,
"invalid or expired event key".to_string(),
))?;
key.cancel();
Ok(())
}();
CancelEventReply {
result: Some(match reply {
Ok(()) => cancel_event_reply::Result::Empty(()),
Err((code, message)) => cancel_event_reply::Result::Error(Error {
code: code as i32,
message,
}),
}),
}
}
/// Broadcasts an event from an event source immediately, blocking until
/// completion.
///
/// Simulation time remains unchanged.
pub(crate) fn process_event(&mut self, request: ProcessEventRequest) -> ProcessEventReply {
let reply = move || -> Result<(), (ErrorCode, String)> {
let source_name = &request.source_name;
let msgpack_event = &request.event;
let (simulation, registry, _) = self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started".to_string(),
))?;
let source = registry.get_event_source_mut(source_name).ok_or((
ErrorCode::SourceNotFound,
"no source is registered with the name '{}'".to_string(),
))?;
let event = source.event(msgpack_event).map_err(|_| {
(
ErrorCode::InvalidMessage,
format!(
"the event could not be deserialized as type '{}'",
source.event_type_name()
),
)
})?;
simulation.process(event);
Ok(())
}();
ProcessEventReply {
result: Some(match reply {
Ok(()) => process_event_reply::Result::Empty(()),
Err((code, message)) => process_event_reply::Result::Error(Error {
code: code as i32,
message,
}),
}),
}
}
/// Broadcasts an event from an event source immediately, blocking until
/// completion.
///
/// Simulation time remains unchanged.
pub(crate) fn process_query(&mut self, request: ProcessQueryRequest) -> ProcessQueryReply {
let reply = move || -> Result<Vec<Vec<u8>>, (ErrorCode, String)> {
let source_name = &request.source_name;
let msgpack_request = &request.request;
let (simulation, registry, _) = self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started".to_string(),
))?;
let source = registry.get_query_source_mut(source_name).ok_or((
ErrorCode::SourceNotFound,
"no source is registered with the name '{}'".to_string(),
))?;
let (query, mut promise) = source.query(msgpack_request).map_err(|_| {
(
ErrorCode::InvalidMessage,
format!(
"the request could not be deserialized as type '{}'",
source.request_type_name()
),
)
})?;
simulation.process(query);
let replies = promise.take_collect().ok_or((
ErrorCode::InternalError,
"a reply to the query was expected but none was available".to_string(),
))?;
replies.map_err(|_| {
(
ErrorCode::InvalidMessage,
format!(
"the reply could not be serialized as type '{}'",
source.reply_type_name()
),
)
})
}();
match reply {
Ok(replies) => ProcessQueryReply {
replies,
result: Some(process_query_reply::Result::Empty(())),
},
Err((code, message)) => ProcessQueryReply {
replies: Vec::new(),
result: Some(process_query_reply::Result::Error(Error {
code: code as i32,
message,
})),
},
}
}
/// Read all events from an event sink.
pub(crate) fn read_events(&mut self, request: ReadEventsRequest) -> ReadEventsReply {
let reply = move || -> Result<Vec<Vec<u8>>, (ErrorCode, String)> {
let sink_name = &request.sink_name;
let (_, registry, _) = self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started".to_string(),
))?;
let sink = registry.get_sink_mut(sink_name).ok_or((
ErrorCode::SinkNotFound,
"no sink is registered with the name '{}'".to_string(),
))?;
sink.collect().map_err(|_| {
(
ErrorCode::InvalidMessage,
format!(
"the event could not be serialized from type '{}'",
sink.event_type_name()
),
)
})
}();
match reply {
Ok(events) => ReadEventsReply {
events,
result: Some(read_events_reply::Result::Empty(())),
},
Err((code, message)) => ReadEventsReply {
events: Vec::new(),
result: Some(read_events_reply::Result::Error(Error {
code: code as i32,
message,
})),
},
}
}
/// Opens an event sink.
pub(crate) fn open_sink(&mut self, request: OpenSinkRequest) -> OpenSinkReply {
let reply = move || -> Result<(), (ErrorCode, String)> {
let sink_name = &request.sink_name;
let (_, registry, _) = self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started".to_string(),
))?;
let sink = registry.get_sink_mut(sink_name).ok_or((
ErrorCode::SinkNotFound,
"no sink is registered with the name '{}'".to_string(),
))?;
sink.open();
Ok(())
}();
match reply {
Ok(()) => OpenSinkReply {
result: Some(open_sink_reply::Result::Empty(())),
},
Err((code, message)) => OpenSinkReply {
result: Some(open_sink_reply::Result::Error(Error {
code: code as i32,
message,
})),
},
}
}
/// Closes an event sink.
pub(crate) fn close_sink(&mut self, request: CloseSinkRequest) -> CloseSinkReply {
let reply = move || -> Result<(), (ErrorCode, String)> {
let sink_name = &request.sink_name;
let (_, registry, _) = self.sim_context.as_mut().ok_or((
ErrorCode::SimulationNotStarted,
"the simulation was not started".to_string(),
))?;
let sink = registry.get_sink_mut(sink_name).ok_or((
ErrorCode::SinkNotFound,
"no sink is registered with the name '{}'".to_string(),
))?;
sink.close();
Ok(())
}();
match reply {
Ok(()) => CloseSinkReply {
result: Some(close_sink_reply::Result::Empty(())),
},
Err((code, message)) => CloseSinkReply {
result: Some(close_sink_reply::Result::Error(Error {
code: code as i32,
message,
})),
},
}
}
}
/// Attempts a cast from a `MonotonicTime` to a protobuf `Timestamp`.
///
/// This will fail if the time is outside the protobuf-specified range for
/// timestamps (0001-01-01 00:00:00 to 9999-12-31 23:59:59).
fn monotonic_to_timestamp(monotonic_time: MonotonicTime) -> Option<Timestamp> {
// Unix timestamp for 0001-01-01 00:00:00, the minimum accepted by
// protobuf's specification for the `Timestamp` type.
const MIN_SECS: i64 = -62135596800;
// Unix timestamp for 9999-12-31 23:59:59, the maximum accepted by
// protobuf's specification for the `Timestamp` type.
const MAX_SECS: i64 = 253402300799;
let secs = monotonic_time.as_secs();
if !(MIN_SECS..=MAX_SECS).contains(&secs) {
return None;
}
Some(Timestamp {
seconds: secs,
nanos: monotonic_time.subsec_nanos() as i32,
})
}
/// Attempts a cast from a protobuf `Timestamp` to a `MonotonicTime`.
///
/// This should never fail provided that the `Timestamp` complies with the
/// protobuf specification. It can only fail if the nanosecond part is negative
/// or greater than 999'999'999.
fn timestamp_to_monotonic(timestamp: Timestamp) -> Option<MonotonicTime> {
let nanos: u32 = timestamp.nanos.try_into().ok()?;
MonotonicTime::new(timestamp.seconds, nanos)
}
/// Attempts a cast from a protobuf `Duration` to a `std::time::Duration`.
///
/// If the `Duration` complies with the protobuf specification, this can only
/// fail if the duration is negative.
fn to_positive_duration(duration: prost_types::Duration) -> Option<Duration> {
if duration.seconds < 0 || duration.nanos < 0 {
return None;
}
Some(Duration::new(
duration.seconds as u64,
duration.nanos as u32,
))
}
/// Attempts a cast from a protobuf `Duration` to a strictly positive
/// `std::time::Duration`.
///
/// If the `Duration` complies with the protobuf specification, this can only
/// fail if the duration is negative or null.
fn to_strictly_positive_duration(duration: prost_types::Duration) -> Option<Duration> {
if duration.seconds < 0 || duration.nanos < 0 || (duration.seconds == 0 && duration.nanos == 0)
{
return None;
}
Some(Duration::new(
duration.seconds as u64,
duration.nanos as u32,
))
}

146
asynchronix/src/rpc/grpc.rs Normal file
View File

@ -0,0 +1,146 @@
//! GRPC simulation server.
use std::net::SocketAddr;
use std::sync::Mutex;
use std::sync::MutexGuard;
use tonic::{transport::Server, Request, Response, Status};
use crate::rpc::EndpointRegistry;
use crate::simulation::SimInit;
use super::codegen::simulation::*;
use super::generic_server::GenericServer;
/// Runs a GRPC simulation server.
///
/// The first argument is a closure that is called every time the simulation is
/// started by the remote client. It must create a new `SimInit` object
/// complemented by a registry that exposes the public event and query
/// interface.
pub fn run<F>(sim_gen: F, addr: SocketAddr) -> Result<(), Box<dyn std::error::Error>>
where
F: FnMut() -> (SimInit, EndpointRegistry) + Send + 'static,
{
// Use a single-threaded server.
let rt = tokio::runtime::Builder::new_current_thread().build()?;
let sim_manager = GrpcServer::new(sim_gen);
rt.block_on(async move {
Server::builder()
.add_service(simulation_server::SimulationServer::new(sim_manager))
.serve(addr)
.await?;
Ok(())
})
}
struct GrpcServer<F>
where
F: FnMut() -> (SimInit, EndpointRegistry) + Send + 'static,
{
inner: Mutex<GenericServer<F>>,
}
impl<F> GrpcServer<F>
where
F: FnMut() -> (SimInit, EndpointRegistry) + Send + 'static,
{
fn new(sim_gen: F) -> Self {
Self {
inner: Mutex::new(GenericServer::new(sim_gen)),
}
}
fn inner(&self) -> MutexGuard<'_, GenericServer<F>> {
self.inner.lock().unwrap()
}
}
#[tonic::async_trait]
impl<F> simulation_server::Simulation for GrpcServer<F>
where
F: FnMut() -> (SimInit, EndpointRegistry) + Send + 'static,
{
async fn init(&self, request: Request<InitRequest>) -> Result<Response<InitReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().init(request)))
}
async fn time(&self, request: Request<TimeRequest>) -> Result<Response<TimeReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().time(request)))
}
async fn step(&self, request: Request<StepRequest>) -> Result<Response<StepReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().step(request)))
}
async fn step_until(
&self,
request: Request<StepUntilRequest>,
) -> Result<Response<StepUntilReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().step_until(request)))
}
async fn schedule_event(
&self,
request: Request<ScheduleEventRequest>,
) -> Result<Response<ScheduleEventReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().schedule_event(request)))
}
async fn cancel_event(
&self,
request: Request<CancelEventRequest>,
) -> Result<Response<CancelEventReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().cancel_event(request)))
}
async fn process_event(
&self,
request: Request<ProcessEventRequest>,
) -> Result<Response<ProcessEventReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().process_event(request)))
}
async fn process_query(
&self,
request: Request<ProcessQueryRequest>,
) -> Result<Response<ProcessQueryReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().process_query(request)))
}
async fn read_events(
&self,
request: Request<ReadEventsRequest>,
) -> Result<Response<ReadEventsReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().read_events(request)))
}
async fn open_sink(
&self,
request: Request<OpenSinkRequest>,
) -> Result<Response<OpenSinkReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().open_sink(request)))
}
async fn close_sink(
&self,
request: Request<CloseSinkRequest>,
) -> Result<Response<CloseSinkReply>, Status> {
let request = request.into_inner();
Ok(Response::new(self.inner().close_sink(request)))
}
}

View File

@ -0,0 +1,47 @@
use crate::time::{ActionKey, MonotonicTime};
use crate::util::indexed_priority_queue::{IndexedPriorityQueue, InsertKey};
pub(crate) type KeyRegistryId = InsertKey;
/// A collection of `ActionKey`s indexed by a unique identifier.
#[derive(Default)]
pub(crate) struct KeyRegistry {
keys: IndexedPriorityQueue<MonotonicTime, ActionKey>,
}
impl KeyRegistry {
/// Inserts an `ActionKey` into the registry.
///
/// The provided expiration deadline is the latest time at which the key may
/// still be active.
pub(crate) fn insert_key(
&mut self,
action_key: ActionKey,
expiration: MonotonicTime,
) -> KeyRegistryId {
self.keys.insert(expiration, action_key)
}
/// Inserts a non-expiring `ActionKey` into the registry.
pub(crate) fn insert_eternal_key(&mut self, action_key: ActionKey) -> KeyRegistryId {
self.keys.insert(MonotonicTime::MAX, action_key)
}
/// Removes an `ActionKey` from the registry and returns it.
///
/// Returns `None` if the key was not found in the registry.
pub(crate) fn extract_key(&mut self, key_id: KeyRegistryId) -> Option<ActionKey> {
self.keys.extract(key_id).map(|(_, key)| key)
}
/// Remove keys with an expiration deadline strictly predating the argument.
pub(crate) fn remove_expired_keys(&mut self, now: MonotonicTime) {
while let Some(expiration) = self.keys.peek_key() {
if *expiration >= now {
return;
}
self.keys.pull();
}
}
}