forked from ROMEO/nexosim
200 lines
5.4 KiB
Rust
200 lines
5.4 KiB
Rust
//! Event scheduling from a `Simulation` instance.
|
|
|
|
use std::time::Duration;
|
|
|
|
use asynchronix::model::{Model, Output};
|
|
use asynchronix::simulation::{Address, EventStream, Mailbox, SimInit, Simulation};
|
|
use asynchronix::time::MonotonicTime;
|
|
|
|
// Simple input-to-output pass-through model.
|
|
struct PassThroughModel<T: Clone + Send + 'static> {
|
|
pub output: Output<T>,
|
|
}
|
|
impl<T: Clone + Send + 'static> PassThroughModel<T> {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
output: Output::default(),
|
|
}
|
|
}
|
|
pub async fn input(&mut self, arg: T) {
|
|
self.output.send(arg).await;
|
|
}
|
|
}
|
|
impl<T: Clone + Send + 'static> Model for PassThroughModel<T> {}
|
|
|
|
/// A simple bench containing a single pass-through model (input forwarded to
|
|
/// output).
|
|
fn simple_bench<T: Clone + Send + 'static>() -> (
|
|
Simulation,
|
|
MonotonicTime,
|
|
Address<PassThroughModel<T>>,
|
|
EventStream<T>,
|
|
) {
|
|
// Bench assembly.
|
|
let mut model = PassThroughModel::new();
|
|
let mbox = Mailbox::new();
|
|
|
|
let out_stream = model.output.connect_stream().0;
|
|
let addr = mbox.address();
|
|
|
|
let t0 = MonotonicTime::EPOCH;
|
|
|
|
let simu = SimInit::new().add_model(model, mbox).init(t0);
|
|
|
|
(simu, t0, addr, out_stream)
|
|
}
|
|
|
|
#[test]
|
|
fn simulation_schedule_events() {
|
|
let (mut simu, t0, addr, mut output) = simple_bench();
|
|
|
|
// Queue 2 events at t0+3s and t0+2s, in reverse order.
|
|
simu.schedule_event_in(Duration::from_secs(3), PassThroughModel::input, (), &addr)
|
|
.unwrap();
|
|
simu.schedule_event_at(
|
|
t0 + Duration::from_secs(2),
|
|
PassThroughModel::input,
|
|
(),
|
|
&addr,
|
|
)
|
|
.unwrap();
|
|
|
|
// Move to the 1st event at t0+2s.
|
|
simu.step();
|
|
assert_eq!(simu.time(), t0 + Duration::from_secs(2));
|
|
assert!(output.next().is_some());
|
|
|
|
// Schedule another event in 4s (at t0+6s).
|
|
simu.schedule_event_in(Duration::from_secs(4), PassThroughModel::input, (), &addr)
|
|
.unwrap();
|
|
|
|
// Move to the 2nd event at t0+3s.
|
|
simu.step();
|
|
assert_eq!(simu.time(), t0 + Duration::from_secs(3));
|
|
assert!(output.next().is_some());
|
|
|
|
// Move to the 3rd event at t0+6s.
|
|
simu.step();
|
|
assert_eq!(simu.time(), t0 + Duration::from_secs(6));
|
|
assert!(output.next().is_some());
|
|
assert!(output.next().is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn simulation_schedule_keyed_events() {
|
|
let (mut simu, t0, addr, mut output) = simple_bench();
|
|
|
|
let event_t1 = simu
|
|
.schedule_keyed_event_at(
|
|
t0 + Duration::from_secs(1),
|
|
PassThroughModel::input,
|
|
1,
|
|
&addr,
|
|
)
|
|
.unwrap();
|
|
|
|
let event_t2_1 = simu
|
|
.schedule_keyed_event_in(Duration::from_secs(2), PassThroughModel::input, 21, &addr)
|
|
.unwrap();
|
|
|
|
simu.schedule_event_in(Duration::from_secs(2), PassThroughModel::input, 22, &addr)
|
|
.unwrap();
|
|
|
|
// Move to the 1st event at t0+1.
|
|
simu.step();
|
|
|
|
// Try to cancel the 1st event after it has already taken place and check
|
|
// that the cancellation had no effect.
|
|
event_t1.cancel();
|
|
assert_eq!(simu.time(), t0 + Duration::from_secs(1));
|
|
assert_eq!(output.next(), Some(1));
|
|
|
|
// Cancel the second event (t0+2) before it is meant to takes place and
|
|
// check that we move directly to the 3rd event.
|
|
event_t2_1.cancel();
|
|
simu.step();
|
|
assert_eq!(simu.time(), t0 + Duration::from_secs(2));
|
|
assert_eq!(output.next(), Some(22));
|
|
assert!(output.next().is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn simulation_schedule_periodic_events() {
|
|
let (mut simu, t0, addr, mut output) = simple_bench();
|
|
|
|
// Queue 2 periodic events at t0 + 3s + k*2s.
|
|
simu.schedule_periodic_event_in(
|
|
Duration::from_secs(3),
|
|
Duration::from_secs(2),
|
|
PassThroughModel::input,
|
|
1,
|
|
&addr,
|
|
)
|
|
.unwrap();
|
|
simu.schedule_periodic_event_at(
|
|
t0 + Duration::from_secs(3),
|
|
Duration::from_secs(2),
|
|
PassThroughModel::input,
|
|
2,
|
|
&addr,
|
|
)
|
|
.unwrap();
|
|
|
|
// Move to the next events at t0 + 3s + k*2s.
|
|
for k in 0..10 {
|
|
simu.step();
|
|
assert_eq!(
|
|
simu.time(),
|
|
t0 + Duration::from_secs(3) + k * Duration::from_secs(2)
|
|
);
|
|
assert_eq!(output.next(), Some(1));
|
|
assert_eq!(output.next(), Some(2));
|
|
assert!(output.next().is_none());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn simulation_schedule_periodic_keyed_events() {
|
|
let (mut simu, t0, addr, mut output) = simple_bench();
|
|
|
|
// Queue 2 periodic events at t0 + 3s + k*2s.
|
|
simu.schedule_periodic_event_in(
|
|
Duration::from_secs(3),
|
|
Duration::from_secs(2),
|
|
PassThroughModel::input,
|
|
1,
|
|
&addr,
|
|
)
|
|
.unwrap();
|
|
let event2_key = simu
|
|
.schedule_periodic_keyed_event_at(
|
|
t0 + Duration::from_secs(3),
|
|
Duration::from_secs(2),
|
|
PassThroughModel::input,
|
|
2,
|
|
&addr,
|
|
)
|
|
.unwrap();
|
|
|
|
// Move to the next event at t0+3s.
|
|
simu.step();
|
|
assert_eq!(simu.time(), t0 + Duration::from_secs(3));
|
|
assert_eq!(output.next(), Some(1));
|
|
assert_eq!(output.next(), Some(2));
|
|
assert!(output.next().is_none());
|
|
|
|
// Cancel the second event.
|
|
event2_key.cancel();
|
|
|
|
// Move to the next events at t0 + 3s + k*2s.
|
|
for k in 1..10 {
|
|
simu.step();
|
|
assert_eq!(
|
|
simu.time(),
|
|
t0 + Duration::from_secs(3) + k * Duration::from_secs(2)
|
|
);
|
|
assert_eq!(output.next(), Some(1));
|
|
assert!(output.next().is_none());
|
|
}
|
|
}
|