forked from ROMEO/nexosim

This reverts commit 7e881afb638ccc0dbcfc7b539fc152dc923d63e1, reversing changes made to 9d78e4f72a4c6ff459fc386b2f25beae40b94429.
944 lines
27 KiB
Rust
944 lines
27 KiB
Rust
//! Scheduling functions and types.
|
|
|
|
use std::error::Error;
|
|
use std::fmt;
|
|
use std::future::Future;
|
|
use std::marker::PhantomData;
|
|
use std::pin::Pin;
|
|
use std::sync::atomic::{AtomicBool, Ordering};
|
|
use std::sync::{Arc, Mutex};
|
|
use std::task::{Context, Poll};
|
|
use std::time::Duration;
|
|
|
|
use pin_project_lite::pin_project;
|
|
use recycle_box::{coerce_box, RecycleBox};
|
|
|
|
use crate::channel::{ChannelId, Sender};
|
|
use crate::executor::Executor;
|
|
use crate::model::{InputFn, Model};
|
|
use crate::time::{MonotonicTime, TearableAtomicTime};
|
|
use crate::util::priority_queue::PriorityQueue;
|
|
use crate::util::sync_cell::SyncCellReader;
|
|
|
|
/// Shorthand for the scheduler queue type.
|
|
pub(crate) type SchedulerQueue = PriorityQueue<(MonotonicTime, ChannelId), Box<dyn ScheduledEvent>>;
|
|
|
|
/// Trait abstracting over time-absolute and time-relative deadlines.
|
|
///
|
|
/// This trait is implemented by [`std::time::Duration`] and
|
|
/// [`MonotonicTime`].
|
|
pub trait Deadline {
|
|
/// Make this deadline into an absolute timestamp, using the provided
|
|
/// current time as a reference.
|
|
fn into_time(self, now: MonotonicTime) -> MonotonicTime;
|
|
}
|
|
|
|
impl Deadline for Duration {
|
|
#[inline(always)]
|
|
fn into_time(self, now: MonotonicTime) -> MonotonicTime {
|
|
now + self
|
|
}
|
|
}
|
|
|
|
impl Deadline for MonotonicTime {
|
|
#[inline(always)]
|
|
fn into_time(self, _: MonotonicTime) -> MonotonicTime {
|
|
self
|
|
}
|
|
}
|
|
|
|
/// A local scheduler for models.
|
|
///
|
|
/// A `Scheduler` is a handle to the global scheduler associated to a model
|
|
/// instance. It can be used by the model to retrieve the simulation time or
|
|
/// schedule delayed actions on itself.
|
|
///
|
|
/// ### Caveat: self-scheduling `async` methods
|
|
///
|
|
/// Due to a current rustc issue, `async` methods that schedule themselves will
|
|
/// not compile unless an explicit `Send` bound is added to the returned future.
|
|
/// This can be done by replacing the `async` signature with a partially
|
|
/// desugared signature such as:
|
|
///
|
|
/// ```ignore
|
|
/// fn self_scheduling_method<'a>(
|
|
/// &'a mut self,
|
|
/// arg: MyEventType,
|
|
/// scheduler: &'a Scheduler<Self>
|
|
/// ) -> impl Future<Output=()> + Send + 'a {
|
|
/// async move {
|
|
/// /* implementation */
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Self-scheduling methods which are not `async` are not affected by this
|
|
/// issue.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// A model that sends a greeting after some delay.
|
|
///
|
|
/// ```
|
|
/// use std::time::Duration;
|
|
/// use asynchronix::model::{Model, Output}; use asynchronix::time::Scheduler;
|
|
///
|
|
/// #[derive(Default)]
|
|
/// pub struct DelayedGreeter {
|
|
/// msg_out: Output<String>,
|
|
/// }
|
|
///
|
|
/// impl DelayedGreeter {
|
|
/// // Triggers a greeting on the output port after some delay [input port].
|
|
/// pub async fn greet_with_delay(&mut self, delay: Duration, scheduler: &Scheduler<Self>) {
|
|
/// let time = scheduler.time();
|
|
/// let greeting = format!("Hello, this message was scheduled at: {:?}.", time);
|
|
///
|
|
/// if delay.is_zero() {
|
|
/// self.msg_out.send(greeting).await;
|
|
/// } else {
|
|
/// scheduler.schedule_event(delay, Self::send_msg, greeting).unwrap();
|
|
/// }
|
|
/// }
|
|
///
|
|
/// // Sends a message to the output [private input port].
|
|
/// async fn send_msg(&mut self, msg: String) {
|
|
/// self.msg_out.send(msg).await;
|
|
/// }
|
|
/// }
|
|
/// impl Model for DelayedGreeter {}
|
|
/// ```
|
|
|
|
// The self-scheduling caveat seems related to this issue:
|
|
// https://github.com/rust-lang/rust/issues/78649
|
|
pub struct Scheduler<M: Model> {
|
|
sender: Sender<M>,
|
|
scheduler_queue: Arc<Mutex<SchedulerQueue>>,
|
|
time: SyncCellReader<TearableAtomicTime>,
|
|
}
|
|
|
|
impl<M: Model> Scheduler<M> {
|
|
/// Creates a new local scheduler.
|
|
pub(crate) fn new(
|
|
sender: Sender<M>,
|
|
scheduler_queue: Arc<Mutex<SchedulerQueue>>,
|
|
time: SyncCellReader<TearableAtomicTime>,
|
|
) -> Self {
|
|
Self {
|
|
sender,
|
|
scheduler_queue,
|
|
time,
|
|
}
|
|
}
|
|
|
|
/// Returns the current simulation time.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use asynchronix::model::Model;
|
|
/// use asynchronix::time::{MonotonicTime, Scheduler};
|
|
///
|
|
/// fn is_third_millenium<M: Model>(scheduler: &Scheduler<M>) -> bool {
|
|
/// let time = scheduler.time();
|
|
///
|
|
/// time >= MonotonicTime::new(978307200, 0) && time < MonotonicTime::new(32535216000, 0)
|
|
/// }
|
|
/// ```
|
|
pub fn time(&self) -> MonotonicTime {
|
|
self.time.try_read().expect("internal simulation error: could not perform a synchronized read of the simulation time")
|
|
}
|
|
|
|
/// Schedules an event at a future time.
|
|
///
|
|
/// An error is returned if the specified deadline is not in the future of
|
|
/// the current simulation time.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::time::Duration;
|
|
///
|
|
/// use asynchronix::model::Model;
|
|
/// use asynchronix::time::Scheduler;
|
|
///
|
|
/// // A timer.
|
|
/// pub struct Timer {}
|
|
///
|
|
/// impl Timer {
|
|
/// // Sets an alarm [input port].
|
|
/// pub fn set(&mut self, setting: Duration, scheduler: &Scheduler<Self>) {
|
|
/// if scheduler.schedule_event(setting, Self::ring, ()).is_err() {
|
|
/// println!("The alarm clock can only be set for a future time");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// // Rings [private input port].
|
|
/// fn ring(&mut self) {
|
|
/// println!("Brringggg");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl Model for Timer {}
|
|
/// ```
|
|
pub fn schedule_event<F, T, S>(
|
|
&self,
|
|
deadline: impl Deadline,
|
|
func: F,
|
|
arg: T,
|
|
) -> Result<(), SchedulingError>
|
|
where
|
|
F: for<'a> InputFn<'a, M, T, S>,
|
|
T: Send + Clone + 'static,
|
|
S: Send + 'static,
|
|
{
|
|
let now = self.time();
|
|
let time = deadline.into_time(now);
|
|
if now >= time {
|
|
return Err(SchedulingError::InvalidScheduledTime);
|
|
}
|
|
let sender = self.sender.clone();
|
|
schedule_event_at_unchecked(time, func, arg, sender, &self.scheduler_queue);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Schedules a cancellable event at a future time and returns an event key.
|
|
///
|
|
/// An error is returned if the specified deadline is not in the future of
|
|
/// the current simulation time.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use asynchronix::model::Model;
|
|
/// use asynchronix::time::{EventKey, MonotonicTime, Scheduler};
|
|
///
|
|
/// // An alarm clock that can be cancelled.
|
|
/// #[derive(Default)]
|
|
/// pub struct CancellableAlarmClock {
|
|
/// event_key: Option<EventKey>,
|
|
/// }
|
|
///
|
|
/// impl CancellableAlarmClock {
|
|
/// // Sets an alarm [input port].
|
|
/// pub fn set(&mut self, setting: MonotonicTime, scheduler: &Scheduler<Self>) {
|
|
/// self.cancel();
|
|
/// match scheduler.schedule_keyed_event(setting, Self::ring, ()) {
|
|
/// Ok(event_key) => self.event_key = Some(event_key),
|
|
/// Err(_) => println!("The alarm clock can only be set for a future time"),
|
|
/// };
|
|
/// }
|
|
///
|
|
/// // Cancels the current alarm, if any [input port].
|
|
/// pub fn cancel(&mut self) {
|
|
/// self.event_key.take().map(|k| k.cancel());
|
|
/// }
|
|
///
|
|
/// // Rings the alarm [private input port].
|
|
/// fn ring(&mut self) {
|
|
/// println!("Brringggg!");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl Model for CancellableAlarmClock {}
|
|
/// ```
|
|
pub fn schedule_keyed_event<F, T, S>(
|
|
&self,
|
|
deadline: impl Deadline,
|
|
func: F,
|
|
arg: T,
|
|
) -> Result<EventKey, SchedulingError>
|
|
where
|
|
F: for<'a> InputFn<'a, M, T, S>,
|
|
T: Send + Clone + 'static,
|
|
S: Send + 'static,
|
|
{
|
|
let now = self.time();
|
|
let time = deadline.into_time(now);
|
|
if now >= time {
|
|
return Err(SchedulingError::InvalidScheduledTime);
|
|
}
|
|
let sender = self.sender.clone();
|
|
let event_key =
|
|
schedule_keyed_event_at_unchecked(time, func, arg, sender, &self.scheduler_queue);
|
|
|
|
Ok(event_key)
|
|
}
|
|
|
|
/// Schedules a periodically recurring event at a future time.
|
|
///
|
|
/// An error is returned if the specified deadline is not in the future of
|
|
/// the current simulation time or if the specified period is null.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::time::Duration;
|
|
///
|
|
/// use asynchronix::model::Model;
|
|
/// use asynchronix::time::{MonotonicTime, Scheduler};
|
|
///
|
|
/// // An alarm clock beeping at 1Hz.
|
|
/// pub struct BeepingAlarmClock {}
|
|
///
|
|
/// impl BeepingAlarmClock {
|
|
/// // Sets an alarm [input port].
|
|
/// pub fn set(&mut self, setting: MonotonicTime, scheduler: &Scheduler<Self>) {
|
|
/// if scheduler.schedule_periodic_event(
|
|
/// setting,
|
|
/// Duration::from_secs(1), // 1Hz = 1/1s
|
|
/// Self::beep,
|
|
/// ()
|
|
/// ).is_err() {
|
|
/// println!("The alarm clock can only be set for a future time");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// // Emits a single beep [private input port].
|
|
/// fn beep(&mut self) {
|
|
/// println!("Beep!");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl Model for BeepingAlarmClock {}
|
|
/// ```
|
|
pub fn schedule_periodic_event<F, T, S>(
|
|
&self,
|
|
deadline: impl Deadline,
|
|
period: Duration,
|
|
func: F,
|
|
arg: T,
|
|
) -> Result<(), SchedulingError>
|
|
where
|
|
F: for<'a> InputFn<'a, M, T, S> + Clone,
|
|
T: Send + Clone + 'static,
|
|
S: Send + 'static,
|
|
{
|
|
let now = self.time();
|
|
let time = deadline.into_time(now);
|
|
if now >= time {
|
|
return Err(SchedulingError::InvalidScheduledTime);
|
|
}
|
|
if period.is_zero() {
|
|
return Err(SchedulingError::NullRepetitionPeriod);
|
|
}
|
|
let sender = self.sender.clone();
|
|
schedule_periodic_event_at_unchecked(
|
|
time,
|
|
period,
|
|
func,
|
|
arg,
|
|
sender,
|
|
&self.scheduler_queue,
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Schedules a cancellable, periodically recurring event at a future time
|
|
/// and returns an event key.
|
|
///
|
|
/// An error is returned if the specified deadline is not in the future of
|
|
/// the current simulation time or if the specified period is null.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::time::Duration;
|
|
///
|
|
/// use asynchronix::model::Model;
|
|
/// use asynchronix::time::{EventKey, MonotonicTime, Scheduler};
|
|
///
|
|
/// // An alarm clock beeping at 1Hz that can be cancelled before it sets off, or
|
|
/// // stopped after it sets off.
|
|
/// #[derive(Default)]
|
|
/// pub struct CancellableBeepingAlarmClock {
|
|
/// event_key: Option<EventKey>,
|
|
/// }
|
|
///
|
|
/// impl CancellableBeepingAlarmClock {
|
|
/// // Sets an alarm [input port].
|
|
/// pub fn set(&mut self, setting: MonotonicTime, scheduler: &Scheduler<Self>) {
|
|
/// self.cancel();
|
|
/// match scheduler.schedule_keyed_periodic_event(
|
|
/// setting,
|
|
/// Duration::from_secs(1), // 1Hz = 1/1s
|
|
/// Self::beep,
|
|
/// ()
|
|
/// ) {
|
|
/// Ok(event_key) => self.event_key = Some(event_key),
|
|
/// Err(_) => println!("The alarm clock can only be set for a future time"),
|
|
/// };
|
|
/// }
|
|
///
|
|
/// // Cancels or stops the alarm [input port].
|
|
/// pub fn cancel(&mut self) {
|
|
/// self.event_key.take().map(|k| k.cancel());
|
|
/// }
|
|
///
|
|
/// // Emits a single beep [private input port].
|
|
/// fn beep(&mut self) {
|
|
/// println!("Beep!");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl Model for CancellableBeepingAlarmClock {}
|
|
/// ```
|
|
pub fn schedule_keyed_periodic_event<F, T, S>(
|
|
&self,
|
|
deadline: impl Deadline,
|
|
period: Duration,
|
|
func: F,
|
|
arg: T,
|
|
) -> Result<EventKey, SchedulingError>
|
|
where
|
|
F: for<'a> InputFn<'a, M, T, S> + Clone,
|
|
T: Send + Clone + 'static,
|
|
S: Send + 'static,
|
|
{
|
|
let now = self.time();
|
|
let time = deadline.into_time(now);
|
|
if now >= time {
|
|
return Err(SchedulingError::InvalidScheduledTime);
|
|
}
|
|
if period.is_zero() {
|
|
return Err(SchedulingError::NullRepetitionPeriod);
|
|
}
|
|
let sender = self.sender.clone();
|
|
let event_key = schedule_periodic_keyed_event_at_unchecked(
|
|
time,
|
|
period,
|
|
func,
|
|
arg,
|
|
sender,
|
|
&self.scheduler_queue,
|
|
);
|
|
|
|
Ok(event_key)
|
|
}
|
|
}
|
|
|
|
impl<M: Model> fmt::Debug for Scheduler<M> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
f.debug_struct("Scheduler").finish_non_exhaustive()
|
|
}
|
|
}
|
|
|
|
/// Handle to a scheduled event.
|
|
///
|
|
/// An `EventKey` can be used to cancel a future event.
|
|
#[derive(Clone, Debug)]
|
|
#[must_use = "prefer unkeyed scheduling methods if the event is never cancelled"]
|
|
pub struct EventKey {
|
|
is_cancelled: Arc<AtomicBool>,
|
|
}
|
|
|
|
impl EventKey {
|
|
/// Creates a key for a pending event.
|
|
pub(crate) fn new() -> Self {
|
|
Self {
|
|
is_cancelled: Arc::new(AtomicBool::new(false)),
|
|
}
|
|
}
|
|
|
|
/// Checks whether the event was cancelled.
|
|
pub(crate) fn is_cancelled(&self) -> bool {
|
|
self.is_cancelled.load(Ordering::Relaxed)
|
|
}
|
|
|
|
/// Cancels the associated event.
|
|
pub fn cancel(self) {
|
|
self.is_cancelled.store(true, Ordering::Relaxed);
|
|
}
|
|
}
|
|
|
|
/// Error returned when the scheduled time or the repetition period are invalid.
|
|
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
|
pub enum SchedulingError {
|
|
/// The scheduled time does not lie in the future of the current simulation
|
|
/// time.
|
|
InvalidScheduledTime,
|
|
/// The repetition period is zero.
|
|
NullRepetitionPeriod,
|
|
}
|
|
|
|
impl fmt::Display for SchedulingError {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
match self {
|
|
Self::InvalidScheduledTime => write!(
|
|
fmt,
|
|
"the scheduled time should be in the future of the current simulation time"
|
|
),
|
|
Self::NullRepetitionPeriod => write!(fmt, "the repetition period cannot be zero"),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Error for SchedulingError {}
|
|
|
|
/// Schedules an event at a future time.
|
|
///
|
|
/// This method does not check whether the specified time lies in the future
|
|
/// of the current simulation time.
|
|
pub(crate) fn schedule_event_at_unchecked<M, F, T, S>(
|
|
time: MonotonicTime,
|
|
func: F,
|
|
arg: T,
|
|
sender: Sender<M>,
|
|
scheduler_queue: &Mutex<SchedulerQueue>,
|
|
) where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S>,
|
|
T: Send + Clone + 'static,
|
|
S: Send + 'static,
|
|
{
|
|
let channel_id = sender.channel_id();
|
|
|
|
let event_dispatcher = Box::new(new_event_dispatcher(func, arg, sender));
|
|
|
|
let mut scheduler_queue = scheduler_queue.lock().unwrap();
|
|
scheduler_queue.insert((time, channel_id), event_dispatcher);
|
|
}
|
|
|
|
/// Schedules an event at a future time, returning an event key.
|
|
///
|
|
/// This method does not check whether the specified time lies in the future
|
|
/// of the current simulation time.
|
|
pub(crate) fn schedule_keyed_event_at_unchecked<M, F, T, S>(
|
|
time: MonotonicTime,
|
|
func: F,
|
|
arg: T,
|
|
sender: Sender<M>,
|
|
scheduler_queue: &Mutex<SchedulerQueue>,
|
|
) -> EventKey
|
|
where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S>,
|
|
T: Send + Clone + 'static,
|
|
S: Send + 'static,
|
|
{
|
|
let event_key = EventKey::new();
|
|
let channel_id = sender.channel_id();
|
|
let event_dispatcher = Box::new(KeyedEventDispatcher::new(
|
|
event_key.clone(),
|
|
func,
|
|
arg,
|
|
sender,
|
|
));
|
|
|
|
let mut scheduler_queue = scheduler_queue.lock().unwrap();
|
|
scheduler_queue.insert((time, channel_id), event_dispatcher);
|
|
|
|
event_key
|
|
}
|
|
|
|
/// Schedules a periodic event at a future time.
|
|
///
|
|
/// This method does not check whether the specified time lies in the future
|
|
/// of the current simulation time.
|
|
pub(crate) fn schedule_periodic_event_at_unchecked<M, F, T, S>(
|
|
time: MonotonicTime,
|
|
period: Duration,
|
|
func: F,
|
|
arg: T,
|
|
sender: Sender<M>,
|
|
scheduler_queue: &Mutex<SchedulerQueue>,
|
|
) where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S> + Clone,
|
|
T: Send + Clone + 'static,
|
|
S: Send + 'static,
|
|
{
|
|
let channel_id = sender.channel_id();
|
|
|
|
let event_dispatcher = Box::new(PeriodicEventDispatcher::new(func, arg, sender, period));
|
|
|
|
let mut scheduler_queue = scheduler_queue.lock().unwrap();
|
|
scheduler_queue.insert((time, channel_id), event_dispatcher);
|
|
}
|
|
|
|
/// Schedules an event at a future time, returning an event key.
|
|
///
|
|
/// This method does not check whether the specified time lies in the future
|
|
/// of the current simulation time.
|
|
pub(crate) fn schedule_periodic_keyed_event_at_unchecked<M, F, T, S>(
|
|
time: MonotonicTime,
|
|
period: Duration,
|
|
func: F,
|
|
arg: T,
|
|
sender: Sender<M>,
|
|
scheduler_queue: &Mutex<SchedulerQueue>,
|
|
) -> EventKey
|
|
where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S> + Clone,
|
|
T: Send + Clone + 'static,
|
|
S: Send + 'static,
|
|
{
|
|
let event_key = EventKey::new();
|
|
let channel_id = sender.channel_id();
|
|
let event_dispatcher = Box::new(PeriodicKeyedEventDispatcher::new(
|
|
event_key.clone(),
|
|
func,
|
|
arg,
|
|
sender,
|
|
period,
|
|
));
|
|
|
|
let mut scheduler_queue = scheduler_queue.lock().unwrap();
|
|
scheduler_queue.insert((time, channel_id), event_dispatcher);
|
|
|
|
event_key
|
|
}
|
|
|
|
/// Trait for objects that can be converted to a future dispatching a scheduled
|
|
/// event.
|
|
pub(crate) trait ScheduledEvent: Send {
|
|
/// Reports whether the associated event was cancelled.
|
|
fn is_cancelled(&self) -> bool;
|
|
|
|
/// Returns a boxed clone of this event and the repetition period if this is
|
|
/// a periodic even, otherwise returns `None`.
|
|
fn next(&self) -> Option<(Box<dyn ScheduledEvent>, Duration)>;
|
|
|
|
/// Returns a boxed future dispatching the associated event.
|
|
fn into_future(self: Box<Self>) -> Pin<Box<dyn Future<Output = ()> + Send>>;
|
|
|
|
/// Spawns the future that dispatches the associated event onto the provided
|
|
/// executor.
|
|
///
|
|
/// This method is typically more efficient that spawning the boxed future
|
|
/// from `into_future` since it can directly spawn the unboxed future.
|
|
fn spawn_and_forget(self: Box<Self>, executor: &Executor);
|
|
}
|
|
|
|
pin_project! {
|
|
/// Object that can be converted to a future dispatching a non-cancellable
|
|
/// event.
|
|
///
|
|
/// Note that this particular event dispatcher is in fact already a future:
|
|
/// since the future cannot be cancelled and the dispatcher does not need to
|
|
/// be cloned, there is no need to defer the construction of the future.
|
|
/// This makes `into_future` a trivial cast, which saves a boxing operation.
|
|
pub(crate) struct EventDispatcher<F> {
|
|
#[pin]
|
|
fut: F,
|
|
}
|
|
}
|
|
|
|
/// Constructs a new `EventDispatcher`.
|
|
///
|
|
/// Due to some limitations of type inference or of my understanding of it, the
|
|
/// constructor for this event dispatchers is a freestanding function.
|
|
fn new_event_dispatcher<M, F, T, S>(
|
|
func: F,
|
|
arg: T,
|
|
sender: Sender<M>,
|
|
) -> EventDispatcher<impl Future<Output = ()>>
|
|
where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S>,
|
|
T: Send + Clone + 'static,
|
|
{
|
|
let fut = dispatch_event(func, arg, sender);
|
|
|
|
EventDispatcher { fut }
|
|
}
|
|
|
|
impl<F> Future for EventDispatcher<F>
|
|
where
|
|
F: Future,
|
|
{
|
|
type Output = F::Output;
|
|
|
|
#[inline(always)]
|
|
fn poll(self: std::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
|
|
self.project().fut.poll(cx)
|
|
}
|
|
}
|
|
|
|
impl<F> ScheduledEvent for EventDispatcher<F>
|
|
where
|
|
F: Future<Output = ()> + Send + 'static,
|
|
{
|
|
fn is_cancelled(&self) -> bool {
|
|
false
|
|
}
|
|
fn next(&self) -> Option<(Box<dyn ScheduledEvent>, Duration)> {
|
|
None
|
|
}
|
|
fn into_future(self: Box<Self>) -> Pin<Box<dyn Future<Output = ()> + Send>> {
|
|
// No need for boxing, type coercion is enough here.
|
|
Box::into_pin(self)
|
|
}
|
|
fn spawn_and_forget(self: Box<Self>, executor: &Executor) {
|
|
executor.spawn_and_forget(*self);
|
|
}
|
|
}
|
|
|
|
/// Object that can be converted to a future dispatching a non-cancellable periodic
|
|
/// event.
|
|
pub(crate) struct PeriodicEventDispatcher<M, F, T, S>
|
|
where
|
|
M: Model,
|
|
{
|
|
func: F,
|
|
arg: T,
|
|
sender: Sender<M>,
|
|
period: Duration,
|
|
_input_kind: PhantomData<S>,
|
|
}
|
|
|
|
impl<M, F, T, S> PeriodicEventDispatcher<M, F, T, S>
|
|
where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S>,
|
|
T: Send + Clone + 'static,
|
|
{
|
|
/// Constructs a new `PeriodicEventDispatcher`.
|
|
fn new(func: F, arg: T, sender: Sender<M>, period: Duration) -> Self {
|
|
Self {
|
|
func,
|
|
arg,
|
|
sender,
|
|
period,
|
|
_input_kind: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<M, F, T, S> ScheduledEvent for PeriodicEventDispatcher<M, F, T, S>
|
|
where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S> + Clone,
|
|
T: Send + Clone + 'static,
|
|
S: Send + 'static,
|
|
{
|
|
fn is_cancelled(&self) -> bool {
|
|
false
|
|
}
|
|
fn next(&self) -> Option<(Box<dyn ScheduledEvent>, Duration)> {
|
|
let event = Box::new(Self::new(
|
|
self.func.clone(),
|
|
self.arg.clone(),
|
|
self.sender.clone(),
|
|
self.period,
|
|
));
|
|
|
|
Some((event, self.period))
|
|
}
|
|
fn into_future(self: Box<Self>) -> Pin<Box<dyn Future<Output = ()> + Send>> {
|
|
let Self {
|
|
func, arg, sender, ..
|
|
} = *self;
|
|
|
|
Box::pin(dispatch_event(func, arg, sender))
|
|
}
|
|
fn spawn_and_forget(self: Box<Self>, executor: &Executor) {
|
|
let Self {
|
|
func, arg, sender, ..
|
|
} = *self;
|
|
|
|
let fut = dispatch_event(func, arg, sender);
|
|
executor.spawn_and_forget(fut);
|
|
}
|
|
}
|
|
|
|
/// Object that can be converted to a future dispatching a cancellable event.
|
|
pub(crate) struct KeyedEventDispatcher<M, F, T, S>
|
|
where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S>,
|
|
T: Send + Clone + 'static,
|
|
{
|
|
event_key: EventKey,
|
|
func: F,
|
|
arg: T,
|
|
sender: Sender<M>,
|
|
_input_kind: PhantomData<S>,
|
|
}
|
|
|
|
impl<M, F, T, S> KeyedEventDispatcher<M, F, T, S>
|
|
where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S>,
|
|
T: Send + Clone + 'static,
|
|
{
|
|
/// Constructs a new `KeyedEventDispatcher`.
|
|
fn new(event_key: EventKey, func: F, arg: T, sender: Sender<M>) -> Self {
|
|
Self {
|
|
event_key,
|
|
func,
|
|
arg,
|
|
sender,
|
|
_input_kind: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<M, F, T, S> ScheduledEvent for KeyedEventDispatcher<M, F, T, S>
|
|
where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S>,
|
|
T: Send + Clone + 'static,
|
|
S: Send + 'static,
|
|
{
|
|
fn is_cancelled(&self) -> bool {
|
|
self.event_key.is_cancelled()
|
|
}
|
|
fn next(&self) -> Option<(Box<dyn ScheduledEvent>, Duration)> {
|
|
None
|
|
}
|
|
fn into_future(self: Box<Self>) -> Pin<Box<dyn Future<Output = ()> + Send>> {
|
|
let Self {
|
|
event_key,
|
|
func,
|
|
arg,
|
|
sender,
|
|
..
|
|
} = *self;
|
|
|
|
Box::pin(dispatch_keyed_event(event_key, func, arg, sender))
|
|
}
|
|
fn spawn_and_forget(self: Box<Self>, executor: &Executor) {
|
|
let Self {
|
|
event_key,
|
|
func,
|
|
arg,
|
|
sender,
|
|
..
|
|
} = *self;
|
|
|
|
let fut = dispatch_keyed_event(event_key, func, arg, sender);
|
|
executor.spawn_and_forget(fut);
|
|
}
|
|
}
|
|
|
|
/// Object that can be converted to a future dispatching a cancellable event.
|
|
pub(crate) struct PeriodicKeyedEventDispatcher<M, F, T, S>
|
|
where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S>,
|
|
T: Send + Clone + 'static,
|
|
{
|
|
event_key: EventKey,
|
|
func: F,
|
|
arg: T,
|
|
sender: Sender<M>,
|
|
period: Duration,
|
|
_input_kind: PhantomData<S>,
|
|
}
|
|
|
|
impl<M, F, T, S> PeriodicKeyedEventDispatcher<M, F, T, S>
|
|
where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S>,
|
|
T: Send + Clone + 'static,
|
|
{
|
|
/// Constructs a new `KeyedEventDispatcher`.
|
|
fn new(event_key: EventKey, func: F, arg: T, sender: Sender<M>, period: Duration) -> Self {
|
|
Self {
|
|
event_key,
|
|
func,
|
|
arg,
|
|
sender,
|
|
period,
|
|
_input_kind: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<M, F, T, S> ScheduledEvent for PeriodicKeyedEventDispatcher<M, F, T, S>
|
|
where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S> + Clone,
|
|
T: Send + Clone + 'static,
|
|
S: Send + 'static,
|
|
{
|
|
fn is_cancelled(&self) -> bool {
|
|
self.event_key.is_cancelled()
|
|
}
|
|
fn next(&self) -> Option<(Box<dyn ScheduledEvent>, Duration)> {
|
|
let event = Box::new(Self::new(
|
|
self.event_key.clone(),
|
|
self.func.clone(),
|
|
self.arg.clone(),
|
|
self.sender.clone(),
|
|
self.period,
|
|
));
|
|
|
|
Some((event, self.period))
|
|
}
|
|
fn into_future(self: Box<Self>) -> Pin<Box<dyn Future<Output = ()> + Send>> {
|
|
let Self {
|
|
event_key,
|
|
func,
|
|
arg,
|
|
sender,
|
|
..
|
|
} = *self;
|
|
|
|
Box::pin(dispatch_keyed_event(event_key, func, arg, sender))
|
|
}
|
|
fn spawn_and_forget(self: Box<Self>, executor: &Executor) {
|
|
let Self {
|
|
event_key,
|
|
func,
|
|
arg,
|
|
sender,
|
|
..
|
|
} = *self;
|
|
|
|
let fut = dispatch_keyed_event(event_key, func, arg, sender);
|
|
executor.spawn_and_forget(fut);
|
|
}
|
|
}
|
|
|
|
/// Asynchronously dispatch a regular, non-cancellable event.
|
|
async fn dispatch_event<M, F, T, S>(func: F, arg: T, sender: Sender<M>)
|
|
where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S>,
|
|
T: Send + Clone + 'static,
|
|
{
|
|
let _ = sender
|
|
.send(
|
|
move |model: &mut M,
|
|
scheduler,
|
|
recycle_box: RecycleBox<()>|
|
|
-> RecycleBox<dyn Future<Output = ()> + Send + '_> {
|
|
let fut = func.call(model, arg, scheduler);
|
|
|
|
coerce_box!(RecycleBox::recycle(recycle_box, fut))
|
|
},
|
|
)
|
|
.await;
|
|
}
|
|
|
|
/// Asynchronously dispatch a cancellable event.
|
|
async fn dispatch_keyed_event<M, F, T, S>(event_key: EventKey, func: F, arg: T, sender: Sender<M>)
|
|
where
|
|
M: Model,
|
|
F: for<'a> InputFn<'a, M, T, S>,
|
|
T: Send + Clone + 'static,
|
|
{
|
|
let _ = sender
|
|
.send(
|
|
move |model: &mut M,
|
|
scheduler,
|
|
recycle_box: RecycleBox<()>|
|
|
-> RecycleBox<dyn Future<Output = ()> + Send + '_> {
|
|
let fut = async move {
|
|
// Only perform the call if the event wasn't cancelled.
|
|
if !event_key.is_cancelled() {
|
|
func.call(model, arg, scheduler).await;
|
|
}
|
|
};
|
|
|
|
coerce_box!(RecycleBox::recycle(recycle_box, fut))
|
|
},
|
|
)
|
|
.await;
|
|
}
|