/************************************************************/ /* CAN SETUP AND USAGE */ /************************************************************/ #include #include #include /************************** Constant Definitions *****************************/ /* * The following constants map to the XPAR parameters created in the * xparameters.h file. They are defined here such that a user can easily * change all the needed parameters in one place. */ #define CAN_DEVICE_ID XPAR_XCANPS_0_DEVICE_ID /* * Maximum CAN frame length in words. */ #define XCANPS_MAX_FRAME_SIZE_IN_WORDS (XCANPS_MAX_FRAME_SIZE / sizeof(u32)) #define FRAME_DATA_LENGTH 8 /* Frame Data field length */ /* * Message Id Constant. */ #define TEST_MESSAGE_ID 2000 /* * The Baud Rate Prescaler Register (BRPR) and Bit Timing Register (BTR) * are setup such that CAN baud rate equals 40Kbps, assuming that the * the CAN clock is 24MHz. The user needs to modify these values based on * the desired baud rate and the CAN clock frequency. For more information * see the CAN 2.0A, CAN 2.0B, ISO 11898-1 specifications. */ /* * Timing parameters to be set in the Bit Timing Register (BTR). * These values are for a 40 Kbps baudrate assuming the CAN input clock frequency * is 24 MHz. */ // #define TEST_BTR_SYNCJUMPWIDTH 3 // #define TEST_BTR_SECOND_TIMESEGMENT 2 // #define TEST_BTR_FIRST_TIMESEGMENT 15 #define TEST_BTR_SYNCJUMPWIDTH 3 #define TEST_BTR_SECOND_TIMESEGMENT 7//2 #define TEST_BTR_FIRST_TIMESEGMENT 14//15 /* * The Baud rate Prescalar value in the Baud Rate Prescaler Register (BRPR) * needs to be set based on the input clock frequency to the CAN core and * the desired CAN baud rate. * This value is for a 40 Kbps baudrate assuming the CAN input clock frequency * is 24 MHz. */ #define TEST_BRPR_BAUD_PRESCALAR 29 /**************************** Type Definitions *******************************/ /***************** Macros (Inline Functions) Definitions *********************/ /************************** Function Prototypes ******************************/ int CanPsPolledExample(XCanPs *CanInstancePtr, UINTPTR BaseAddress); static int SendFrame(XCanPs *InstancePtr); static int RecvFrame(XCanPs *InstancePtr); /************************** Variable Definitions *****************************/ /* * Buffers to hold frames to send and receive. These are declared as global so * that they are not on the stack. * These buffers need to be 32-bit aligned */ static u32 TxFrame[XCANPS_MAX_FRAME_SIZE_IN_WORDS]; static u32 RxFrame[XCANPS_MAX_FRAME_SIZE_IN_WORDS]; /* Driver instance */ static XCanPs Can; /****************************************************************************/ /** * * Can polling * * * @return * - XST_SUCCESS if the example has completed successfully. * - XST_FAILURE if the example has failed. * * @note None * *****************************************************************************/ int canps_poll_example(void) { int Status; xil_printf("CAN Polled Mode Test \r\n"); /* * Run the Can Polled example, specify the Device ID that is generated * in xparameters.h . */ Status = CanPsPolledExample(&Can, XPAR_XCANPS_0_BASEADDR); if (Status != XST_SUCCESS) { xil_printf("CAN Polled Mode Test Failed\r\n"); return XST_FAILURE; } xil_printf("Successfully ran CAN Polled Mode Test\r\n"); return XST_SUCCESS; } /*****************************************************************************/ /** * * The entry point for showing the XCanPs driver in polled mode. The example * configures the device for internal loop back mode, then sends a Can * frame, receives the same Can frame, and verifies the frame contents. * * @param DeviceId is the XPAR__DEVICE_ID value from * xparameters.h * * @return XST_SUCCESS if successful, otherwise driver-specific error code. * * @note * * If the device is not working correctly, this function may enter an infinite * loop and will never return to the caller. * ******************************************************************************/ int CanPsPolledExample(XCanPs *CanInstancePtr, UINTPTR BaseAddress) { int Status; XCanPs *CanInstPtr = &Can; XCanPs_Config *ConfigPtr; /* * Initialize the Can device. */ ConfigPtr = XCanPs_LookupConfig(BaseAddress); if (CanInstPtr == NULL) { return XST_FAILURE; } Status = XCanPs_CfgInitialize(CanInstPtr, ConfigPtr, ConfigPtr->BaseAddr); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* * Run self-test on the device, which verifies basic sanity of the * device and the driver. */ Status = XCanPs_SelfTest(CanInstPtr); if (Status != XST_SUCCESS) { return XST_FAILURE; } /* * Enter Configuration Mode so we can setup Baud Rate Prescaler * Register (BRPR) and Bit Timing Register (BTR). */ XCanPs_EnterMode(CanInstPtr, XCANPS_MODE_CONFIG); while (XCanPs_GetMode(CanInstPtr) != XCANPS_MODE_CONFIG); /* * Setup Baud Rate Prescaler Register (BRPR) and * Bit Timing Register (BTR). */ XCanPs_SetBaudRatePrescaler(CanInstPtr, TEST_BRPR_BAUD_PRESCALAR); XCanPs_SetBitTiming(CanInstPtr, TEST_BTR_SYNCJUMPWIDTH, TEST_BTR_SECOND_TIMESEGMENT, TEST_BTR_FIRST_TIMESEGMENT); /* * Enter Loop Back Mode. */ XCanPs_EnterMode(CanInstPtr, XCANPS_MODE_LOOPBACK); while (XCanPs_GetMode(CanInstPtr) != XCANPS_MODE_LOOPBACK); /* * Send a frame, receive the frame via the loop back and verify its * contents. */ Status = SendFrame(CanInstPtr); if (Status != XST_SUCCESS) { return Status; } Status = RecvFrame(CanInstPtr); return Status; } /*****************************************************************************/ /** * * Send a CAN frame. * * @param InstancePtr is a pointer to the driver instance * * @return XST_SUCCESS if successful, a driver-specific return code if not. * * @note * * This function waits until TX FIFO has room for at least one frame before * sending a frame. So this function may block if the hardware is not built * correctly. * ******************************************************************************/ static int SendFrame(XCanPs *InstancePtr) { u8 *FramePtr; int Index; int Status; /* * Create correct values for Identifier and Data Length Code Register. */ TxFrame[0] = (u32)XCanPs_CreateIdValue((u32)TEST_MESSAGE_ID, 0, 0, 0, 0); TxFrame[1] = (u32)XCanPs_CreateDlcValue((u32)FRAME_DATA_LENGTH); /* * Now fill in the data field with known values so we can verify them * on receive. */ FramePtr = (u8 *)(&TxFrame[2]); for (Index = 0; Index < FRAME_DATA_LENGTH; Index++) { *FramePtr++ = (u8)Index; } /* * Wait until TX FIFO has room. */ while (XCanPs_IsTxFifoFull(InstancePtr) == TRUE); /* * Now send the frame. * * Another way to send a frame is keep calling XCanPs_Send() until it * returns XST_SUCCESS. No check on if TX FIFO is full is needed anymore * in that case. */ Status = XCanPs_Send(InstancePtr, TxFrame); return Status; } /*****************************************************************************/ /** * * This function receives a frame and verifies its contents. * * @param InstancePtr is a pointer to the driver instance. * * @return XST_SUCCESS if successful, a driver-specific return code if not. * * @note * * This function waits until RX FIFO becomes not empty before reading a frame * from it. So this function may block if the hardware is not built * correctly. * ******************************************************************************/ static int RecvFrame(XCanPs *InstancePtr) { u8 *FramePtr; int Status; int Index; /* * Wait until a frame is received. */ while (XCanPs_IsRxEmpty(InstancePtr) == TRUE); /* * Receive a frame and verify its contents. */ Status = XCanPs_Recv(InstancePtr, RxFrame); if (Status == XST_SUCCESS) { /* * Verify Identifier and Data Length Code. */ if (RxFrame[0] != (u32)XCanPs_CreateIdValue((u32)TEST_MESSAGE_ID, 0, 0, 0, 0)) { return XST_LOOPBACK_ERROR; } if ((RxFrame[1] & ~XCANPS_DLCR_TIMESTAMP_MASK) != TxFrame[1]) { return XST_LOOPBACK_ERROR; } /* * Verify Data field contents. */ FramePtr = (u8 *)(&RxFrame[2]); for (Index = 0; Index < FRAME_DATA_LENGTH; Index++) { if (*FramePtr++ != (u8)Index) { return XST_LOOPBACK_ERROR; } } } return Status; }