//! # Pool implementation providing sub-pools with fixed size memory blocks //! //! This is a simple memory pool implementation which pre-allocates all sub-pools using a given pool //! configuration. After the pre-allocation, no dynamic memory allocation will be performed //! during run-time. This makes the implementation suitable for real-time applications and //! embedded environments. The pool implementation will also track the size of the data stored //! inside it. //! //! Transaction with the [pool][LocalPool] are done using a special [address][StoreAddr] type. //! Adding any data to the pool will yield a store address. Modification and read operations are //! done using a reference to a store address. Deletion will consume the store address. //! //! # Example //! //! ``` //! use launchpad::core::pool::{LocalPool, PoolCfg}; //! //! // 4 buckets of 4 bytes, 2 of 8 bytes and 1 of 16 bytes //! let pool_cfg = PoolCfg::new(vec![(4, 4), (2, 8), (1, 16)]); //! let mut local_pool = LocalPool::new(pool_cfg); //! let mut addr; //! { //! // Add new data to the pool //! let mut example_data = [0; 4]; //! example_data[0] = 42; //! let res = local_pool.add(example_data); //! assert!(res.is_ok()); //! addr = res.unwrap(); //! } //! //! { //! // Read the store data back //! let res = local_pool.read(&addr); //! assert!(res.is_ok()); //! let buf_read_back = res.unwrap(); //! assert_eq!(buf_read_back.len(), 4); //! assert_eq!(buf_read_back[0], 42); //! // Modify the stored data //! let res = local_pool.modify(&addr); //! assert!(res.is_ok()); //! let buf_read_back = res.unwrap(); //! buf_read_back[0] = 12; //! } //! //! { //! // Read the modified data back //! let res = local_pool.read(&addr); //! assert!(res.is_ok()); //! let buf_read_back = res.unwrap(); //! assert_eq!(buf_read_back.len(), 4); //! assert_eq!(buf_read_back[0], 12); //! } //! //! // Delete the stored data //! local_pool.delete(addr); //! //! // Get a free element in the pool with an appropriate size //! { //! let res = local_pool.free_element(12); //! assert!(res.is_ok()); //! let (tmp, mut_buf) = res.unwrap(); //! addr = tmp; //! mut_buf[0] = 7; //! } //! //! // Read back the data //! { //! // Read the store data back //! let res = local_pool.read(&addr); //! assert!(res.is_ok()); //! let buf_read_back = res.unwrap(); //! assert_eq!(buf_read_back.len(), 12); //! assert_eq!(buf_read_back[0], 7); //! } //! ``` type NumBlocks = u16; /// Configuration structure of the [local pool][LocalPool] /// /// # Parameters /// /// * `cfg`: Vector of tuples which represent a subpool. The first entry in the tuple specifies the /// number of memory blocks in the subpool, the second entry the size of the blocks pub struct PoolCfg { cfg: Vec<(NumBlocks, usize)>, } impl PoolCfg { pub fn new(cfg: Vec<(NumBlocks, usize)>) -> Self { PoolCfg { cfg } } pub fn sanitize(&mut self) -> usize { self.cfg .retain(|&(bucket_num, size)| bucket_num > 0 && size < LocalPool::MAX_SIZE); self.cfg .sort_unstable_by(|(_, sz0), (_, sz1)| sz0.partial_cmp(sz1).unwrap()); self.cfg.len() } } type PoolSize = usize; /// Pool implementation providing sub-pools with fixed size memory blocks. More details in /// the [module documentation][super::pool] pub struct LocalPool { pool_cfg: PoolCfg, pool: Vec>, sizes_lists: Vec>, } /// Simple address type used for transactions with the local pool. #[derive(Debug, Copy, Clone, PartialEq)] pub struct StoreAddr { pool_idx: u16, packet_idx: NumBlocks, } impl StoreAddr { pub const INVALID_ADDR: u32 = 0xFFFFFFFF; pub fn raw(&self) -> u32 { ((self.pool_idx as u32) << 16) as u32 | self.packet_idx as u32 } } #[derive(Debug, Clone, PartialEq)] pub enum StoreIdError { InvalidSubpool(u16), InvalidPacketIdx(u16) } #[derive(Debug, Clone, PartialEq)] pub enum StoreError { /// Requested data block is too large DataTooLarge(usize), /// The store is full. Contains the index of the full subpool StoreFull(u16), /// Store ID is invalid. This also includes partial errors where only the subpool is invalid InvalidStoreId(StoreIdError, Option), /// Valid subpool and packet index, but no data is stored at the given address DataDoesNotExist(StoreAddr), /// Internal or configuration errors InternalError(String), } impl LocalPool { const STORE_FREE: PoolSize = PoolSize::MAX; const MAX_SIZE: PoolSize = Self::STORE_FREE - 1; /// Create a new local pool from the [given configuration][PoolCfg]. This function will sanitize /// the given configuration as well. pub fn new(mut cfg: PoolCfg) -> LocalPool { let subpools_num = cfg.sanitize(); let mut local_pool = LocalPool { pool_cfg: cfg, pool: Vec::with_capacity(subpools_num), sizes_lists: Vec::with_capacity(subpools_num), }; for &(num_elems, elem_size) in local_pool.pool_cfg.cfg.iter() { let next_pool_len = elem_size * num_elems as usize; local_pool.pool.push(vec![0; next_pool_len]); let next_sizes_list_len = num_elems as usize; local_pool .sizes_lists .push(vec![Self::STORE_FREE; next_sizes_list_len]); } local_pool } /// Add new data to the pool. It will attempt to reserve a memory block with the appropriate /// size and then copy the given data to the block. Yields a [StoreAddr] which can be used /// to access the data stored in the pool pub fn add(&mut self, data: impl AsRef<[u8]>) -> Result { let data_len = data.as_ref().len(); if data_len > Self::MAX_SIZE { return Err(StoreError::DataTooLarge(data_len)); } let addr = self.reserve(data_len)?; self.write(&addr, data.as_ref())?; Ok(addr) } /// Reserves a free memory block with the appropriate size and returns a mutable reference /// to it. Yields a [StoreAddr] which can be used to access the data stored in the pool pub fn free_element(&mut self, len: usize) -> Result<(StoreAddr, &mut [u8]), StoreError> { if len > Self::MAX_SIZE { return Err(StoreError::DataTooLarge(len)); } let addr = self.reserve(len)?; let raw_pos = self.raw_pos(&addr).unwrap(); let block = &mut self.pool.get_mut(addr.pool_idx as usize).unwrap()[raw_pos..len]; Ok((addr, block)) } /// Modify data added previously using a given [StoreAddr] by yielding a mutable reference /// to it pub fn modify(&mut self, addr: &StoreAddr) -> Result<&mut [u8], StoreError> { let curr_size = self.addr_check(addr)?; let raw_pos = self.raw_pos(addr).unwrap(); let block = &mut self.pool.get_mut(addr.pool_idx as usize).unwrap()[raw_pos..curr_size]; Ok(block) } /// Read data by yielding a read-only reference given a [StoreAddr] pub fn read(&self, addr: &StoreAddr) -> Result<&[u8], StoreError> { let curr_size = self.addr_check(addr)?; let raw_pos = self.raw_pos(addr).unwrap(); let block = &self.pool.get(addr.pool_idx as usize).unwrap()[raw_pos..curr_size]; Ok(block) } /// Delete data inside the pool given a [StoreAddr] pub fn delete(&mut self, addr: StoreAddr) -> Result<(), StoreError> { self.addr_check(&addr)?; let block_size = self.pool_cfg.cfg.get(addr.pool_idx as usize).unwrap().1; let raw_pos = self.raw_pos(&addr).unwrap(); let block = &mut self.pool.get_mut(addr.pool_idx as usize).unwrap()[raw_pos..block_size]; let size_list = self.sizes_lists.get_mut(addr.pool_idx as usize).unwrap(); size_list[addr.packet_idx as usize] = Self::STORE_FREE; block.fill(0); Ok(()) } fn addr_check(&self, addr: &StoreAddr) -> Result { let pool_idx = addr.pool_idx as usize; if pool_idx as usize >= self.pool_cfg.cfg.len() { return Err(StoreError::InvalidStoreId(StoreIdError::InvalidSubpool(addr.pool_idx), Some(*addr))); } if addr.packet_idx >= self.pool_cfg.cfg[addr.pool_idx as usize].0 { return Err(StoreError::InvalidStoreId(StoreIdError::InvalidPacketIdx(addr.packet_idx), Some(*addr))); } let size_list = self.sizes_lists.get(pool_idx).unwrap(); let curr_size = size_list[addr.packet_idx as usize]; if curr_size == Self::STORE_FREE { return Err(StoreError::DataDoesNotExist(*addr)); } Ok(curr_size) } fn reserve(&mut self, data_len: usize) -> Result { let subpool_idx = self.find_subpool(data_len, 0)?; let (slot, size_slot_ref) = self.find_empty(subpool_idx)?; *size_slot_ref = data_len; Ok(StoreAddr { pool_idx: subpool_idx, packet_idx: slot, }) } fn find_subpool(&self, req_size: usize, start_at_subpool: u16) -> Result { for (i, &(_, elem_size)) in self.pool_cfg.cfg.iter().enumerate() { if i < start_at_subpool as usize { continue; } if elem_size >= req_size { return Ok(i as u16); } } Err(StoreError::DataTooLarge(req_size)) } fn write(&mut self, addr: &StoreAddr, data: &[u8]) -> Result<(), StoreError> { let packet_pos = self.raw_pos(addr).ok_or_else(|| { StoreError::InternalError(format!( "write: Error in raw_pos func with address {:?}", addr )) })?; let subpool = self.pool.get_mut(addr.pool_idx as usize).ok_or_else(|| { StoreError::InternalError(format!( "write: Error retrieving pool slice with address {:?}", addr )) })?; let pool_slice = &mut subpool[packet_pos..self.pool_cfg.cfg[addr.pool_idx as usize].1]; pool_slice.copy_from_slice(data); Ok(()) } fn find_empty(&mut self, subpool: u16) -> Result<(u16, &mut usize), StoreError> { if let Some(size_list) = self.sizes_lists.get_mut(subpool as usize) { for (i, elem_size) in size_list.iter_mut().enumerate() { if *elem_size == Self::STORE_FREE { return Ok((i as u16, elem_size)); } } } else { return Err(StoreError::InvalidStoreId(StoreIdError::InvalidSubpool(subpool),None)); } Err(StoreError::StoreFull(subpool)) } fn raw_pos(&self, addr: &StoreAddr) -> Option { let (_, size) = self.pool_cfg.cfg.get(addr.pool_idx as usize)?; Some(addr.packet_idx as usize * size) } } #[cfg(test)] mod tests { use crate::core::pool::{LocalPool, PoolCfg, StoreAddr, StoreError, StoreIdError}; #[test] fn test_cfg() { // Values where number of buckets is 0 or size is too large should be removed let mut pool_cfg = PoolCfg::new(vec![(0, 0), (1, 0), (2, LocalPool::MAX_SIZE)]); pool_cfg.sanitize(); assert_eq!(pool_cfg.cfg, vec![(1, 0)]); // Entries should be ordered according to bucket size pool_cfg = PoolCfg::new(vec![(16, 6), (32, 3), (8, 12)]); pool_cfg.sanitize(); assert_eq!(pool_cfg.cfg, vec![(32, 3), (16, 6), (8, 12)]); // Unstable sort is used, so order of entries with same block length should not matter pool_cfg = PoolCfg::new(vec![(12, 12), (14, 16), (10, 12)]); pool_cfg.sanitize(); assert!( pool_cfg.cfg == vec![(12, 12), (10, 12), (14, 16)] || pool_cfg.cfg == vec![(10, 12), (12, 12), (14, 16)] ); } #[test] fn test_basic() { // 4 buckets of 4 bytes, 2 of 8 bytes and 1 of 16 bytes let pool_cfg = PoolCfg::new(vec![(4, 4), (2, 8), (1, 16)]); let mut local_pool = LocalPool::new(pool_cfg); // Try to access data which does not exist let res = local_pool.read(&StoreAddr{ packet_idx: 0, pool_idx: 0 }); assert!(res.is_err()); assert!(matches!(res.unwrap_err(), StoreError::DataDoesNotExist { .. })); let mut test_buf: [u8; 16] = [0; 16]; for (i, val) in test_buf.iter_mut().enumerate() { *val = i as u8; } let res = local_pool.add(test_buf); assert!(res.is_ok()); let addr = res.unwrap(); // Only the second subpool has enough storage and only one bucket assert_eq!(addr, StoreAddr { pool_idx: 2, packet_idx: 0 }); // The subpool is now full and the call should fail accordingly let res = local_pool.add(test_buf); assert!(res.is_err()); let err = res.unwrap_err(); assert!(matches!(err, StoreError::StoreFull {..})); if let StoreError::StoreFull(subpool) = err { assert_eq!(subpool, 2); } // Read back data and verify correctness let res = local_pool.read(&addr); assert!(res.is_ok()); let buf_read_back = res.unwrap(); assert_eq!(buf_read_back.len(), 16); for (i, &val) in buf_read_back.iter().enumerate() { assert_eq!(val , i as u8); } // Delete the data let res = local_pool.delete(addr); assert!(res.is_ok()); { // Verify that the slot is free by trying to get a reference to it let res = local_pool.free_element(12); assert!(res.is_ok()); let (addr, buf_ref) = res.unwrap(); assert_eq!(addr, StoreAddr {pool_idx: 2, packet_idx:0}); assert_eq!(buf_ref.len(), 12); assert_eq!(buf_ref, [0; 12]); buf_ref[0] = 5; buf_ref[11] = 12; } { // Try to request a slot which is too large let res = local_pool.free_element(20); assert!(res.is_err()); assert_eq!(res.unwrap_err(), StoreError::DataTooLarge(20)); // Try to modify the 12 bytes requested previously let res = local_pool.modify(&addr); assert!(res.is_ok()); let buf_ref = res.unwrap(); assert_eq!(buf_ref[0], 5); assert_eq!(buf_ref[11], 12); buf_ref[0] = 0; buf_ref[11] = 0; } { let addr = StoreAddr{pool_idx: 3, packet_idx: 0}; let res = local_pool.read(&addr); assert!(res.is_err()); let err = res.unwrap_err(); assert!(matches!(err, StoreError::InvalidStoreId(StoreIdError::InvalidSubpool(3), Some(_)))); } { let addr = StoreAddr{pool_idx: 2, packet_idx: 1}; assert_eq!(addr.raw(), 0x00020001); let res = local_pool.read(&addr); assert!(res.is_err()); let err = res.unwrap_err(); assert!(matches!(err, StoreError::InvalidStoreId(StoreIdError::InvalidPacketIdx(1), Some(_)))); let data_too_large = [0; 20]; let res = local_pool.add(data_too_large); assert!(res.is_err()); let err = res.unwrap_err(); assert_eq!(err, StoreError::DataTooLarge(20)); let res = local_pool.free_element(LocalPool::MAX_SIZE + 1); assert!(res.is_err()); assert_eq!(res.unwrap_err(), StoreError::DataTooLarge(LocalPool::MAX_SIZE + 1)); } { // Reserve two smaller blocks consecutively and verify that the third reservation fails let res = local_pool.free_element(8); assert!(res.is_ok()); let (addr0, _) = res.unwrap(); let res = local_pool.free_element(8); assert!(res.is_ok()); let (addr1, _) = res.unwrap(); let res = local_pool.free_element(8); assert!(res.is_err()); let err = res.unwrap_err(); assert_eq!(err, StoreError::StoreFull(1)); // Verify that the two deletions are successful assert!(local_pool.delete(addr0).is_ok()); assert!(local_pool.delete(addr1).is_ok()); } } }