//! # PUS Verification Service 1 Module //! //! This module allows packaging and sending PUS Service 1 packets. It is conforming to section //! 8 of the PUS standard ECSS-E-ST-70-41C. //! //! The core object to report TC verification progress is the [VerificationReporter]. It exposes //! an API which uses type-state programming to avoid calling the verification steps in //! an invalid order. //! //! # Examples //! //! ``` //! use std::sync::{Arc, RwLock}; //! use std::time::Duration; //! use fsrc_core::pool::{LocalPool, PoolCfg}; //! use fsrc_core::pus::verification::{CrossbeamVerifSender, VerificationReporterCfg, VerificationReporterWithSender}; //! use spacepackets::ecss::PusPacket; //! use spacepackets::SpHeader; //! use spacepackets::tc::{PusTc, PusTcSecondaryHeader}; //! use spacepackets::tm::PusTm; //! //! const EMPTY_STAMP: [u8; 7] = [0; 7]; //! const TEST_APID: u16 = 0x02; //! //! let pool_cfg = PoolCfg::new(vec![(10, 32), (10, 64), (10, 128), (10, 1024)]); //! let shared_tm_pool = Arc::new(RwLock::new(LocalPool::new(pool_cfg.clone()))); //! let (verif_tx, verif_rx) = crossbeam_channel::bounded(10); //! let sender = CrossbeamVerifSender::new(shared_tm_pool.clone(), verif_tx); //! let cfg = VerificationReporterCfg::new(TEST_APID, 1, 2, 8); //! let mut reporter = VerificationReporterWithSender::new(cfg , Box::new(sender)); //! //! let mut sph = SpHeader::tc(TEST_APID, 0, 0).unwrap(); //! let tc_header = PusTcSecondaryHeader::new_simple(17, 1); //! let pus_tc_0 = PusTc::new(&mut sph, tc_header, None, true); //! let init_token = reporter.add_tc(&pus_tc_0); //! //! // Complete success sequence for a telecommand //! let accepted_token = reporter.acceptance_success(init_token, &EMPTY_STAMP).unwrap(); //! let started_token = reporter.start_success(accepted_token, &EMPTY_STAMP).unwrap(); //! reporter.completion_success(started_token, &EMPTY_STAMP).unwrap(); //! //! // Verify it arrives correctly on receiver end //! let mut tm_buf: [u8; 1024] = [0; 1024]; //! let mut packet_idx = 0; //! while packet_idx < 3 { //! let addr = verif_rx.recv_timeout(Duration::from_millis(10)).unwrap(); //! let tm_len; //! { //! let mut rg = shared_tm_pool.write().expect("Error locking shared pool"); //! let store_guard = rg.read_with_guard(addr); //! let slice = store_guard.read().expect("Error reading TM slice"); //! tm_len = slice.len(); //! tm_buf[0..tm_len].copy_from_slice(slice); //! } //! let (pus_tm, _) = PusTm::new_from_raw_slice(&tm_buf[0..tm_len], 7) //! .expect("Error reading verification TM"); //! if packet_idx == 0 { //! assert_eq!(pus_tm.subservice(), 1); //! } else if packet_idx == 1 { //! assert_eq!(pus_tm.subservice(), 3); //! } else if packet_idx == 2 { //! assert_eq!(pus_tm.subservice(), 7); //! } //! packet_idx += 1; //! } //! ``` //! //! The [integration test](https://egit.irs.uni-stuttgart.de/rust/fsrc-launchpad/src/branch/obsw-client-example/fsrc-core/tests/verification_test.rs) //! for the verification module contains examples how this module could be used in a more complex //! context involving multiple threads use alloc::boxed::Box; use alloc::vec; use alloc::vec::Vec; use core::hash::{Hash, Hasher}; use core::marker::PhantomData; use core::mem::size_of; use delegate::delegate; use downcast_rs::{impl_downcast, Downcast}; use spacepackets::ecss::{EcssEnumeration, PusError}; use spacepackets::tc::PusTc; use spacepackets::time::TimestampError; use spacepackets::tm::{PusTm, PusTmSecondaryHeader}; use spacepackets::{ByteConversionError, SizeMissmatch, SpHeader}; use spacepackets::{CcsdsPacket, PacketId, PacketSequenceCtrl}; #[cfg(feature = "std")] pub use stdmod::{CrossbeamVerifSender, StdVerifSender, StdVerifSenderError}; /// This is a request identifier as specified in 5.4.11.2 c. of the PUS standard /// This field equivalent to the first two bytes of the CCSDS space packet header. #[derive(Debug, Eq, Copy, Clone)] pub struct RequestId { version_number: u8, packet_id: PacketId, psc: PacketSequenceCtrl, } impl Hash for RequestId { fn hash(&self, state: &mut H) { self.raw().hash(state); } } // Implement manually to satisfy derive_hash_xor_eq lint impl PartialEq for RequestId { fn eq(&self, other: &Self) -> bool { self.version_number == other.version_number && self.packet_id == other.packet_id && self.psc == other.psc } } impl RequestId { pub const SIZE_AS_BYTES: usize = size_of::(); pub fn raw(&self) -> u32 { ((self.version_number as u32) << 29) | ((self.packet_id.raw() as u32) << 16) | self.psc.raw() as u32 } pub fn to_bytes(&self, buf: &mut [u8]) { let raw = self.raw(); buf.copy_from_slice(raw.to_be_bytes().as_slice()); } pub fn from_bytes(buf: &[u8]) -> Option { if buf.len() < 4 { return None; } let raw = u32::from_be_bytes(buf[0..Self::SIZE_AS_BYTES].try_into().unwrap()); Some(Self { version_number: ((raw >> 29) & 0b111) as u8, packet_id: PacketId::from(((raw >> 16) & 0xffff) as u16), psc: PacketSequenceCtrl::from((raw & 0xffff) as u16), }) } } impl RequestId { /// This allows extracting the request ID from a given PUS telecommand. pub fn new(tc: &PusTc) -> Self { RequestId { version_number: tc.ccsds_version(), packet_id: tc.packet_id(), psc: tc.psc(), } } } /// Generic error type which is also able to wrap a user send error with the user supplied type E. #[derive(Debug, Clone)] pub enum VerificationError { /// Errors related to sending the verification telemetry to a TM recipient SendError(E), /// Errors related to the time stamp format of the telemetry TimestampError(TimestampError), /// Errors related to byte conversion, for example unsufficient buffer size for given data ByteConversionError(ByteConversionError), /// Errors related to PUS packet format PusError(PusError), } /// If a verification operation fails, the passed token will be returned as well. This allows /// re-trying the operation at a later point. #[derive(Debug, Clone)] pub struct VerificationErrorWithToken(VerificationError, VerificationToken); /// Generic trait for a user supplied sender object. This sender object is responsible for sending /// PUS Service 1 Verification Telemetry to a verification TM recipient. The [Downcast] trait /// is implemented to allow passing the sender as a boxed trait object and still retrieve the /// concrete type at a later point. pub trait VerificationSender: Downcast + Send { fn send_verification_tm(&mut self, tm: PusTm) -> Result<(), VerificationError>; } impl_downcast!(VerificationSender); /// Support token to allow type-state programming. This prevents calling the verification /// steps in an invalid order. #[derive(Debug, Clone, Copy, Eq, PartialEq)] pub struct VerificationToken { state: PhantomData, req_id: RequestId, } #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub struct StateNone; #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub struct StateAccepted; #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub struct StateStarted; impl VerificationToken { fn new(req_id: RequestId) -> VerificationToken { VerificationToken { state: PhantomData, req_id, } } pub fn req_id(&self) -> RequestId { self.req_id } } pub struct VerificationReporterCfg { pub apid: u16, pub dest_id: u16, pub step_field_width: usize, pub fail_code_field_width: usize, pub max_fail_data_len: usize, } impl VerificationReporterCfg { /// Create a new configuration for the verification reporter. This includes following parameters: /// /// 1. Destination ID and APID, which could remain constant after construction. These parameters /// can be tweaked in the reporter after construction. /// 2. Maximum expected field sizes. The parameters of this configuration struct will be used /// to determine required maximum buffer sizes and there will be no addition allocation or /// configurable buffer parameters after [VerificationReporter] construction. /// /// This means the user has supply the maximum expected field sizes of verification messages /// before constructing the reporter. pub fn new( apid: u16, step_field_width: usize, fail_code_field_width: usize, max_fail_data_len: usize, ) -> Self { Self { apid, dest_id: 0, step_field_width, fail_code_field_width, max_fail_data_len, } } } /// Composite helper struct to pass failure parameters to the [VerificationReporter] pub struct FailParams<'a> { time_stamp: &'a [u8], failure_code: &'a dyn EcssEnumeration, failure_data: Option<&'a [u8]>, } impl<'a> FailParams<'a> { pub fn new( time_stamp: &'a [u8], failure_code: &'a impl EcssEnumeration, failure_data: Option<&'a [u8]>, ) -> Self { Self { time_stamp, failure_code, failure_data, } } } /// Composite helper struct to pass step failure parameters to the [VerificationReporter] pub struct FailParamsWithStep<'a> { bp: FailParams<'a>, step: &'a dyn EcssEnumeration, } impl<'a> FailParamsWithStep<'a> { pub fn new( time_stamp: &'a [u8], step: &'a impl EcssEnumeration, failure_code: &'a impl EcssEnumeration, failure_data: Option<&'a [u8]>, ) -> Self { Self { bp: FailParams::new(time_stamp, failure_code, failure_data), step, } } } /// Primary verification handler. It provides an API to send PUS 1 verification telemetry packets /// and verify the various steps of telecommand handling as specified in the PUS standard. pub struct VerificationReporter { pub apid: u16, pub dest_id: u16, msg_count: u16, source_data_buf: Vec, } impl VerificationReporter { pub fn new(cfg: VerificationReporterCfg) -> Self { Self { apid: cfg.apid, dest_id: cfg.dest_id, msg_count: 0, source_data_buf: vec![ 0; RequestId::SIZE_AS_BYTES + cfg.step_field_width as usize + cfg.fail_code_field_width as usize + cfg.max_fail_data_len ], } } pub fn allowed_source_data_len(&self) -> usize { self.source_data_buf.capacity() } /// Initialize verification handling by passing a TC reference. This returns a token required /// to call the acceptance functions pub fn add_tc(&mut self, pus_tc: &PusTc) -> VerificationToken { self.add_tc_with_req_id(RequestId::new(pus_tc)) } /// Same as [Self::add_tc] but pass a request ID instead of the direct telecommand. /// This can be useful if the executing thread does not have full access to the telecommand. pub fn add_tc_with_req_id(&mut self, req_id: RequestId) -> VerificationToken { VerificationToken::::new(req_id) } /// Package and send a PUS TM\[1, 1\] packet, see 8.1.2.1 of the PUS standard pub fn acceptance_success( &mut self, token: VerificationToken, sender: &mut (impl VerificationSender + ?Sized), time_stamp: &[u8], ) -> Result, VerificationErrorWithToken> { let tm = self .create_pus_verif_success_tm( 1, 1, &token.req_id, time_stamp, None::<&dyn EcssEnumeration>, ) .map_err(|e| VerificationErrorWithToken(e, token))?; sender .send_verification_tm(tm) .map_err(|e| VerificationErrorWithToken(e, token))?; self.msg_count += 1; Ok(VerificationToken { state: PhantomData, req_id: token.req_id, }) } /// Package and send a PUS TM\[1, 2\] packet, see 8.1.2.2 of the PUS standard pub fn acceptance_failure( &mut self, token: VerificationToken, sender: &mut (impl VerificationSender + ?Sized), params: FailParams, ) -> Result<(), VerificationErrorWithToken> { let tm = self .create_pus_verif_fail_tm(1, 2, &token.req_id, None::<&dyn EcssEnumeration>, ¶ms) .map_err(|e| VerificationErrorWithToken(e, token))?; sender .send_verification_tm(tm) .map_err(|e| VerificationErrorWithToken(e, token))?; self.msg_count += 1; Ok(()) } /// Package and send a PUS TM\[1, 3\] packet, see 8.1.2.3 of the PUS standard. /// /// Requires a token previously acquired by calling [Self::acceptance_success]. pub fn start_success( &mut self, token: VerificationToken, sender: &mut (impl VerificationSender + ?Sized), time_stamp: &[u8], ) -> Result, VerificationErrorWithToken> { let tm = self .create_pus_verif_success_tm( 1, 3, &token.req_id, time_stamp, None::<&dyn EcssEnumeration>, ) .map_err(|e| VerificationErrorWithToken(e, token))?; sender .send_verification_tm(tm) .map_err(|e| VerificationErrorWithToken(e, token))?; self.msg_count += 1; Ok(VerificationToken { state: PhantomData, req_id: token.req_id, }) } /// Package and send a PUS TM\[1, 4\] packet, see 8.1.2.4 of the PUS standard. /// /// Requires a token previously acquired by calling [Self::acceptance_success]. It consumes /// the token because verification handling is done. pub fn start_failure( &mut self, token: VerificationToken, sender: &mut (impl VerificationSender + ?Sized), params: FailParams, ) -> Result<(), VerificationErrorWithToken> { let tm = self .create_pus_verif_fail_tm(1, 4, &token.req_id, None::<&dyn EcssEnumeration>, ¶ms) .map_err(|e| VerificationErrorWithToken(e, token))?; sender .send_verification_tm(tm) .map_err(|e| VerificationErrorWithToken(e, token))?; self.msg_count += 1; Ok(()) } /// Package and send a PUS TM\[1, 5\] packet, see 8.1.2.5 of the PUS standard. /// /// Requires a token previously acquired by calling [Self::start_success]. pub fn step_success( &mut self, token: &VerificationToken, sender: &mut (impl VerificationSender + ?Sized), time_stamp: &[u8], step: impl EcssEnumeration, ) -> Result<(), VerificationError> { let tm = self.create_pus_verif_success_tm(1, 5, &token.req_id, time_stamp, Some(&step))?; sender.send_verification_tm(tm)?; self.msg_count += 1; Ok(()) } /// Package and send a PUS TM\[1, 6\] packet, see 8.1.2.6 of the PUS standard. /// /// Requires a token previously acquired by calling [Self::start_success]. It consumes the /// token because verification handling is done. pub fn step_failure( &mut self, token: VerificationToken, sender: &mut (impl VerificationSender + ?Sized), params: FailParamsWithStep, ) -> Result<(), VerificationErrorWithToken> { let tm = self .create_pus_verif_fail_tm(1, 6, &token.req_id, Some(params.step), ¶ms.bp) .map_err(|e| VerificationErrorWithToken(e, token))?; sender .send_verification_tm(tm) .map_err(|e| VerificationErrorWithToken(e, token))?; self.msg_count += 1; Ok(()) } /// Package and send a PUS TM\[1, 7\] packet, see 8.1.2.7 of the PUS standard. /// /// Requires a token previously acquired by calling [Self::start_success]. It consumes the /// token because verification handling is done. pub fn completion_success( &mut self, token: VerificationToken, sender: &mut (impl VerificationSender + ?Sized), time_stamp: &[u8], ) -> Result<(), VerificationErrorWithToken> { let tm = self .create_pus_verif_success_tm( 1, 7, &token.req_id, time_stamp, None::<&dyn EcssEnumeration>, ) .map_err(|e| VerificationErrorWithToken(e, token))?; sender .send_verification_tm(tm) .map_err(|e| VerificationErrorWithToken(e, token))?; self.msg_count += 1; Ok(()) } /// Package and send a PUS TM\[1, 8\] packet, see 8.1.2.8 of the PUS standard. /// /// Requires a token previously acquired by calling [Self::start_success]. It consumes the /// token because verification handling is done. pub fn completion_failure( &mut self, token: VerificationToken, sender: &mut (impl VerificationSender + ?Sized), params: FailParams, ) -> Result<(), VerificationErrorWithToken> { let tm = self .create_pus_verif_fail_tm(1, 8, &token.req_id, None::<&dyn EcssEnumeration>, ¶ms) .map_err(|e| VerificationErrorWithToken(e, token))?; sender .send_verification_tm(tm) .map_err(|e| VerificationErrorWithToken(e, token))?; self.msg_count += 1; Ok(()) } fn create_pus_verif_success_tm<'a, E>( &'a mut self, service: u8, subservice: u8, req_id: &RequestId, time_stamp: &'a [u8], step: Option<&(impl EcssEnumeration + ?Sized)>, ) -> Result> { let mut source_data_len = size_of::(); if let Some(step) = step { source_data_len += step.byte_width() as usize; } self.source_buffer_large_enough(source_data_len)?; let mut idx = 0; req_id.to_bytes(&mut self.source_data_buf[0..RequestId::SIZE_AS_BYTES]); idx += RequestId::SIZE_AS_BYTES; if let Some(step) = step { // Size check was done beforehand step.to_bytes(&mut self.source_data_buf[idx..idx + step.byte_width() as usize]) .unwrap(); } let mut sp_header = SpHeader::tm(self.apid, 0, 0).unwrap(); Ok(self.create_pus_verif_tm_base( service, subservice, &mut sp_header, time_stamp, source_data_len, )) } fn create_pus_verif_fail_tm<'a, E>( &'a mut self, service: u8, subservice: u8, req_id: &RequestId, step: Option<&(impl EcssEnumeration + ?Sized)>, params: &'a FailParams, ) -> Result> { let mut idx = 0; let mut source_data_len = RequestId::SIZE_AS_BYTES + params.failure_code.byte_width() as usize; if let Some(step) = step { source_data_len += step.byte_width() as usize; } if let Some(failure_data) = params.failure_data { source_data_len += failure_data.len(); } self.source_buffer_large_enough(source_data_len)?; req_id.to_bytes(&mut self.source_data_buf[0..RequestId::SIZE_AS_BYTES]); idx += RequestId::SIZE_AS_BYTES; if let Some(step) = step { // Size check done beforehand step.to_bytes(&mut self.source_data_buf[idx..idx + step.byte_width() as usize]) .unwrap(); idx += step.byte_width() as usize; } params .failure_code .to_bytes( &mut self.source_data_buf[idx..idx + params.failure_code.byte_width() as usize], ) .map_err(|e| VerificationError::::ByteConversionError(e))?; idx += params.failure_code.byte_width() as usize; if let Some(failure_data) = params.failure_data { self.source_data_buf[idx..idx + failure_data.len()].copy_from_slice(failure_data); } let mut sp_header = SpHeader::tm(self.apid, 0, 0).unwrap(); Ok(self.create_pus_verif_tm_base( service, subservice, &mut sp_header, params.time_stamp, source_data_len, )) } fn source_buffer_large_enough(&self, len: usize) -> Result<(), VerificationError> { if len > self.source_data_buf.capacity() { return Err(VerificationError::ByteConversionError( ByteConversionError::ToSliceTooSmall(SizeMissmatch { found: self.source_data_buf.capacity(), expected: len, }), )); } Ok(()) } fn create_pus_verif_tm_base<'a>( &'a mut self, service: u8, subservice: u8, sp_header: &mut SpHeader, time_stamp: &'a [u8], source_data_len: usize, ) -> PusTm { let tm_sec_header = PusTmSecondaryHeader::new( service, subservice, self.msg_count, self.dest_id, time_stamp, ); PusTm::new( sp_header, tm_sec_header, Some(&self.source_data_buf[0..source_data_len]), true, ) } } /// Helper object which caches the sender passed as a trait object. Provides the same /// API as [VerificationReporter] but without the explicit sender arguments. pub struct VerificationReporterWithSender { reporter: VerificationReporter, pub sender: Box>, } impl VerificationReporterWithSender { pub fn new(cfg: VerificationReporterCfg, sender: Box>) -> Self { Self::new_from_reporter(VerificationReporter::new(cfg), sender) } pub fn new_from_reporter( reporter: VerificationReporter, sender: Box>, ) -> Self { Self { reporter, sender } } delegate! { to self.reporter { pub fn add_tc(&mut self, pus_tc: &PusTc) -> VerificationToken; pub fn add_tc_with_req_id(&mut self, req_id: RequestId) -> VerificationToken; } } pub fn acceptance_success( &mut self, token: VerificationToken, time_stamp: &[u8], ) -> Result, VerificationErrorWithToken> { self.reporter .acceptance_success(token, self.sender.as_mut(), time_stamp) } pub fn acceptance_failure( &mut self, token: VerificationToken, params: FailParams, ) -> Result<(), VerificationErrorWithToken> { self.reporter .acceptance_failure(token, self.sender.as_mut(), params) } pub fn start_success( &mut self, token: VerificationToken, time_stamp: &[u8], ) -> Result, VerificationErrorWithToken> { self.reporter .start_success(token, self.sender.as_mut(), time_stamp) } pub fn start_failure( &mut self, token: VerificationToken, params: FailParams, ) -> Result<(), VerificationErrorWithToken> { self.reporter .start_failure(token, self.sender.as_mut(), params) } pub fn step_success( &mut self, token: &VerificationToken, time_stamp: &[u8], step: impl EcssEnumeration, ) -> Result<(), VerificationError> { self.reporter .step_success(token, self.sender.as_mut(), time_stamp, step) } pub fn step_failure( &mut self, token: VerificationToken, params: FailParamsWithStep, ) -> Result<(), VerificationErrorWithToken> { self.reporter .step_failure(token, self.sender.as_mut(), params) } pub fn completion_success( &mut self, token: VerificationToken, time_stamp: &[u8], ) -> Result<(), VerificationErrorWithToken> { self.reporter .completion_success(token, self.sender.as_mut(), time_stamp) } pub fn completion_failure( &mut self, token: VerificationToken, params: FailParams, ) -> Result<(), VerificationErrorWithToken> { self.reporter .completion_failure(token, self.sender.as_mut(), params) } } #[cfg(feature = "std")] mod stdmod { use crate::pool::{LocalPool, StoreAddr, StoreError}; use crate::pus::verification::{VerificationError, VerificationSender}; use delegate::delegate; use spacepackets::tm::PusTm; use std::sync::{mpsc, Arc, RwLock, RwLockWriteGuard}; #[derive(Debug, Eq, PartialEq)] pub enum StdVerifSenderError { PoisonError, StoreError(StoreError), RxDisconnected(StoreAddr), } trait SendBackend: Send { fn send(&self, addr: StoreAddr) -> Result<(), StoreAddr>; } struct StdSenderBase { pub ignore_poison_error: bool, tm_store: Arc>, tx: S, } impl StdSenderBase { pub fn new(tm_store: Arc>, tx: S) -> Self { Self { ignore_poison_error: false, tm_store, tx, } } } impl SendBackend for mpsc::Sender { fn send(&self, addr: StoreAddr) -> Result<(), StoreAddr> { self.send(addr).map_err(|_| addr) } } pub struct StdVerifSender { base: StdSenderBase>, } /// Verification sender with a [mpsc::Sender] backend. /// It implements the [VerificationSender] trait to be used as PUS Verification TM sender. impl StdVerifSender { pub fn new(tm_store: Arc>, tx: mpsc::Sender) -> Self { Self { base: StdSenderBase::new(tm_store, tx), } } } //noinspection RsTraitImplementation impl VerificationSender for StdVerifSender { delegate!( to self.base { fn send_verification_tm(&mut self, tm: PusTm) -> Result<(), VerificationError>; } ); } unsafe impl Sync for StdVerifSender {} unsafe impl Send for StdVerifSender {} impl SendBackend for crossbeam_channel::Sender { fn send(&self, addr: StoreAddr) -> Result<(), StoreAddr> { self.send(addr).map_err(|_| addr) } } /// Verification sender with a [crossbeam_channel::Sender] backend. /// It implements the [VerificationSender] trait to be used as PUS Verification TM sender pub struct CrossbeamVerifSender { base: StdSenderBase>, } impl CrossbeamVerifSender { pub fn new( tm_store: Arc>, tx: crossbeam_channel::Sender, ) -> Self { Self { base: StdSenderBase::new(tm_store, tx), } } } //noinspection RsTraitImplementation impl VerificationSender for CrossbeamVerifSender { delegate!( to self.base { fn send_verification_tm(&mut self, tm: PusTm) -> Result<(), VerificationError>; } ); } unsafe impl Sync for CrossbeamVerifSender {} unsafe impl Send for CrossbeamVerifSender {} impl VerificationSender for StdSenderBase { fn send_verification_tm( &mut self, tm: PusTm, ) -> Result<(), VerificationError> { let operation = |mut mg: RwLockWriteGuard| { let (addr, buf) = mg.free_element(tm.len_packed()).map_err(|e| { VerificationError::SendError(StdVerifSenderError::StoreError(e)) })?; tm.write_to(buf).map_err(VerificationError::PusError)?; drop(mg); self.tx.send(addr).map_err(|_| { VerificationError::SendError(StdVerifSenderError::RxDisconnected(addr)) })?; Ok(()) }; match self.tm_store.write() { Ok(lock) => operation(lock), Err(poison_error) => { if self.ignore_poison_error { operation(poison_error.into_inner()) } else { Err(VerificationError::SendError( StdVerifSenderError::PoisonError, )) } } } } } } #[cfg(test)] mod tests { use crate::pus::verification::{ FailParams, FailParamsWithStep, RequestId, StateNone, VerificationError, VerificationReporter, VerificationReporterCfg, VerificationReporterWithSender, VerificationSender, VerificationToken, }; use alloc::boxed::Box; use alloc::format; use alloc::vec::Vec; use spacepackets::ecss::{EcssEnumU16, EcssEnumU32, EcssEnumU8, EcssEnumeration, PusPacket}; use spacepackets::tc::{PusTc, PusTcSecondaryHeader}; use spacepackets::tm::{PusTm, PusTmSecondaryHeaderT}; use spacepackets::{ByteConversionError, CcsdsPacket, SpHeader}; use std::collections::VecDeque; const TEST_APID: u16 = 0x02; const EMPTY_STAMP: [u8; 7] = [0; 7]; #[derive(Debug, Eq, PartialEq)] struct TmInfo { pub subservice: u8, pub apid: u16, pub msg_counter: u16, pub dest_id: u16, pub time_stamp: [u8; 7], pub req_id: RequestId, pub additional_data: Option>, } #[derive(Default)] struct TestSender { pub service_queue: VecDeque, } impl VerificationSender<()> for TestSender { fn send_verification_tm(&mut self, tm: PusTm) -> Result<(), VerificationError<()>> { assert_eq!(PusPacket::service(&tm), 1); assert!(tm.source_data().is_some()); let mut time_stamp = [0; 7]; time_stamp.clone_from_slice(&tm.time_stamp()[0..7]); let src_data = tm.source_data().unwrap(); assert!(src_data.len() >= 4); let req_id = RequestId::from_bytes(&src_data[0..RequestId::SIZE_AS_BYTES]).unwrap(); let mut vec = None; if src_data.len() > 4 { let mut new_vec = Vec::new(); new_vec.extend_from_slice(&src_data[RequestId::SIZE_AS_BYTES..]); vec = Some(new_vec); } self.service_queue.push_back(TmInfo { subservice: PusPacket::subservice(&tm), apid: tm.apid(), msg_counter: tm.msg_counter(), dest_id: tm.dest_id(), time_stamp, req_id, additional_data: vec, }); Ok(()) } } #[derive(Debug, Copy, Clone, Eq, PartialEq)] struct DummyError {} #[derive(Default)] struct FallibleSender {} impl VerificationSender for FallibleSender { fn send_verification_tm(&mut self, _: PusTm) -> Result<(), VerificationError> { Err(VerificationError::SendError(DummyError {})) } } struct TestBase<'a> { vr: VerificationReporter, #[allow(dead_code)] tc: PusTc<'a>, } impl<'a> TestBase<'a> { fn rep(&mut self) -> &mut VerificationReporter { &mut self.vr } } struct TestBaseWithHelper<'a, E> { helper: VerificationReporterWithSender, #[allow(dead_code)] tc: PusTc<'a>, } impl<'a, E> TestBaseWithHelper<'a, E> { fn rep(&mut self) -> &mut VerificationReporter { &mut self.helper.reporter } } fn base_reporter() -> VerificationReporter { let cfg = VerificationReporterCfg::new(TEST_APID, 1, 2, 8); VerificationReporter::new(cfg) } fn base_tc_init(app_data: Option<&[u8]>) -> (PusTc, RequestId) { let mut sph = SpHeader::tc(TEST_APID, 0x34, 0).unwrap(); let tc_header = PusTcSecondaryHeader::new_simple(17, 1); let pus_tc = PusTc::new(&mut sph, tc_header, app_data, true); let req_id = RequestId::new(&pus_tc); (pus_tc, req_id) } fn base_init(api_sel: bool) -> (TestBase<'static>, VerificationToken) { let mut reporter = base_reporter(); let (tc, req_id) = base_tc_init(None); let init_tok; if api_sel { init_tok = reporter.add_tc_with_req_id(req_id); } else { init_tok = reporter.add_tc(&tc); } (TestBase { vr: reporter, tc }, init_tok) } fn base_with_helper_init() -> ( TestBaseWithHelper<'static, ()>, VerificationToken, ) { let mut reporter = base_reporter(); let (tc, _) = base_tc_init(None); let init_tok = reporter.add_tc(&tc); let sender = TestSender::default(); let helper = VerificationReporterWithSender::new_from_reporter(reporter, Box::new(sender)); (TestBaseWithHelper { helper, tc }, init_tok) } fn acceptance_check(sender: &mut TestSender, req_id: &RequestId) { let cmp_info = TmInfo { time_stamp: EMPTY_STAMP, subservice: 1, dest_id: 0, apid: TEST_APID, msg_counter: 0, additional_data: None, req_id: req_id.clone(), }; assert_eq!(sender.service_queue.len(), 1); let info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); } #[test] fn test_basic_acceptance_success() { let (mut b, tok) = base_init(false); let mut sender = TestSender::default(); b.vr.acceptance_success(tok, &mut sender, &EMPTY_STAMP) .expect("Sending acceptance success failed"); acceptance_check(&mut sender, &tok.req_id); } #[test] fn test_basic_acceptance_success_with_helper() { let (mut b, tok) = base_with_helper_init(); b.helper .acceptance_success(tok, &EMPTY_STAMP) .expect("Sending acceptance success failed"); let sender: &mut TestSender = b.helper.sender.downcast_mut().unwrap(); acceptance_check(sender, &tok.req_id); } #[test] fn test_acceptance_send_fails() { let (mut b, tok) = base_init(false); let mut faulty_sender = FallibleSender::default(); let res = b.vr.acceptance_success(tok, &mut faulty_sender, &EMPTY_STAMP); assert!(res.is_err()); let err = res.unwrap_err(); assert_eq!(err.1, tok); match err.0 { VerificationError::SendError(e) => { assert_eq!(e, DummyError {}) } _ => panic!("{}", format!("Unexpected error {:?}", err.0)), } } fn acceptance_fail_check(sender: &mut TestSender, req_id: RequestId, stamp_buf: [u8; 7]) { let cmp_info = TmInfo { time_stamp: stamp_buf, subservice: 2, dest_id: 5, apid: TEST_APID, msg_counter: 0, additional_data: Some([0, 2].to_vec()), req_id, }; assert_eq!(sender.service_queue.len(), 1); let info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); } #[test] fn test_basic_acceptance_failure() { let (mut b, tok) = base_init(true); b.rep().dest_id = 5; let stamp_buf = [1, 2, 3, 4, 5, 6, 7]; let mut sender = TestSender::default(); let fail_code = EcssEnumU16::new(2); let fail_params = FailParams::new(stamp_buf.as_slice(), &fail_code, None); b.vr.acceptance_failure(tok, &mut sender, fail_params) .expect("Sending acceptance success failed"); acceptance_fail_check(&mut sender, tok.req_id, stamp_buf); } #[test] fn test_basic_acceptance_failure_with_helper() { let (mut b, tok) = base_with_helper_init(); b.rep().dest_id = 5; let stamp_buf = [1, 2, 3, 4, 5, 6, 7]; let fail_code = EcssEnumU16::new(2); let fail_params = FailParams::new(stamp_buf.as_slice(), &fail_code, None); b.helper .acceptance_failure(tok, fail_params) .expect("Sending acceptance success failed"); let sender: &mut TestSender = b.helper.sender.downcast_mut().unwrap(); acceptance_fail_check(sender, tok.req_id, stamp_buf); } #[test] fn test_acceptance_fail_data_too_large() { let (mut b, tok) = base_with_helper_init(); b.rep().dest_id = 5; let stamp_buf = [1, 2, 3, 4, 5, 6, 7]; let fail_code = EcssEnumU16::new(2); let fail_data: [u8; 16] = [0; 16]; // 4 req ID + 1 byte step + 2 byte error code + 8 byte fail data assert_eq!(b.rep().allowed_source_data_len(), 15); let fail_params = FailParams::new(stamp_buf.as_slice(), &fail_code, Some(fail_data.as_slice())); let res = b.helper.acceptance_failure(tok, fail_params); assert!(res.is_err()); let err_with_token = res.unwrap_err(); assert_eq!(err_with_token.1, tok); match err_with_token.0 { VerificationError::ByteConversionError(e) => match e { ByteConversionError::ToSliceTooSmall(missmatch) => { assert_eq!( missmatch.expected, fail_data.len() + RequestId::SIZE_AS_BYTES + fail_code.byte_width() ); assert_eq!(missmatch.found, b.rep().allowed_source_data_len()); } _ => { panic!("{}", format!("Unexpected error {:?}", e)) } }, _ => { panic!("{}", format!("Unexpected error {:?}", err_with_token.0)) } } } #[test] fn test_basic_acceptance_failure_with_fail_data() { let (mut b, tok) = base_init(false); let mut sender = TestSender::default(); let fail_code = EcssEnumU8::new(10); let fail_data = EcssEnumU32::new(12); let mut fail_data_raw = [0; 4]; fail_data.to_bytes(&mut fail_data_raw).unwrap(); let fail_params = FailParams::new(&EMPTY_STAMP, &fail_code, Some(fail_data_raw.as_slice())); b.vr.acceptance_failure(tok, &mut sender, fail_params) .expect("Sending acceptance success failed"); let cmp_info = TmInfo { time_stamp: EMPTY_STAMP, subservice: 2, dest_id: 0, apid: TEST_APID, msg_counter: 0, additional_data: Some([10, 0, 0, 0, 12].to_vec()), req_id: tok.req_id, }; assert_eq!(sender.service_queue.len(), 1); let info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); } fn start_fail_check(sender: &mut TestSender, req_id: RequestId, fail_data_raw: [u8; 4]) { assert_eq!(sender.service_queue.len(), 2); let mut cmp_info = TmInfo { time_stamp: EMPTY_STAMP, subservice: 1, dest_id: 0, apid: TEST_APID, msg_counter: 0, additional_data: None, req_id, }; let mut info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); cmp_info = TmInfo { time_stamp: EMPTY_STAMP, subservice: 4, dest_id: 0, apid: TEST_APID, msg_counter: 1, additional_data: Some([&[22], fail_data_raw.as_slice()].concat().to_vec()), req_id, }; info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); } #[test] fn test_start_failure() { let (mut b, tok) = base_init(false); let mut sender = TestSender::default(); let fail_code = EcssEnumU8::new(22); let fail_data: i32 = -12; let mut fail_data_raw = [0; 4]; fail_data_raw.copy_from_slice(fail_data.to_be_bytes().as_slice()); let fail_params = FailParams::new(&EMPTY_STAMP, &fail_code, Some(fail_data_raw.as_slice())); let accepted_token = b.vr.acceptance_success(tok, &mut sender, &EMPTY_STAMP) .expect("Sending acceptance success failed"); let empty = b.vr.start_failure(accepted_token, &mut sender, fail_params) .expect("Start failure failure"); assert_eq!(empty, ()); start_fail_check(&mut sender, tok.req_id, fail_data_raw); } #[test] fn test_start_failure_with_helper() { let (mut b, tok) = base_with_helper_init(); let fail_code = EcssEnumU8::new(22); let fail_data: i32 = -12; let mut fail_data_raw = [0; 4]; fail_data_raw.copy_from_slice(fail_data.to_be_bytes().as_slice()); let fail_params = FailParams::new(&EMPTY_STAMP, &fail_code, Some(fail_data_raw.as_slice())); let accepted_token = b .helper .acceptance_success(tok, &EMPTY_STAMP) .expect("Sending acceptance success failed"); let empty = b .helper .start_failure(accepted_token, fail_params) .expect("Start failure failure"); assert_eq!(empty, ()); let sender: &mut TestSender = b.helper.sender.downcast_mut().unwrap(); start_fail_check(sender, tok.req_id, fail_data_raw); } fn step_success_check(sender: &mut TestSender, req_id: RequestId) { let mut cmp_info = TmInfo { time_stamp: EMPTY_STAMP, subservice: 1, dest_id: 0, apid: TEST_APID, msg_counter: 0, additional_data: None, req_id, }; let mut info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); cmp_info = TmInfo { time_stamp: [0, 1, 0, 1, 0, 1, 0], subservice: 3, dest_id: 0, apid: TEST_APID, msg_counter: 1, additional_data: None, req_id, }; info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); cmp_info = TmInfo { time_stamp: EMPTY_STAMP, subservice: 5, dest_id: 0, apid: TEST_APID, msg_counter: 2, additional_data: Some([0].to_vec()), req_id, }; info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); cmp_info = TmInfo { time_stamp: EMPTY_STAMP, subservice: 5, dest_id: 0, apid: TEST_APID, msg_counter: 3, additional_data: Some([1].to_vec()), req_id, }; info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); } #[test] fn test_steps_success() { let (mut b, tok) = base_init(false); let mut sender = TestSender::default(); let accepted_token = b .rep() .acceptance_success(tok, &mut sender, &EMPTY_STAMP) .expect("Sending acceptance success failed"); let started_token = b .rep() .start_success(accepted_token, &mut sender, &[0, 1, 0, 1, 0, 1, 0]) .expect("Sending start success failed"); let mut empty = b .rep() .step_success( &started_token, &mut sender, &EMPTY_STAMP, EcssEnumU8::new(0), ) .expect("Sending step 0 success failed"); assert_eq!(empty, ()); empty = b.vr.step_success( &started_token, &mut sender, &EMPTY_STAMP, EcssEnumU8::new(1), ) .expect("Sending step 1 success failed"); assert_eq!(empty, ()); assert_eq!(sender.service_queue.len(), 4); step_success_check(&mut sender, tok.req_id); } #[test] fn test_steps_success_with_helper() { let (mut b, tok) = base_with_helper_init(); let accepted_token = b .helper .acceptance_success(tok, &EMPTY_STAMP) .expect("Sending acceptance success failed"); let started_token = b .helper .start_success(accepted_token, &[0, 1, 0, 1, 0, 1, 0]) .expect("Sending start success failed"); let mut empty = b .helper .step_success(&started_token, &EMPTY_STAMP, EcssEnumU8::new(0)) .expect("Sending step 0 success failed"); assert_eq!(empty, ()); empty = b .helper .step_success(&started_token, &EMPTY_STAMP, EcssEnumU8::new(1)) .expect("Sending step 1 success failed"); assert_eq!(empty, ()); let sender: &mut TestSender = b.helper.sender.downcast_mut().unwrap(); assert_eq!(sender.service_queue.len(), 4); step_success_check(sender, tok.req_id); } fn check_step_failure(sender: &mut TestSender, req_id: RequestId, fail_data_raw: [u8; 4]) { assert_eq!(sender.service_queue.len(), 4); let mut cmp_info = TmInfo { time_stamp: EMPTY_STAMP, subservice: 1, dest_id: 0, apid: TEST_APID, msg_counter: 0, additional_data: None, req_id, }; let mut info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); cmp_info = TmInfo { time_stamp: [0, 1, 0, 1, 0, 1, 0], subservice: 3, dest_id: 0, apid: TEST_APID, msg_counter: 1, additional_data: None, req_id, }; info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); cmp_info = TmInfo { time_stamp: EMPTY_STAMP, subservice: 5, dest_id: 0, apid: TEST_APID, msg_counter: 2, additional_data: Some([0].to_vec()), req_id, }; info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); cmp_info = TmInfo { time_stamp: EMPTY_STAMP, subservice: 6, dest_id: 0, apid: TEST_APID, msg_counter: 3, additional_data: Some( [ [1].as_slice(), &[0, 0, 0x10, 0x20], fail_data_raw.as_slice(), ] .concat() .to_vec(), ), req_id, }; info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); } #[test] fn test_step_failure() { let (mut b, tok) = base_init(false); let mut sender = TestSender::default(); let req_id = tok.req_id; let fail_code = EcssEnumU32::new(0x1020); let fail_data: f32 = -22.3232; let mut fail_data_raw = [0; 4]; fail_data_raw.copy_from_slice(fail_data.to_be_bytes().as_slice()); let fail_step = EcssEnumU8::new(1); let fail_params = FailParamsWithStep::new( &EMPTY_STAMP, &fail_step, &fail_code, Some(fail_data_raw.as_slice()), ); let accepted_token = b.vr.acceptance_success(tok, &mut sender, &EMPTY_STAMP) .expect("Sending acceptance success failed"); let started_token = b.vr.start_success(accepted_token, &mut sender, &[0, 1, 0, 1, 0, 1, 0]) .expect("Sending start success failed"); let mut empty = b.vr.step_success( &started_token, &mut sender, &EMPTY_STAMP, EcssEnumU8::new(0), ) .expect("Sending completion success failed"); assert_eq!(empty, ()); empty = b.vr.step_failure(started_token, &mut sender, fail_params) .expect("Step failure failed"); assert_eq!(empty, ()); check_step_failure(&mut sender, req_id, fail_data_raw); } #[test] fn test_steps_failure_with_helper() { let (mut b, tok) = base_with_helper_init(); let req_id = tok.req_id; let fail_code = EcssEnumU32::new(0x1020); let fail_data: f32 = -22.3232; let mut fail_data_raw = [0; 4]; fail_data_raw.copy_from_slice(fail_data.to_be_bytes().as_slice()); let fail_step = EcssEnumU8::new(1); let fail_params = FailParamsWithStep::new( &EMPTY_STAMP, &fail_step, &fail_code, Some(fail_data_raw.as_slice()), ); let accepted_token = b .helper .acceptance_success(tok, &EMPTY_STAMP) .expect("Sending acceptance success failed"); let started_token = b .helper .start_success(accepted_token, &[0, 1, 0, 1, 0, 1, 0]) .expect("Sending start success failed"); let mut empty = b .helper .step_success(&started_token, &EMPTY_STAMP, EcssEnumU8::new(0)) .expect("Sending completion success failed"); assert_eq!(empty, ()); empty = b .helper .step_failure(started_token, fail_params) .expect("Step failure failed"); assert_eq!(empty, ()); let sender: &mut TestSender = b.helper.sender.downcast_mut().unwrap(); check_step_failure(sender, req_id, fail_data_raw); } fn completion_fail_check(sender: &mut TestSender, req_id: RequestId) { assert_eq!(sender.service_queue.len(), 3); let mut cmp_info = TmInfo { time_stamp: EMPTY_STAMP, subservice: 1, dest_id: 0, apid: TEST_APID, msg_counter: 0, additional_data: None, req_id, }; let mut info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); cmp_info = TmInfo { time_stamp: [0, 1, 0, 1, 0, 1, 0], subservice: 3, dest_id: 0, apid: TEST_APID, msg_counter: 1, additional_data: None, req_id, }; info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); cmp_info = TmInfo { time_stamp: EMPTY_STAMP, subservice: 8, dest_id: 0, apid: TEST_APID, msg_counter: 2, additional_data: Some([0, 0, 0x10, 0x20].to_vec()), req_id, }; info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); } #[test] fn test_completion_failure() { let (mut b, tok) = base_init(false); let mut sender = TestSender::default(); let req_id = tok.req_id; let fail_code = EcssEnumU32::new(0x1020); let fail_params = FailParams::new(&EMPTY_STAMP, &fail_code, None); let accepted_token = b.vr.acceptance_success(tok, &mut sender, &EMPTY_STAMP) .expect("Sending acceptance success failed"); let started_token = b.vr.start_success(accepted_token, &mut sender, &[0, 1, 0, 1, 0, 1, 0]) .expect("Sending start success failed"); let empty = b.vr.completion_failure(started_token, &mut sender, fail_params) .expect("Completion failure"); assert_eq!(empty, ()); completion_fail_check(&mut sender, req_id); } #[test] fn test_completion_failure_with_helper() { let (mut b, tok) = base_with_helper_init(); let req_id = tok.req_id; let fail_code = EcssEnumU32::new(0x1020); let fail_params = FailParams::new(&EMPTY_STAMP, &fail_code, None); let accepted_token = b .helper .acceptance_success(tok, &EMPTY_STAMP) .expect("Sending acceptance success failed"); let started_token = b .helper .start_success(accepted_token, &[0, 1, 0, 1, 0, 1, 0]) .expect("Sending start success failed"); let empty = b .helper .completion_failure(started_token, fail_params) .expect("Completion failure"); assert_eq!(empty, ()); let sender: &mut TestSender = b.helper.sender.downcast_mut().unwrap(); completion_fail_check(sender, req_id); } fn completion_success_check(sender: &mut TestSender, req_id: RequestId) { assert_eq!(sender.service_queue.len(), 3); let cmp_info = TmInfo { time_stamp: EMPTY_STAMP, subservice: 1, dest_id: 0, apid: TEST_APID, msg_counter: 0, additional_data: None, req_id, }; let mut info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); let cmp_info = TmInfo { time_stamp: [0, 1, 0, 1, 0, 1, 0], subservice: 3, dest_id: 0, apid: TEST_APID, msg_counter: 1, additional_data: None, req_id, }; info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); let cmp_info = TmInfo { time_stamp: EMPTY_STAMP, subservice: 7, dest_id: 0, apid: TEST_APID, msg_counter: 2, additional_data: None, req_id, }; info = sender.service_queue.pop_front().unwrap(); assert_eq!(info, cmp_info); } #[test] fn test_complete_success_sequence() { let (mut b, tok) = base_init(false); let mut sender = TestSender::default(); let accepted_token = b.vr.acceptance_success(tok, &mut sender, &EMPTY_STAMP) .expect("Sending acceptance success failed"); let started_token = b.vr.start_success(accepted_token, &mut sender, &[0, 1, 0, 1, 0, 1, 0]) .expect("Sending start success failed"); let empty = b.vr.completion_success(started_token, &mut sender, &EMPTY_STAMP) .expect("Sending completion success failed"); assert_eq!(empty, ()); completion_success_check(&mut sender, tok.req_id); } #[test] fn test_complete_success_sequence_with_helper() { let (mut b, tok) = base_with_helper_init(); let accepted_token = b .helper .acceptance_success(tok, &EMPTY_STAMP) .expect("Sending acceptance success failed"); let started_token = b .helper .start_success(accepted_token, &[0, 1, 0, 1, 0, 1, 0]) .expect("Sending start success failed"); let empty = b .helper .completion_success(started_token, &EMPTY_STAMP) .expect("Sending completion success failed"); assert_eq!(empty, ()); let sender: &mut TestSender = b.helper.sender.downcast_mut().unwrap(); completion_success_check(sender, tok.req_id); } }