#![no_std] #![no_main] extern crate panic_itm; use rtic::app; use heapless::{mpmc::Q8, Vec}; #[allow(unused_imports)] use itm_logger::{debug, info, logger_init, warn}; use satrs::seq_count::SequenceCountProviderCore; use satrs::{ pool::StoreError, pus::{EcssChannel, EcssTmSenderCore, EcssTmtcError, PusTmWrapper}, spacepackets::{ecss::PusPacket, ecss::WritablePusPacket}, }; use stm32f3xx_hal::dma::dma1; use stm32f3xx_hal::gpio::{PushPull, AF7, PA2, PA3}; use stm32f3xx_hal::pac::USART2; use stm32f3xx_hal::serial::{Rx, RxEvent, Serial, SerialDmaRx, SerialDmaTx, Tx, TxEvent}; use systick_monotonic::{fugit::Duration, Systick}; const UART_BAUD: u32 = 115200; const BLINK_FREQ_MS: u64 = 1000; const TX_HANDLER_FREQ_MS: u64 = 20; const MIN_DELAY_BETWEEN_TX_PACKETS_MS: u16 = 5; const MAX_TC_LEN: usize = 128; const MAX_TM_LEN: usize = 128; pub const PUS_APID: u16 = 0x02; type TxType = Tx>>; type RxType = Rx>>; type MsDuration = Duration; type TxDmaTransferType = SerialDmaTx<&'static [u8], dma1::C7, TxType>; type RxDmaTransferType = SerialDmaRx<&'static mut [u8], dma1::C6, RxType>; // This is the predictable maximum overhead of the COBS encoding scheme. // It is simply the maximum packet lenght dividied by 254 rounded up. const COBS_TC_OVERHEAD: usize = (MAX_TC_LEN + 254 - 1) / 254; const COBS_TM_OVERHEAD: usize = (MAX_TM_LEN + 254 - 1) / 254; const TC_BUF_LEN: usize = MAX_TC_LEN + COBS_TC_OVERHEAD; const TM_BUF_LEN: usize = MAX_TC_LEN + COBS_TM_OVERHEAD; // This is a static buffer which should ONLY (!) be used as the TX DMA // transfer buffer. static mut DMA_TX_BUF: [u8; TM_BUF_LEN] = [0; TM_BUF_LEN]; // This is a static buffer which should ONLY (!) be used as the RX DMA // transfer buffer. static mut DMA_RX_BUF: [u8; TC_BUF_LEN] = [0; TC_BUF_LEN]; type TmPacket = Vec; type TcPacket = Vec; static TM_REQUESTS: Q8 = Q8::new(); const TC_POOL_SLOTS: usize = 8; const TM_POOL_SLOTS: usize = 8; use core::cell::RefCell; use core::sync::atomic::{AtomicU16, Ordering}; pub struct SeqCountProviderAtomicRef { atomic: AtomicU16, ordering: Ordering, } impl SeqCountProviderAtomicRef { pub const fn new(ordering: Ordering) -> Self { Self { atomic: AtomicU16::new(0), ordering, } } } impl SequenceCountProviderCore for SeqCountProviderAtomicRef { fn get(&self) -> u16 { self.atomic.load(self.ordering) } fn increment(&self) { self.atomic.fetch_add(1, self.ordering); } fn get_and_increment(&self) -> u16 { self.atomic.fetch_add(1, self.ordering) } } static SEQ_COUNT_PROVIDER: SeqCountProviderAtomicRef = SeqCountProviderAtomicRef::new(Ordering::Relaxed); pub struct TxIdle { tx: TxType, dma_channel: dma1::C7, } pub struct TmSender { vec: Option>>, ctx: &'static str, } impl TmSender { pub fn new(tm_packet: TmPacket, ctx: &'static str) -> Self { Self { vec: Some(RefCell::new(tm_packet)), ctx, } } } impl EcssChannel for TmSender { fn id(&self) -> satrs::ChannelId { 0 } } impl EcssTmSenderCore for TmSender { fn send_tm(&self, tm: PusTmWrapper) -> Result<(), EcssTmtcError> { let vec = self.vec.as_ref(); if vec.is_none() { panic!("send_tm should only be called once"); } let vec_ref = vec.unwrap(); let mut vec = vec_ref.borrow_mut(); match tm { PusTmWrapper::InStore(addr) => return Err(EcssTmtcError::CantSendAddr(addr)), PusTmWrapper::Direct(tm) => { if tm.len_written() > MAX_TM_LEN { return Err(EcssTmtcError::Store(StoreError::DataTooLarge( tm.len_written(), ))); } vec.resize(tm.len_written(), 0).expect("vec resize failed"); tm.write_to_bytes(vec.as_mut_slice())?; info!(target: self.ctx, "Sending TM[{},{}] with size {}", tm.service(), tm.subservice(), tm.len_written()); drop(vec); TM_REQUESTS .enqueue(vec_ref.take()) .map_err(|_| EcssTmtcError::Store(StoreError::StoreFull(0)))?; } } Ok(()) } } pub enum UartTxState { // Wrapped in an option because we need an owned type later. Idle(Option), // Same as above Transmitting(Option), } #[app(device = stm32f3xx_hal::pac, peripherals = true, dispatchers = [TIM20_BRK, TIM20_UP, TIM20_TRG_COM])] mod app { use super::*; use core::slice::Iter; use cortex_m::iprintln; use satrs::pus::verification::FailParams; use satrs::pus::verification::VerificationReporterCore; use satrs::spacepackets::{ ecss::tc::PusTcReader, ecss::tm::PusTmCreator, ecss::tm::PusTmSecondaryHeader, ecss::EcssEnumU16, time::cds::P_FIELD_BASE, CcsdsPacket, SpHeader, }; #[allow(unused_imports)] use stm32f3_discovery::leds::Direction; use stm32f3_discovery::leds::Leds; use stm32f3xx_hal::prelude::*; use stm32f3xx_hal::Toggle; use stm32f3_discovery::switch_hal::OutputSwitch; #[allow(dead_code)] type SerialType = Serial>, PA3>)>; #[shared] struct Shared { tx_transfer: UartTxState, rx_transfer: Option, } #[local] struct Local { leds: Leds, last_dir: Direction, verif_reporter: VerificationReporterCore, curr_dir: Iter<'static, Direction>, } #[monotonic(binds = SysTick, default = true)] type MonoTimer = Systick<1000>; #[init(local = [ tc_pool_mem: [u8; TC_BUF_LEN * TC_POOL_SLOTS] = [0; TC_BUF_LEN * TC_POOL_SLOTS], tm_pool_mem: [u8; MAX_TM_LEN * TM_POOL_SLOTS] = [0; MAX_TM_LEN * TM_POOL_SLOTS] ])] fn init(mut cx: init::Context) -> (Shared, Local, init::Monotonics) { let mut rcc = cx.device.RCC.constrain(); let mono = Systick::new(cx.core.SYST, 8_000_000); logger_init(); let mut flash = cx.device.FLASH.constrain(); let clocks = rcc .cfgr .use_hse(8.MHz()) .sysclk(8.MHz()) .pclk1(8.MHz()) .freeze(&mut flash.acr); // setup ITM output iprintln!( &mut cx.core.ITM.stim[0], "Starting sat-rs demo application for the STM32F3-Discovery" ); let mut gpioe = cx.device.GPIOE.split(&mut rcc.ahb); let verif_reporter = VerificationReporterCore::new(PUS_APID).unwrap(); let leds = Leds::new( gpioe.pe8, gpioe.pe9, gpioe.pe10, gpioe.pe11, gpioe.pe12, gpioe.pe13, gpioe.pe14, gpioe.pe15, &mut gpioe.moder, &mut gpioe.otyper, ); let mut gpioa = cx.device.GPIOA.split(&mut rcc.ahb); // USART2 pins let mut pins = ( // TX pin: PA2 gpioa .pa2 .into_af_push_pull(&mut gpioa.moder, &mut gpioa.otyper, &mut gpioa.afrl), // RX pin: PA3 gpioa .pa3 .into_af_push_pull(&mut gpioa.moder, &mut gpioa.otyper, &mut gpioa.afrl), ); pins.1.internal_pull_up(&mut gpioa.pupdr, true); let mut usart2 = Serial::new( cx.device.USART2, pins, UART_BAUD.Bd(), clocks, &mut rcc.apb1, ); usart2.configure_rx_interrupt(RxEvent::Idle, Toggle::On); // This interrupt is enabled to re-schedule new transfers in the interrupt handler immediately. usart2.configure_tx_interrupt(TxEvent::TransmissionComplete, Toggle::On); let dma1 = cx.device.DMA1.split(&mut rcc.ahb); let (tx_serial, mut rx_serial) = usart2.split(); // This interrupt is immediately triggered, clear it. It will only be reset // by the hardware when data is received on RX (RXNE event) rx_serial.clear_event(RxEvent::Idle); let rx_transfer = rx_serial.read_exact(unsafe { DMA_RX_BUF.as_mut_slice() }, dma1.ch6); info!(target: "init", "Spawning tasks"); blink::spawn().unwrap(); serial_tx_handler::spawn().unwrap(); ( Shared { tx_transfer: UartTxState::Idle(Some(TxIdle { tx: tx_serial, dma_channel: dma1.ch7, })), rx_transfer: Some(rx_transfer), }, Local { leds, last_dir: Direction::North, curr_dir: Direction::iter(), verif_reporter, }, init::Monotonics(mono), ) } #[task(local = [leds, curr_dir, last_dir])] fn blink(cx: blink::Context) { let toggle_leds = |dir: &Direction| { let leds = cx.local.leds; let last_led = leds.for_direction(*cx.local.last_dir); last_led.off().ok(); let led = leds.for_direction(*dir); led.on().ok(); *cx.local.last_dir = *dir; }; match cx.local.curr_dir.next() { Some(dir) => { toggle_leds(dir); } None => { *cx.local.curr_dir = Direction::iter(); toggle_leds(cx.local.curr_dir.next().unwrap()); } } blink::spawn_after(MsDuration::from_ticks(BLINK_FREQ_MS)).unwrap(); } #[task( shared = [tx_transfer], local = [] )] fn serial_tx_handler(mut cx: serial_tx_handler::Context) { if let Some(vec) = TM_REQUESTS.dequeue() { cx.shared.tx_transfer.lock(|tx_state| match tx_state { UartTxState::Idle(tx) => { //debug!(target: "serial_tx_handler", "bytes: {:x?}", &buf[0..len]); // Safety: We only copy the data into the TX DMA buffer in this task. // If the DMA is active, another branch will be taken. let mut_tx_dma_buf = unsafe { &mut DMA_TX_BUF }; // 0 sentinel value as start marker mut_tx_dma_buf[0] = 0; // Should never panic, we accounted for the overhead. // Write into transfer buffer directly, no need for intermediate // encoding buffer. let encoded_len = cobs::encode(&vec[0..vec.len()], &mut mut_tx_dma_buf[1..]); // 0 end marker mut_tx_dma_buf[encoded_len + 1] = 0; //debug!(target: "serial_tx_handler", "Sending {} bytes", encoded_len + 2); //debug!("sent: {:x?}", &mut_tx_dma_buf[0..encoded_len + 2]); let tx_idle = tx.take().unwrap(); // Transfer completion and re-scheduling of new TX transfers will be done // by the IRQ handler. let transfer = tx_idle .tx .write_all(&mut_tx_dma_buf[0..encoded_len + 2], tx_idle.dma_channel); *tx_state = UartTxState::Transmitting(Some(transfer)); // The memory block is automatically returned to the pool when it is dropped. } UartTxState::Transmitting(_) => { // This is a SW configuration error. Only the ISR which // detects transfer completion should be able to spawn a new // task, and that ISR should set the state to IDLE. panic!("invalid internal tx state detected") } }) } else { cx.shared.tx_transfer.lock(|tx_state| { if let UartTxState::Idle(_) = tx_state { serial_tx_handler::spawn_after(MsDuration::from_ticks(TX_HANDLER_FREQ_MS)) .unwrap(); } }); } } #[task( local = [ stamp_buf: [u8; 7] = [0; 7], decode_buf: [u8; MAX_TC_LEN] = [0; MAX_TC_LEN], src_data_buf: [u8; MAX_TM_LEN] = [0; MAX_TM_LEN], verif_reporter ], )] fn serial_rx_handler(cx: serial_rx_handler::Context, received_packet: Vec) { let tgt: &'static str = "serial_rx_handler"; cx.local.stamp_buf[0] = P_FIELD_BASE; info!(target: tgt, "Received packet with {} bytes", received_packet.len()); let decode_buf = cx.local.decode_buf; let packet = received_packet.as_slice(); let mut start_idx = None; for (idx, byte) in packet.iter().enumerate() { if *byte != 0 { start_idx = Some(idx); break; } } if start_idx.is_none() { warn!( target: tgt, "decoding error, can only process cobs encoded frames, data is all 0" ); return; } let start_idx = start_idx.unwrap(); match cobs::decode(&received_packet.as_slice()[start_idx..], decode_buf) { Ok(len) => { info!(target: tgt, "Decoded packet length: {}", len); let pus_tc = PusTcReader::new(decode_buf); let verif_reporter = cx.local.verif_reporter; match pus_tc { Ok((tc, tc_len)) => handle_tc( tc, tc_len, verif_reporter, cx.local.src_data_buf, cx.local.stamp_buf, tgt, ), Err(e) => { warn!(target: tgt, "Error unpacking PUS TC: {}", e); } } } Err(_) => { warn!( target: tgt, "decoding error, can only process cobs encoded frames" ) } } } fn handle_tc( tc: PusTcReader, tc_len: usize, verif_reporter: &mut VerificationReporterCore, src_data_buf: &mut [u8; MAX_TM_LEN], stamp_buf: &[u8; 7], tgt: &'static str, ) { info!( target: tgt, "Found PUS TC [{},{}] with length {}", tc.service(), tc.subservice(), tc_len ); let token = verif_reporter.add_tc(&tc); if tc.apid() != PUS_APID { warn!(target: tgt, "Received tc with unknown APID {}", tc.apid()); let sendable = verif_reporter .acceptance_failure( src_data_buf, token, SEQ_COUNT_PROVIDER.get(), 0, FailParams::new(stamp_buf, &EcssEnumU16::new(0), &[]), ) .unwrap(); // let mem_block = poolmod::TM::alloc().unwrap().init([0u8; MAX_TM_LEN]); let sender = TmSender::new(TmPacket::new(), tgt); if let Err(e) = verif_reporter.send_acceptance_failure(sendable, &sender) { warn!(target: tgt, "Sending acceptance failure failed: {:?}", e.0); }; return; } let sendable = verif_reporter .acceptance_success(src_data_buf, token, SEQ_COUNT_PROVIDER.get(), 0, stamp_buf) .unwrap(); // let mem_block = poolmod::TM::alloc().unwrap().init([0u8; MAX_TM_LEN]); let sender = TmSender::new(TmPacket::new(), tgt); let accepted_token = match verif_reporter.send_acceptance_success(sendable, &sender) { Ok(token) => token, Err(e) => { warn!(target: "serial_rx_handler", "Sending acceptance success failed: {:?}", e.0); return; } }; if tc.service() == 17 { if tc.subservice() == 1 { let sendable = verif_reporter .start_success( src_data_buf, accepted_token, SEQ_COUNT_PROVIDER.get(), 0, stamp_buf, ) .unwrap(); // let mem_block = poolmod::TM::alloc().unwrap().init([0u8; MAX_TM_LEN]); let sender = TmSender::new(TmPacket::new(), tgt); let started_token = match verif_reporter.send_start_success(sendable, &sender) { Ok(token) => token, Err(e) => { warn!(target: tgt, "Sending acceptance success failed: {:?}", e.0); return; } }; info!( target: tgt, "Received PUS ping telecommand, sending ping reply TM[17,2]" ); let mut sp_header = SpHeader::tc_unseg(PUS_APID, SEQ_COUNT_PROVIDER.get(), 0).unwrap(); let sec_header = PusTmSecondaryHeader::new_simple(17, 2, stamp_buf); let ping_reply = PusTmCreator::new(&mut sp_header, sec_header, &[], true); let mut tm_packet = TmPacket::new(); tm_packet.resize(ping_reply.len_written(), 0) .expect("vec resize failed"); ping_reply.write_to_bytes(&mut tm_packet).unwrap(); if TM_REQUESTS.enqueue(tm_packet).is_err() { warn!(target: tgt, "TC queue full"); return; } SEQ_COUNT_PROVIDER.increment(); let sendable = verif_reporter .completion_success( src_data_buf, started_token, SEQ_COUNT_PROVIDER.get(), 0, stamp_buf, ) .unwrap(); // let mem_block = poolmod::TM::alloc().unwrap().init([0u8; MAX_TM_LEN]); let sender = TmSender::new(TmPacket::new(), tgt); if let Err(e) = verif_reporter.send_step_or_completion_success(sendable, &sender) { warn!(target: tgt, "Sending completion success failed: {:?}", e.0); } } else { // TODO: Invalid subservice } } } #[task(binds = DMA1_CH6, shared = [rx_transfer])] fn rx_dma_isr(mut cx: rx_dma_isr::Context) { cx.shared.rx_transfer.lock(|rx_transfer| { let rx_ref = rx_transfer.as_ref().unwrap(); if rx_ref.is_complete() { let uart_rx_owned = rx_transfer.take().unwrap(); let (buf, c, rx) = uart_rx_owned.stop(); // The received data is transferred to another task now to avoid any processing overhead // during the interrupt. There are multiple ways to do this, we use a stack allocaed vector here // to do this. let mut tc_packet = TcPacket::new(); tc_packet.resize(buf.len(), 0).expect("vec resize failed"); tc_packet.copy_from_slice(buf); // Start the next transfer as soon as possible. *rx_transfer = Some(rx.read_exact(buf, c)); // Send the vector to a regular task. serial_rx_handler::spawn(tc_packet).expect("spawning rx handler task failed"); // If this happens, there is a high chance that the maximum packet length was // exceeded. Circular mode is not used here, so data might be missed. warn!( "rx transfer with maximum length {}, might miss data", TC_BUF_LEN ); } }); } #[task(binds = USART2_EXTI26, shared = [rx_transfer, tx_transfer])] fn serial_isr(mut cx: serial_isr::Context) { cx.shared.tx_transfer.lock(|tx_state| match tx_state { UartTxState::Idle(_) => (), UartTxState::Transmitting(transfer) => { let transfer_ref = transfer.as_ref().unwrap(); if transfer_ref.is_complete() { let transfer = transfer.take().unwrap(); let (_, dma_channel, tx) = transfer.stop(); *tx_state = UartTxState::Idle(Some(TxIdle { tx, dma_channel })); serial_tx_handler::spawn_after(MsDuration::from_ticks( MIN_DELAY_BETWEEN_TX_PACKETS_MS.into(), )) .unwrap(); } } }); cx.shared.rx_transfer.lock(|rx_transfer| { let rx_transfer_ref = rx_transfer.as_ref().unwrap(); // Received a partial packet. if rx_transfer_ref.is_event_triggered(RxEvent::Idle) { let rx_transfer_owned = rx_transfer.take().unwrap(); let (buf, ch, mut rx, rx_len) = rx_transfer_owned.stop_and_return_received_bytes(); // The received data is transferred to another task now to avoid any processing overhead // during the interrupt. There are multiple ways to do this, we use a stack // allocated vector to do this. let mut tc_packet = TcPacket::new(); tc_packet .resize(rx_len as usize, 0) .expect("vec resize failed"); tc_packet[0..rx_len as usize].copy_from_slice(&buf[0..rx_len as usize]); rx.clear_event(RxEvent::Idle); // Only send owning pointer to pool memory and the received packet length. serial_rx_handler::spawn(tc_packet).expect("spawning rx handler task failed"); *rx_transfer = Some(rx.read_exact(buf, ch)); } }); } }