//! Module to generate or read CCSDS Unsegmented (CUC) timestamps as specified in //! [CCSDS 301.0-B-4](https://public.ccsds.org/Pubs/301x0b4e1.pdf) section 3.2 . //! //! The core data structure to do this is the [TimeProviderCcsdsEpoch] struct. use super::*; use chrono::Datelike; use core::fmt::Debug; use core::ops::{Add, AddAssign}; use core::time::Duration; const MIN_CUC_LEN: usize = 2; /// Base value for the preamble field for a time field parser to determine the time field type. pub const P_FIELD_BASE: u8 = (CcsdsTimeCodes::CucCcsdsEpoch as u8) << 4; /// Maximum length if the preamble field is not extended. pub const MAX_CUC_LEN_SMALL_PREAMBLE: usize = 8; #[derive(Copy, Clone, PartialEq, Eq, Debug)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub enum FractionalResolution { /// No fractional part, only second resolution Seconds = 0, /// 256 fractional parts, resulting in 1/255 ~= 4 ms fractional resolution FourMs = 1, /// 65535 fractional parts, resulting in 1/65535 ~= 15 us fractional resolution FifteenUs = 2, /// 16777215 fractional parts, resulting in 1/16777215 ~= 60 ns fractional resolution SixtyNs = 3, } impl TryFrom for FractionalResolution { type Error = (); fn try_from(v: u8) -> Result { match v { 0 => Ok(FractionalResolution::Seconds), 1 => Ok(FractionalResolution::FourMs), 2 => Ok(FractionalResolution::FifteenUs), 3 => Ok(FractionalResolution::SixtyNs), _ => Err(()), } } } /// Please note that this function will panic if the fractional value is not smaller than /// the maximum number of fractions allowed for the particular resolution. /// (e.g. passing 270 when the resolution only allows 255 values). #[inline] pub fn convert_fractional_part_to_ns(fractional_part: FractionalPart) -> u64 { let div = fractional_res_to_div(fractional_part.0); assert!(fractional_part.1 < div); 10_u64.pow(9) * fractional_part.1 as u64 / div as u64 } #[inline(always)] pub const fn fractional_res_to_div(res: FractionalResolution) -> u32 { 2_u32.pow(8 * res as u32) - 1 } /// Calculate the fractional part for a given resolution and subsecond nanoseconds. /// Please note that this function will panic if the passed nanoseconds exceeds 1 second /// as a nanosecond (10 to the power of 9). Furthermore, it will return [None] if the /// given resolution is [FractionalResolution::Seconds]. pub fn fractional_part_from_subsec_ns( res: FractionalResolution, ns: u64, ) -> Option { if res == FractionalResolution::Seconds { return None; } let sec_as_ns = 10_u64.pow(9); if ns > sec_as_ns { panic!("passed nanosecond value larger than 1 second"); } let resolution = fractional_res_to_div(res) as u64; // Use integer division because this can reduce code size of really small systems. // First determine the nanoseconds for the smallest segment given the resolution. // Then divide by that to find out the fractional part. For the calculation of the smallest // fraction, we perform a ceiling division. This is because if we would use the default // flooring division, we would divide by a smaller value, thereby allowing the calculation to // invalid fractional parts which are too large. For the division of the nanoseconds by the // smallest fraction, a flooring division is correct. // The multiplication with 100000 is necessary to avoid precision loss during integer division. // TODO: Floating point division might actually be faster option, but requires additional // code on small embedded systems.. let fractional_part = ns * 100000 / ((sec_as_ns * 100000 + resolution) / resolution); // Floating point division. //let fractional_part = (ns as f64 / ((sec_as_ns as f64) / resolution as f64)).floor() as u32; Some(FractionalPart(res, fractional_part as u32)) } #[derive(Copy, Clone, PartialEq, Eq, Debug)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub enum CucError { InvalidCounterWidth(u8), InvalidFractionResolution(FractionalResolution), /// Invalid counter supplied. InvalidCounter(u8, u64), InvalidFractions(FractionalResolution, u64), } impl Display for CucError { fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result { match self { CucError::InvalidCounterWidth(w) => { write!(f, "invalid cuc counter byte width {w}") } CucError::InvalidFractionResolution(w) => { write!(f, "invalid cuc fractional part byte width {w:?}") } CucError::InvalidCounter(w, c) => { write!(f, "invalid cuc counter {c} for width {w}") } CucError::InvalidFractions(w, c) => { write!(f, "invalid cuc fractional part {c} for width {w:?}") } } } } #[cfg(feature = "std")] impl Error for CucError {} #[derive(Copy, Clone, PartialEq, Eq, Debug)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct WidthCounterPair(u8, u32); #[derive(Copy, Clone, PartialEq, Eq, Debug)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct FractionalPart(FractionalResolution, u32); /// This object is the abstraction for the CCSDS Unsegmented Time Code (CUC) using the CCSDS epoch /// and a small preamble field. /// /// It has the capability to generate and read timestamps as specified in the CCSDS 301.0-B-4 /// section 3.2 . The preamble field only has one byte, which allows a time code representation /// through the year 2094. The time is represented as a simple binary counter starting from the /// fixed CCSDS epoch (1958-01-01T00:00:00+00:00). It is possible to provide subsecond accuracy /// using the fractional field with various available [resolutions][FractionalResolution]. /// /// Having a preamble field of one byte limits the width of the counter /// type (generally seconds) to 4 bytes and the width of the fractions type to 3 bytes. This limits /// the maximum time stamp size to [MAX_CUC_LEN_SMALL_PREAMBLE] (8 bytes). /// /// # Example /// /// ``` /// use spacepackets::time::cuc::{FractionalResolution, TimeProviderCcsdsEpoch}; /// use spacepackets::time::{TimeWriter, CcsdsTimeCodes, TimeReader, CcsdsTimeProvider}; /// /// // Highest fractional resolution /// let timestamp_now = TimeProviderCcsdsEpoch::from_now(FractionalResolution::SixtyNs).expect("creating cuc stamp failed"); /// let mut raw_stamp = [0; 16]; /// { /// let written = timestamp_now.write_to_bytes(&mut raw_stamp).expect("writing timestamp failed"); /// assert_eq!((raw_stamp[0] >> 4) & 0b111, CcsdsTimeCodes::CucCcsdsEpoch as u8); /// // 1 byte preamble + 4 byte counter + 3 byte fractional part /// assert_eq!(written, 8); /// } /// { /// let read_result = TimeProviderCcsdsEpoch::from_bytes(&raw_stamp); /// assert!(read_result.is_ok()); /// let stamp_deserialized = read_result.unwrap(); /// assert_eq!(stamp_deserialized, timestamp_now); /// } /// ``` #[derive(Copy, Clone, PartialEq, Eq, Debug)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct TimeProviderCcsdsEpoch { pfield: u8, counter: WidthCounterPair, fractions: Option, } #[inline] pub fn pfield_len(pfield: u8) -> usize { if ((pfield >> 7) & 0b1) == 1 { return 2; } 1 } impl TimeProviderCcsdsEpoch { /// Create a time provider with a four byte counter and no fractional part. pub fn new(counter: u32) -> Self { // These values are definitely valid, so it is okay to unwrap here. Self::new_generic(WidthCounterPair(4, counter), None).unwrap() } /// Like [TimeProviderCcsdsEpoch::new] but allow to supply a fractional part as well. pub fn new_with_fractions(counter: u32, fractions: FractionalPart) -> Result { Self::new_generic(WidthCounterPair(4, counter), Some(fractions)) } /// Fractions with a resolution of ~ 4 ms pub fn new_with_coarse_fractions(counter: u32, subsec_fractions: u8) -> Self { // These values are definitely valid, so it is okay to unwrap here. Self::new_generic( WidthCounterPair(4, counter), Some(FractionalPart( FractionalResolution::FourMs, subsec_fractions as u32, )), ) .unwrap() } /// Fractions with a resolution of ~ 16 us pub fn new_with_medium_fractions(counter: u32, subsec_fractions: u16) -> Self { // These values are definitely valid, so it is okay to unwrap here. Self::new_generic( WidthCounterPair(4, counter), Some(FractionalPart( FractionalResolution::FifteenUs, subsec_fractions as u32, )), ) .unwrap() } /// Fractions with a resolution of ~ 60 ns. The fractional part value is limited by the /// 24 bits of the fractional field, so this function will fail with /// [CucError::InvalidFractions] if the fractional value exceeds the value. pub fn new_with_fine_fractions(counter: u32, subsec_fractions: u32) -> Result { Self::new_generic( WidthCounterPair(4, counter), Some(FractionalPart( FractionalResolution::SixtyNs, subsec_fractions, )), ) } /// This function will return the current time as a CUC timestamp. /// The counter width will always be set to 4 bytes because the normal CCSDS epoch will overflow /// when using less than that. #[cfg(feature = "std")] #[cfg_attr(doc_cfg, doc(cfg(feature = "std")))] pub fn from_now(fraction_resolution: FractionalResolution) -> Result { let now = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?; let ccsds_epoch = unix_epoch_to_ccsds_epoch(now.as_secs() as i64); if fraction_resolution == FractionalResolution::Seconds { return Ok(Self::new(ccsds_epoch as u32)); } let fractions = fractional_part_from_subsec_ns(fraction_resolution, now.subsec_nanos() as u64); Self::new_with_fractions(ccsds_epoch as u32, fractions.unwrap()) .map_err(|e| StdTimestampError::TimestampError(e.into())) } /// Updates the current time stamp from the current time. The fractional field width remains /// the same and will be updated accordingly. #[cfg(feature = "std")] #[cfg_attr(doc_cfg, doc(cfg(feature = "std")))] pub fn update_from_now(&mut self) -> Result<(), StdTimestampError> { let now = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?; self.counter.1 = unix_epoch_to_ccsds_epoch(now.as_secs() as i64) as u32; if self.fractions.is_some() { self.fractions = fractional_part_from_subsec_ns( self.fractions.unwrap().0, now.subsec_nanos() as u64, ); } Ok(()) } pub fn from_date_time( dt: &DateTime, res: FractionalResolution, ) -> Result { // Year before CCSDS epoch is invalid. if dt.year() < 1958 { return Err(TimestampError::DateBeforeCcsdsEpoch(*dt)); } Self::new_generic( WidthCounterPair(4, dt.timestamp() as u32), fractional_part_from_subsec_ns(res, dt.timestamp_subsec_nanos() as u64), ) .map_err(|e| e.into()) } pub fn from_unix_stamp( unix_stamp: &UnixTimestamp, res: FractionalResolution, ) -> Result { let ccsds_epoch = unix_epoch_to_ccsds_epoch(unix_stamp.unix_seconds); // Negative CCSDS epoch is invalid. if ccsds_epoch < 0 { return Err(TimestampError::DateBeforeCcsdsEpoch( unix_stamp.as_date_time().unwrap(), )); } if ccsds_epoch > u32::MAX as i64 { return Err(CucError::InvalidCounter(4, ccsds_epoch as u64).into()); } let mut fractions = None; if let Some(subsec_millis) = unix_stamp.subsecond_millis { fractions = fractional_part_from_subsec_ns(res, subsec_millis as u64 * 10_u64.pow(6)); } Self::new_generic(WidthCounterPair(4, ccsds_epoch as u32), fractions).map_err(|e| e.into()) } pub fn new_u16_counter(counter: u16) -> Self { // These values are definitely valid, so it is okay to unwrap here. Self::new_generic(WidthCounterPair(2, counter as u32), None).unwrap() } pub fn width_counter_pair(&self) -> WidthCounterPair { self.counter } pub fn width_fractions_pair(&self) -> Option { self.fractions } pub fn set_fractions(&mut self, fractions: FractionalPart) -> Result<(), CucError> { Self::verify_fractions_width(fractions.0)?; Self::verify_fractions_value(fractions)?; self.fractions = Some(fractions); self.update_p_field_fractions(); Ok(()) } /// Set a fractional resolution. Please note that this function will reset the fractional value /// to 0 if the resolution changes. pub fn set_fractional_resolution(&mut self, res: FractionalResolution) { if res == FractionalResolution::Seconds { self.fractions = None; } let mut update_fractions = true; if let Some(existing_fractions) = self.fractions { if existing_fractions.0 == res { update_fractions = false; } }; if update_fractions { self.fractions = Some(FractionalPart(res, 0)); } } pub fn new_generic( counter: WidthCounterPair, fractions: Option, ) -> Result { Self::verify_counter_width(counter.0)?; if counter.1 > (2u64.pow(counter.0 as u32 * 8) - 1) as u32 { return Err(CucError::InvalidCounter(counter.0, counter.1 as u64)); } if let Some(fractions) = fractions { Self::verify_fractions_width(fractions.0)?; Self::verify_fractions_value(fractions)?; } Ok(Self { pfield: Self::build_p_field(counter.0, fractions.map(|v| v.0)), counter, fractions, }) } fn build_p_field(counter_width: u8, fractions_width: Option) -> u8 { let mut pfield = P_FIELD_BASE; if !(1..=4).contains(&counter_width) { // Okay to panic here, this function is private and all input values should // have been sanitized panic!("invalid counter width {} for cuc timestamp", counter_width); } pfield |= (counter_width - 1) << 2; if let Some(fractions_width) = fractions_width { if !(1..=3).contains(&(fractions_width as u8)) { // Okay to panic here, this function is private and all input values should // have been sanitized panic!( "invalid fractions width {:?} for cuc timestamp", fractions_width ); } pfield |= fractions_width as u8; } pfield } fn update_p_field_fractions(&mut self) { self.pfield &= !(0b11); if let Some(fractions) = self.fractions { self.pfield |= fractions.0 as u8; } } #[inline] pub fn len_cntr_from_pfield(pfield: u8) -> u8 { ((pfield >> 2) & 0b11) + 1 } #[inline] pub fn len_fractions_from_pfield(pfield: u8) -> u8 { pfield & 0b11 } #[inline] fn unix_seconds(&self) -> i64 { ccsds_epoch_to_unix_epoch(self.counter.1 as i64) } /// This returns the length of the individual components of the CUC timestamp in addition /// to the total size. /// /// This function will return a tuple where the first value is the byte width of the /// counter, the second value is the byte width of the fractional part, and the third /// components is the total size. pub fn len_components_and_total_from_pfield(pfield: u8) -> (u8, u8, usize) { let base_len: usize = 1; let cntr_len = Self::len_cntr_from_pfield(pfield); let fractions_len = Self::len_fractions_from_pfield(pfield); ( cntr_len, fractions_len, base_len + cntr_len as usize + fractions_len as usize, ) } pub fn len_packed_from_pfield(pfield: u8) -> usize { let mut base_len: usize = 1; base_len += Self::len_cntr_from_pfield(pfield) as usize; base_len += Self::len_fractions_from_pfield(pfield) as usize; base_len } /// Verifies the raw width parameter. fn verify_counter_width(width: u8) -> Result<(), CucError> { if width == 0 || width > 4 { return Err(CucError::InvalidCounterWidth(width)); } Ok(()) } fn verify_fractions_width(width: FractionalResolution) -> Result<(), CucError> { if width as u8 > 3 { return Err(CucError::InvalidFractionResolution(width)); } Ok(()) } fn verify_fractions_value(val: FractionalPart) -> Result<(), CucError> { if val.1 > 2u32.pow((val.0 as u32) * 8) - 1 { return Err(CucError::InvalidFractions(val.0, val.1 as u64)); } Ok(()) } } impl TimeReader for TimeProviderCcsdsEpoch { fn from_bytes(buf: &[u8]) -> Result where Self: Sized, { if buf.len() < MIN_CUC_LEN { return Err(TimestampError::ByteConversionError( ByteConversionError::FromSliceTooSmall(SizeMissmatch { expected: MIN_CUC_LEN, found: buf.len(), }), )); } match ccsds_time_code_from_p_field(buf[0]) { Ok(code) => { if code != CcsdsTimeCodes::CucCcsdsEpoch { return Err(TimestampError::InvalidTimeCode( CcsdsTimeCodes::CucCcsdsEpoch, code as u8, )); } } Err(raw) => { return Err(TimestampError::InvalidTimeCode( CcsdsTimeCodes::CucCcsdsEpoch, raw, )) } } let (cntr_len, fractions_len, total_len) = Self::len_components_and_total_from_pfield(buf[0]); if buf.len() < total_len { return Err(TimestampError::ByteConversionError( ByteConversionError::FromSliceTooSmall(SizeMissmatch { expected: total_len, found: buf.len(), }), )); } let mut current_idx = 1; let counter = match cntr_len { 1 => buf[current_idx] as u32, 2 => u16::from_be_bytes(buf[current_idx..current_idx + 2].try_into().unwrap()) as u32, 3 => { let mut tmp_buf: [u8; 4] = [0; 4]; tmp_buf[1..4].copy_from_slice(&buf[current_idx..current_idx + 3]); u32::from_be_bytes(tmp_buf) } 4 => u32::from_be_bytes(buf[current_idx..current_idx + 4].try_into().unwrap()), _ => panic!("unreachable match arm"), }; current_idx += cntr_len as usize; let mut fractions = None; if fractions_len > 0 { match fractions_len { 1 => { fractions = Some(FractionalPart( fractions_len.try_into().unwrap(), buf[current_idx] as u32, )) } 2 => { fractions = Some(FractionalPart( fractions_len.try_into().unwrap(), u16::from_be_bytes(buf[current_idx..current_idx + 2].try_into().unwrap()) as u32, )) } 3 => { let mut tmp_buf: [u8; 4] = [0; 4]; tmp_buf[1..4].copy_from_slice(&buf[current_idx..current_idx + 3]); fractions = Some(FractionalPart( fractions_len.try_into().unwrap(), u32::from_be_bytes(tmp_buf), )) } _ => panic!("unreachable match arm"), } } let provider = Self::new_generic(WidthCounterPair(cntr_len, counter), fractions)?; Ok(provider) } } impl TimeWriter for TimeProviderCcsdsEpoch { fn write_to_bytes(&self, bytes: &mut [u8]) -> Result { // Cross check the sizes of the counters against byte widths in the ctor if bytes.len() < self.len_as_bytes() { return Err(TimestampError::ByteConversionError( ByteConversionError::ToSliceTooSmall(SizeMissmatch { found: bytes.len(), expected: self.len_as_bytes(), }), )); } bytes[0] = self.pfield; let mut current_idx: usize = 1; match self.counter.0 { 1 => { bytes[current_idx] = self.counter.1 as u8; } 2 => { bytes[current_idx..current_idx + 2] .copy_from_slice(&(self.counter.1 as u16).to_be_bytes()); } 3 => { bytes[current_idx..current_idx + 3] .copy_from_slice(&self.counter.1.to_be_bytes()[1..4]); } 4 => { bytes[current_idx..current_idx + 4].copy_from_slice(&self.counter.1.to_be_bytes()); } // Should never happen _ => panic!("invalid counter width value"), } current_idx += self.counter.0 as usize; if let Some(fractions) = self.fractions { match fractions.0 { FractionalResolution::FourMs => bytes[current_idx] = fractions.1 as u8, FractionalResolution::FifteenUs => bytes[current_idx..current_idx + 2] .copy_from_slice(&(fractions.1 as u16).to_be_bytes()), FractionalResolution::SixtyNs => bytes[current_idx..current_idx + 3] .copy_from_slice(&fractions.1.to_be_bytes()[1..4]), // Should also never happen _ => panic!("invalid fractions value"), } current_idx += fractions.0 as usize; } Ok(current_idx) } } impl CcsdsTimeProvider for TimeProviderCcsdsEpoch { fn len_as_bytes(&self) -> usize { Self::len_packed_from_pfield(self.pfield) } fn p_field(&self) -> (usize, [u8; 2]) { (1, [self.pfield, 0]) } fn ccdsd_time_code(&self) -> CcsdsTimeCodes { CcsdsTimeCodes::CucCcsdsEpoch } fn unix_seconds(&self) -> i64 { self.unix_seconds() } fn subsecond_millis(&self) -> Option { if let Some(fractions) = self.fractions { if fractions.0 == FractionalResolution::Seconds { return None; } // Rounding down here is the correct approach. return Some((convert_fractional_part_to_ns(fractions) / 10_u32.pow(6) as u64) as u16); } None } fn date_time(&self) -> Option> { let unix_seconds = self.unix_seconds(); let ns = if let Some(fractional_part) = self.fractions { convert_fractional_part_to_ns(fractional_part) } else { 0 }; if let LocalResult::Single(res) = Utc.timestamp_opt(unix_seconds, ns as u32) { return Some(res); } None } } fn get_provider_values_after_duration_addition( provider: &TimeProviderCcsdsEpoch, duration: Duration, ) -> (u32, Option) { let mut new_counter = provider.counter.1; let subsec_nanos = duration.subsec_nanos(); let mut increment_counter = |amount: u32| { let mut sum: u64 = 0; let mut counter_inc_handler = |max_val: u64| { sum = new_counter as u64 + amount as u64; if sum >= max_val { new_counter = (sum % max_val) as u32; return; } new_counter = sum as u32; }; match provider.counter.0 { 1 => counter_inc_handler(u8::MAX as u64), 2 => counter_inc_handler(u16::MAX as u64), 3 => counter_inc_handler((2_u32.pow(24) - 1) as u64), 4 => counter_inc_handler(u32::MAX as u64), _ => { // Should never happen panic!("invalid counter width") } } }; let fractional_part = if let Some(fractional_part) = &provider.fractions { let fractional_increment = fractional_part_from_subsec_ns(fractional_part.0, subsec_nanos as u64).unwrap(); let mut increment_fractions = |resolution| { let mut new_fractions = fractional_part.1 + fractional_increment.1; let max_fractions = fractional_res_to_div(resolution); if new_fractions > max_fractions { increment_counter(1); new_fractions -= max_fractions; } Some(FractionalPart(resolution, new_fractions)) }; match fractional_increment.0 { FractionalResolution::Seconds => None, _ => increment_fractions(fractional_increment.0), } } else { None }; increment_counter(duration.as_secs() as u32); (new_counter, fractional_part) } impl AddAssign for TimeProviderCcsdsEpoch { fn add_assign(&mut self, duration: Duration) { let (new_counter, new_fractional_part) = get_provider_values_after_duration_addition(self, duration); self.counter.1 = new_counter; if self.fractions.is_some() { self.fractions = new_fractional_part; } } } impl Add for TimeProviderCcsdsEpoch { type Output = Self; fn add(self, duration: Duration) -> Self::Output { let (new_counter, new_fractional_part) = get_provider_values_after_duration_addition(&self, duration); if let Some(fractional_part) = new_fractional_part { // The generated fractional part should always be valid, so its okay to unwrap here. return Self::new_with_fractions(new_counter, fractional_part).unwrap(); } Self::new(new_counter) } } impl Add for &TimeProviderCcsdsEpoch { type Output = TimeProviderCcsdsEpoch; fn add(self, duration: Duration) -> Self::Output { let (new_counter, new_fractional_part) = get_provider_values_after_duration_addition(self, duration); if let Some(fractional_part) = new_fractional_part { // The generated fractional part should always be valid, so its okay to unwrap here. return Self::Output::new_with_fractions(new_counter, fractional_part).unwrap(); } Self::Output::new(new_counter) } } #[cfg(test)] mod tests { use super::*; use chrono::{Datelike, Timelike}; #[allow(unused_imports)] use std::println; #[test] fn test_basic_zero_epoch() { let zero_cuc = TimeProviderCcsdsEpoch::new(0); assert_eq!(zero_cuc.len_as_bytes(), 5); assert_eq!(zero_cuc.ccdsd_time_code(), CcsdsTimeCodes::CucCcsdsEpoch); let counter = zero_cuc.width_counter_pair(); assert_eq!(counter.0, 4); assert_eq!(counter.1, 0); let fractions = zero_cuc.width_fractions_pair(); assert!(fractions.is_none()); let dt = zero_cuc.date_time(); assert!(dt.is_some()); let dt = dt.unwrap(); assert_eq!(dt.year(), 1958); assert_eq!(dt.month(), 1); assert_eq!(dt.day(), 1); assert_eq!(dt.hour(), 0); assert_eq!(dt.minute(), 0); assert_eq!(dt.second(), 0); } #[test] fn test_write_no_fractions() { let mut buf: [u8; 16] = [0; 16]; let zero_cuc = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(4, 0x20102030), None); assert!(zero_cuc.is_ok()); let zero_cuc = zero_cuc.unwrap(); let res = zero_cuc.write_to_bytes(&mut buf); assert!(res.is_ok()); assert!(zero_cuc.subsecond_millis().is_none()); assert_eq!(zero_cuc.len_as_bytes(), 5); assert_eq!(pfield_len(buf[0]), 1); let written = res.unwrap(); assert_eq!(written, 5); assert_eq!((buf[0] >> 7) & 0b1, 0); let time_code = ccsds_time_code_from_p_field(buf[0]); assert!(time_code.is_ok()); assert_eq!(time_code.unwrap(), CcsdsTimeCodes::CucCcsdsEpoch); assert_eq!((buf[0] >> 2) & 0b11, 0b11); assert_eq!(buf[0] & 0b11, 0); let raw_counter = u32::from_be_bytes(buf[1..5].try_into().unwrap()); assert_eq!(raw_counter, 0x20102030); assert_eq!(buf[5], 0); } #[test] fn test_datetime_now() { let now = Utc::now(); let cuc_now = TimeProviderCcsdsEpoch::from_now(FractionalResolution::SixtyNs); assert!(cuc_now.is_ok()); let cuc_now = cuc_now.unwrap(); let dt_opt = cuc_now.date_time(); assert!(dt_opt.is_some()); let dt = dt_opt.unwrap(); let diff = dt - now; assert!(diff.num_milliseconds() < 1000); println!("datetime from cuc: {}", dt); println!("datetime now: {}", now); } #[test] fn test_read_no_fractions() { let mut buf: [u8; 16] = [0; 16]; let zero_cuc = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(4, 0x20102030), None).unwrap(); zero_cuc.write_to_bytes(&mut buf).unwrap(); let cuc_read_back = TimeProviderCcsdsEpoch::from_bytes(&buf).expect("reading cuc timestamp failed"); assert_eq!(cuc_read_back, zero_cuc); assert_eq!(cuc_read_back.width_counter_pair().1, 0x20102030); assert_eq!(cuc_read_back.width_fractions_pair(), None); } #[test] fn invalid_read_len() { let mut buf: [u8; 16] = [0; 16]; for i in 0..2 { let res = TimeProviderCcsdsEpoch::from_bytes(&buf[0..i]); assert!(res.is_err()); let err = res.unwrap_err(); if let TimestampError::ByteConversionError(ByteConversionError::FromSliceTooSmall(e)) = err { assert_eq!(e.found, i); assert_eq!(e.expected, 2); } } let large_stamp = TimeProviderCcsdsEpoch::new_with_fine_fractions(22, 300).unwrap(); large_stamp.write_to_bytes(&mut buf).unwrap(); for i in 2..large_stamp.len_as_bytes() - 1 { let res = TimeProviderCcsdsEpoch::from_bytes(&buf[0..i]); assert!(res.is_err()); let err = res.unwrap_err(); if let TimestampError::ByteConversionError(ByteConversionError::FromSliceTooSmall(e)) = err { assert_eq!(e.found, i); assert_eq!(e.expected, large_stamp.len_as_bytes()); } } } #[test] fn write_and_read_tiny_stamp() { let mut buf = [0; 2]; let cuc = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(1, 200), None); assert!(cuc.is_ok()); let cuc = cuc.unwrap(); assert_eq!(cuc.len_as_bytes(), 2); let res = cuc.write_to_bytes(&mut buf); assert!(res.is_ok()); let written = res.unwrap(); assert_eq!(written, 2); assert_eq!(buf[1], 200); let cuc_read_back = TimeProviderCcsdsEpoch::from_bytes(&buf); assert!(cuc_read_back.is_ok()); let cuc_read_back = cuc_read_back.unwrap(); assert_eq!(cuc_read_back, cuc); } #[test] fn write_slightly_larger_stamp() { let mut buf = [0; 4]; let cuc = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(2, 40000), None); assert!(cuc.is_ok()); let cuc = cuc.unwrap(); assert_eq!(cuc.len_as_bytes(), 3); let res = cuc.write_to_bytes(&mut buf); assert!(res.is_ok()); let written = res.unwrap(); assert_eq!(written, 3); assert_eq!(u16::from_be_bytes(buf[1..3].try_into().unwrap()), 40000); let cuc_read_back = TimeProviderCcsdsEpoch::from_bytes(&buf); assert!(cuc_read_back.is_ok()); let cuc_read_back = cuc_read_back.unwrap(); assert_eq!(cuc_read_back, cuc); } #[test] fn invalid_buf_len_for_read() {} #[test] fn write_read_three_byte_cntr_stamp() { let mut buf = [0; 4]; let cuc = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(3, 2_u32.pow(24) - 2), None); assert!(cuc.is_ok()); let cuc = cuc.unwrap(); assert_eq!(cuc.len_as_bytes(), 4); let res = cuc.write_to_bytes(&mut buf); assert!(res.is_ok()); let written = res.unwrap(); assert_eq!(written, 4); let mut temp_buf = [0; 4]; temp_buf[1..4].copy_from_slice(&buf[1..4]); assert_eq!(u32::from_be_bytes(temp_buf), 2_u32.pow(24) - 2); let cuc_read_back = TimeProviderCcsdsEpoch::from_bytes(&buf); assert!(cuc_read_back.is_ok()); let cuc_read_back = cuc_read_back.unwrap(); assert_eq!(cuc_read_back, cuc); } #[test] fn test_write_invalid_buf() { let mut buf: [u8; 16] = [0; 16]; let res = TimeProviderCcsdsEpoch::new_with_fine_fractions(0, 0); let cuc = res.unwrap(); for i in 0..cuc.len_as_bytes() - 1 { let err = cuc.write_to_bytes(&mut buf[0..i]); assert!(err.is_err()); let err = err.unwrap_err(); if let TimestampError::ByteConversionError(ByteConversionError::ToSliceTooSmall(e)) = err { assert_eq!(e.expected, cuc.len_as_bytes()); assert_eq!(e.found, i); } else { panic!("unexpected error: {}", err); } } } #[test] fn invalid_ccsds_stamp_type() { let mut buf: [u8; 16] = [0; 16]; buf[0] |= (CcsdsTimeCodes::CucAgencyEpoch as u8) << 4; let res = TimeProviderCcsdsEpoch::from_bytes(&buf); assert!(res.is_err()); let err = res.unwrap_err(); if let TimestampError::InvalidTimeCode(code, raw) = err { assert_eq!(code, CcsdsTimeCodes::CucCcsdsEpoch); assert_eq!(raw, CcsdsTimeCodes::CucAgencyEpoch as u8); } else { panic!("unexpected error: {}", err); } } #[test] fn test_write_with_coarse_fractions() { let mut buf: [u8; 16] = [0; 16]; let cuc = TimeProviderCcsdsEpoch::new_with_coarse_fractions(0x30201060, 120); assert!(cuc.fractions.is_some()); assert_eq!(cuc.fractions.unwrap().1, 120); assert_eq!(cuc.fractions.unwrap().0, FractionalResolution::FourMs); let res = cuc.write_to_bytes(&mut buf); assert!(res.is_ok()); let written = res.unwrap(); assert_eq!(written, 6); assert_eq!(buf[5], 120); assert_eq!(buf[6], 0); assert_eq!( u32::from_be_bytes(buf[1..5].try_into().unwrap()), 0x30201060 ); } #[test] fn test_read_with_coarse_fractions() { let mut buf: [u8; 16] = [0; 16]; let cuc = TimeProviderCcsdsEpoch::new_with_coarse_fractions(0x30201060, 120); let res = cuc.write_to_bytes(&mut buf); assert!(res.is_ok()); let res = TimeProviderCcsdsEpoch::from_bytes(&buf); assert!(res.is_ok()); let read_back = res.unwrap(); assert_eq!(read_back, cuc); } #[test] fn test_write_with_medium_fractions() { let mut buf: [u8; 16] = [0; 16]; let cuc = TimeProviderCcsdsEpoch::new_with_medium_fractions(0x30303030, 30000); let res = cuc.write_to_bytes(&mut buf); assert!(res.is_ok()); let written = res.unwrap(); assert_eq!(written, 7); assert_eq!(u16::from_be_bytes(buf[5..7].try_into().unwrap()), 30000); assert_eq!(buf[7], 0); } #[test] fn test_read_with_medium_fractions() { let mut buf: [u8; 16] = [0; 16]; let cuc = TimeProviderCcsdsEpoch::new_with_medium_fractions(0x30303030, 30000); let res = cuc.write_to_bytes(&mut buf); assert!(res.is_ok()); let res = TimeProviderCcsdsEpoch::from_bytes(&buf); assert!(res.is_ok()); let cuc_read_back = res.unwrap(); assert_eq!(cuc_read_back, cuc); } #[test] fn test_write_with_fine_fractions() { let mut buf: [u8; 16] = [0; 16]; let cuc = TimeProviderCcsdsEpoch::new_with_fine_fractions(0x30303030, u16::MAX as u32 + 60000); assert!(cuc.is_ok()); let cuc = cuc.unwrap(); let res = cuc.write_to_bytes(&mut buf); let written = res.unwrap(); assert_eq!(written, 8); let mut dummy_buf: [u8; 4] = [0; 4]; dummy_buf[1..4].copy_from_slice(&buf[5..8]); assert_eq!(u32::from_be_bytes(dummy_buf), u16::MAX as u32 + 60000); assert_eq!(buf[8], 0); } #[test] fn test_read_with_fine_fractions() { let mut buf: [u8; 16] = [0; 16]; let cuc = TimeProviderCcsdsEpoch::new_with_fine_fractions(0x30303030, u16::MAX as u32 + 60000); assert!(cuc.is_ok()); let cuc = cuc.unwrap(); let res = cuc.write_to_bytes(&mut buf); assert!(res.is_ok()); let res = TimeProviderCcsdsEpoch::from_bytes(&buf); assert!(res.is_ok()); let cuc_read_back = res.unwrap(); assert_eq!(cuc_read_back, cuc); } #[test] fn test_fractional_converter() { let ns = convert_fractional_part_to_ns(FractionalPart(FractionalResolution::FourMs, 2)); // The formula for this is 2/255 * 10e9 = 7.843.137. assert_eq!(ns, 7843137); // This is the largest value we should be able to pass without this function panicking. let ns = convert_fractional_part_to_ns(FractionalPart( FractionalResolution::SixtyNs, 2_u32.pow(24) - 2, )); assert_eq!(ns, 999999940); } #[test] #[should_panic] fn test_fractional_converter_invalid_input() { convert_fractional_part_to_ns(FractionalPart(FractionalResolution::FourMs, 256)); } #[test] #[should_panic] fn test_fractional_converter_invalid_input_2() { convert_fractional_part_to_ns(FractionalPart( FractionalResolution::SixtyNs, 2_u32.pow(32) - 1, )); } #[test] fn fractional_part_formula() { let fractional_part = fractional_part_from_subsec_ns(FractionalResolution::FourMs, 7843138).unwrap(); assert_eq!(fractional_part.1, 2); } #[test] fn fractional_part_formula_2() { let fractional_part = fractional_part_from_subsec_ns(FractionalResolution::FourMs, 12000000).unwrap(); assert_eq!(fractional_part.1, 3); } #[test] fn fractional_part_formula_3() { let one_fraction_with_width_two_in_ns = 10_u64.pow(9) as f64 / (2_u32.pow(8 * 2) - 1) as f64; assert_eq!(one_fraction_with_width_two_in_ns.ceil(), 15260.0); let hundred_fractions_and_some = (100.0 * one_fraction_with_width_two_in_ns).floor() as u64 + 7000; let fractional_part = fractional_part_from_subsec_ns( FractionalResolution::FifteenUs, hundred_fractions_and_some, ) .unwrap(); assert_eq!(fractional_part.1, 100); // Using exactly 101.0 can yield values which will later be rounded down to 100 let hundred_and_one_fractions = (101.001 * one_fraction_with_width_two_in_ns).floor() as u64; let fractional_part = fractional_part_from_subsec_ns( FractionalResolution::FifteenUs, hundred_and_one_fractions, ) .unwrap(); assert_eq!(fractional_part.1, 101); } #[test] fn update_fractions() { let mut stamp = TimeProviderCcsdsEpoch::new(2000); let res = stamp.set_fractions(FractionalPart(FractionalResolution::SixtyNs, 5000)); assert!(res.is_ok()); assert!(stamp.fractions.is_some()); let fractions = stamp.fractions.unwrap(); assert_eq!(fractions.0, FractionalResolution::SixtyNs); assert_eq!(fractions.1, 5000); } #[test] fn set_fract_resolution() { let mut stamp = TimeProviderCcsdsEpoch::new(2000); stamp.set_fractional_resolution(FractionalResolution::SixtyNs); assert!(stamp.fractions.is_some()); let fractions = stamp.fractions.unwrap(); assert_eq!(fractions.0, FractionalResolution::SixtyNs); assert_eq!(fractions.1, 0); let res = stamp.update_from_now(); assert!(res.is_ok()); } #[test] fn assert_largest_fractions() { let fractions = fractional_part_from_subsec_ns(FractionalResolution::SixtyNs, 10u64.pow(9) - 1) .unwrap(); // The value can not be larger than representable by 3 bytes // Assert that the maximum resolution can be reached assert_eq!(fractions.1, 2_u32.pow(3 * 8) - 2); } #[test] fn add_duration_basic() { let mut cuc_stamp = TimeProviderCcsdsEpoch::new(200); cuc_stamp.set_fractional_resolution(FractionalResolution::FifteenUs); let duration = Duration::from_millis(2500); cuc_stamp += duration; assert_eq!(cuc_stamp.width_counter_pair().1, 202); let fractions = cuc_stamp.width_fractions_pair().unwrap().1; let expected_val = (0.5 * fractional_res_to_div(FractionalResolution::FifteenUs) as f64).floor() as u32; assert_eq!(fractions, expected_val); let cuc_stamp2 = cuc_stamp + Duration::from_millis(501); // What I would roughly expect assert_eq!(cuc_stamp2.counter.1, 203); assert!(cuc_stamp2.fractions.unwrap().1 < 100); assert!(cuc_stamp2.subsecond_millis().unwrap() <= 1); } #[test] fn add_duration_overflow() { let mut cuc_stamp = TimeProviderCcsdsEpoch::new_generic(WidthCounterPair(1, 255), None).unwrap(); let duration = Duration::from_secs(10); cuc_stamp += duration; assert_eq!(cuc_stamp.counter.1, 10); } }